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We develop a theoretical model for the thermodynamics and kinetics of clathrin self-assembly. Our model addresses 

the behavior in two dimensions and can be easily extended to three dimensions, facilitating the study of membrane, 

surface, and bulk assembly. The clathrin triskelia are modeled as flexible pinwheels that form leg-leg associations and 

resist bending and stretching deformations. Thus, the pinwheels are capable of forming a range of ring structures, 

including 5-, 6-, and 7-member rings that are observed experimentally. Our theoretical model employs Brownian 

dynamics to track the motion of clathrin pinwheels at sufficiently long time scales to achieve complete assembly. 

Invoking theories of dislocation-mediated melting in two dimensions, we discuss the phase behavior for clathrin self-

assembly as predicted by our theoretical model. We demonstrate that the generation of 5–7 defects in an otherwise 

perfect honeycomb lattice resembles creation of two dislocations with equal and opposite Burgers vectors. We use 

orientational- and translational-order correlation functions to predict the crystalline-hexatic and hexatic-liquid phase 

transitions in clathrin lattices. These results illustrate the pivotal role that molecular elasticity plays in the physical 

behavior of self-assembling and self-healing materials. 

 

1 Introduction 

Many biological systems are capable of spontaneously assembling a diverse set of molecular architectures from a single 

subunit. Clathrin-mediated endocytosis involves the formation of a pit that is surrounded by a honeycomb coating 

whose pinwheel-shaped (or triskelion) subunit is a clathrin-protein complex. This characteristic ability of clathrin has 

inspired the design of many nanoscale systems.1–7 Such designs require fundamental understanding of the physical 
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principles involved in biological self-assembly in order to fully exploit the inherent adaptability of such soft-matter 

systems for responsive and self-healing materials applications.  

The triskelion structure of the clathrin subunit facilitates the formation of nanoscale cages and pits8,9 upon 

recruitment of clathrin to the cell wall by adaptor proteins.10 These cage-like lattices contain a clathrin subunit at each 

vertex, and the three triskelion arms associate with neighboring triskelia via favorable heavy- and light-chain 

interactions.8,9 Thus, the resulting lattice has three bonds at each vertex when fully satisfied, resulting in a honeycomb 

structure with prevalent five-membered and seven-membered ring defects. As in any closed polyhedral lattice, such 

ring defects permit closure of the lattice into a three-dimensional shell. Clathrin achieves this via the formation of a pit 

that comprises the seed of an endosomal vesicle.11,12 Two and three dimensional clathrin assemblies are also observed in 

vitro,13–16 indicating that these assemblies can be highly variable. 

The elastic flexibility of the clathrin triskelion plays a critical role in facilitating the formation of a wide range of 

architectures both in vivo and in vitro.17–20 Structural analysis of clathrin triskelia reveals the orientation of the flexible 

legs13 by positioning the triskelia in experimentally observed lattices.21,22 The size distribution of cages, discerned from 

electron micrographs,18,19 is used to estimate rigidity of clathrin legs. Statistical analysis of light scattering data reveals 

independent structural fluctuations of triskelion legs.20 

Clathrin provides us with a useful system to understand the pivotal role of elasticity, molecular interactions, and 

local structural rearrangement in the behavior of self-assembled materials. Structural rearrangement in polycrystalline 

materials leads to the generation and migration of grain boundaries23 and can influence phase transitions of crystals by 

inducing geometrical and topological defects.24 In ordered structures on curved surfaces,25,26 local structural changes lead 

to defect formation to alleviate internal elastic stresses. Understanding the physical mechanisms underlying self-

assembled systems provides insight on how to externally control the assembly of nanoscale building blocks into 

materials with favorable optical, electronic, and mechanical properties.27 Such physical insight can also inspire the 

fabrication of switchable nanomaterials,28 semiconductor sheets of nano-particles,29 and self-healing materials.30 

Our goal in this manuscript is to develop a two-dimensional model of clathrin that captures the physical effects 

dictating large-scale reorganization due to local structural rearrangements. This coarse-grained model permits us to 

perform numerical simulations of clathrin assembly dynamics at sufficient time and length scales to address the 

thermodynamics and kinetics of biologically relevant lattice structures. We then proceed to determine bulk elastic 

constants for an effective continuum solid and map our model onto classical theories of dislocation-mediated melting in 

two dimensions.31–34 Our model offers new insight into the role of local molecular elasticity in the large-scale response 

of self-assembled architectures. This framework can be easily extended to address three-dimensional and membrane-

bound clathrin self-assembly. 

Section 2 describes our theoretical model. We discuss our results in Sec. 3, focusing on the role of dislocations in 

the structural dynamics of a clathrin lattice. We conclude in Sec. 4 by summarizing our findings and elaborate on future 

research goals. 
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2 Theoretical Model 

In this section, we develop a two-dimensional mesoscale model of clathrin. The individual clathrin protein complex 

takes the form of a pinwheel composed of three legs connected to a vertex (see Fig. 1). The vertex position i gives the 

location of the ith pinwheel, and the orientation of the legs are dictated by the vectors adjoining bonded pinwheel pairs 

to each other. Therefore, the leg orientations are defined by the pinwheel coordinates and the bond connections. 

 

Fig. 1 Two-dimensional mesoscale model of clathrin triskelion, indicating the energy change for 

transitioning from two unbound pinwheels (left, blue rings indicate clathrin leg length r0) to two bound 

pinwheels (right). This schematic introduces the bending modulus kb, stretching modulus ks, and the 

binding affinity ε 

Elastic energy contributions from leg deformations include stretching and bending energies, modeled as Hookean 

springs with stretching modulus ks and bending modulus kb (see Fig. 1). The clathrin model can make or break bonds 

with neighbors via binding or unbinding events. Each bond contributes an energy −ε to the total energy. In addition to 

bending, stretching, and binding energies, we consider a repulsive potential energy to avoid the overlapping of 

pinwheels. A detailed mathematical development of our clathrin model is provided in Appendix A, where we provide 

explicit definitions of the energetic contributions and the binding connectivity. 

To simulate the dynamic behavior of our clathrin model, we combine Brownian dynamics with dynamic Monte 

Carlo simulations to track the motion of pinwheels and the evolving binding connectivity. This novel simulation 

approach tracks the dynamic evolution of the bead positions and bonds between pinwheels at sufficient time and length 

scales to permit large-scale assembly of lattices, as shown in Sec. 3. The development of the equations governing the 

pinwheel motion and the binding kinetics is found in Appendix B. 

Our discrete model can be mapped onto an effective continuum elasticity model. This picture is adequate to address 

large-scale mechanical deformation energy and thermodynamic phenomena, which is exploited in Sec. 3. The elasticity 

of a continuum solid is defined by the Lamé coefficients of the material. In Appendix C, we derive the effective Lamé 

coefficients40,41 for a fully satisfied honeycomb lattice with no vacancies. 
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From our derivations in Appendix C, we arrive at the Lamé coefficients  

  

 

(1) 

  

 

(2) 

These elastic constants govern elastic deformation of the lattice over lengths that are large in comparison to the 

discretization length r0 (i.e. the clathrin equilibrium leg length). The Lamé coefficients for our two-dimensional system 

are recast as the Young's modulus E and Poisson's ratio ν, such that42  

  

 

(3) 

  

 

(4) 

where α = r2
0ks/kb. Our theoretical prediction of the Lamé coefficients are purely based on elastic mechanics of a perfect 

honeycomb lattice. These act as a starting point for addressing the physical behavior of a fluctuating lattice containing 

defects, which will be addressed in more detail in Sec. 3 when we consider the phase behavior of a clathrin lattice.  

3. Discussion 

Our model permits an examination of the effect of concentration, elasticity, and binding affinity on clathrin self-

assembly on a two-dimensional surface or rigid membrane. We present simulations and theories for the dynamics of 

assembly and the structural fluctuations of an assembled lattice, addressing physical issues that are relevant to the 

formation and reorganization of a clathrin film. Our goal is to reveal the fundamental mechanisms that are essential in 

determining the large-scale behavior of an assembled lattice based on properties of the individual subunits. Such 

collective effects are at the heart of the biological function of clathrin during endocytosis.  

We present in Fig. 2 a Brownian dynamic simulation of the progression of structural states that arise during the 

assembly of a clathrin lattice. We obtain the time history of 500 pinwheels in a box with side length equal to 27r0 and 

periodic boundary conditions over 200 time steps, where one time step is equivalent to the time scale for a pinwheel to 

diffuse a distance equal to the bond size r0. Fig. 2 shows 6 snapshots taken at times t = 1, 2, 10, 20, 100, 200. The 

simulation in Fig. 2 has bending and stretching moduli, βkb = 5 and βksr0
2 = 50 [where β = 1/(kBT)], and the strength of 

the repulsive potential βkr/r0
4 = 1. These snapshots represent a slow quench, where the binding affinity increases 

linearly from ε = 2.75kBT to 3.75kBT in t = 200 time steps. The initial condition for this simulation has all of the 

pinwheel legs free and pinwheel positions that are random and uniformly distributed throughout the box, i.e. starting 

from an ideal-gas state. 
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Fig. 2 Brownian dynamic simulation of the assembly dynamics of 500 pinwheels, with binding affinity ε 

ramping up linearly from 2.75kBT to 3.75kBT in 200 time steps. Red dots identify the centers of 

pinwheels, and solid black and dashed blue segments are the bound and free legs, r 

Close inspection of the assembly dynamics in Fig. 2 demonstrates an initial prevalence of small clusters and chains. 

Local structure favors 6-member rings; though, leg flexibility permits a range of ring sizes throughout the assembly. At 

this high density, the initial clusters quickly coalesce into a percolated structure within 2 time steps. The initial 

macrostructure at the point of percolation (t = 2) arises from clusters and chains of a range of size and shape, resulting 

in a structure that contains a broad distribution of ring and vacancy defects that induce considerable elastic frustration 

within the assembled structure. Subsequent reorganization to the final assembled state involves a series of lattice 

manipulations that alleviate the elastic frustration. The progression of lattice reorganization in Fig. 2 results in internal 

void regions toward which defects migrate, leaving a final structure (t = 200 in Fig. 2) with local orientational order and 

pinwheel legs that are mostly satisfied. 

Brownian dynamic simulations illustrate the effect of leg stiffness, binding affinity, and quench rate on the 

dynamics of self assembly and the morphology of the assembled lattice. Defects in this structure are defined by non-

hexagonal rings, especially pentagons and heptagons, within the ground-state honeycomb lattice. Although the 

flexibility of the clathrin triskelia permits a lattice to accommodate ring defects, the kinetic processes that underlie 

rearrangement of the lattice ultimately dictate whether the lattice is capable of achieving a dynamic response to local 

stimuli. For example, the formation of a lattice with a single isolated five-membered ring could occur via a large-scale 

excision of a 60° lattice wedge.43 This mechanism becomes energetically prohibitive for large lattice patches. 

Alternatively, an isolated five-membered ring can be formed through a series of local lattice reorganizations that result 

in the large-scale separation of five- and seven-membered ring defects.44 Along these lines, the energetics of defect 

creation and separation dictate the capacity for the lattice to undergo rearrangement. We now discuss the creation, 

annihilation, migration, and interaction of defects in an otherwise perfect honeycomb structure, addressing the impact 

of defects on the phase behavior and macroscale properties of an assembled lattice. 
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Creation and annihilation of defects within an assembled lattice can occur through local bond reorganization events. 

Such topological transitions arise in isomerization processes in fullerenes.45 The top image of Fig. 3 demonstrates that a 

bond rotation event within a perfect honeycomb lattice generates two sets of 5- and 7-member rings, i.e. two 5–7 

defects. Adjacent 5-member (red pentagon) and 7-member (blue heptagon) rings are also frequently seen in our 

Brownian dynamic simulations (bottom left) as well as in cryo-EM images14 (bottom right) of clathrin assemblages. 

Notably, the cryo-EM image in Fig. 3 contains prevalent instances where 5-member and 7-member rings are localized 

together, as would arise from defect creation processes and from elastic considerations (discussed further below). 

Assembled structures from our simulations contain square (yellow), octagon (green), and more energetically 

unfavorable defect structures as well as frequent 5–7 pairs. The patterns of emerging defects due to local reorganization 

depend on the configuration of the patch in which the reorganization occurs. For instance, if we find a patch where two 

hexagons and two pentagons initially meet in a crisscross pattern, rotation of the central bond only swaps pentagons 

and hexagons in a Stone-Wales rearrangement.45 Such a rearrangement does not create new pentagons. 

 

Fig. 3 The top image shows the lattice-reorganization mechanism to generate two 5–7 defects in a 

honeycomb lattice while maintaining all bonds. The bottom images show the existence of 5–7 defects in 

both a lattice obtained from Brownian dynamic simulation (bottom, left) and a clathrin lattice obtained 

experimentally (bottom, right).14 

The defect-creation process (top image of Fig. 3) can occur via several mechanisms, one of which is shown in the 

top image of Fig. 4. The formation of a pair of 5–7 defects occurs through a sequence of steps (labeled with reaction 

coordinate 0, …, 7, F), each of which involves either unbinding of a bound leg (solid line) or binding of a free leg 

(dashed line). Each image in Fig. 4 is rendered from a numerical optimization of our model with the appropriate leg 

connectivities for each step. The corresponding total energy change for this sequence of steps as a function of reaction 

coordinate is shown in the bottom of Fig. 4 for binding affinity ε = 2.5 (red), 3.5 (green), 4.5 (blue), and 5.5kBT (black), 

stretching modulus βksr0
2 = 50, and bending modulus βkb = 5. Through this particular pathway, the creation of a pair of 

5–7 defects for binding affinity ε = 2.5kBT requires overcoming an energy barrier of 10kBT. This barrier increases to 

16.5kBT for binding affinity ε = 5.5kBT, resulting in a considerable energetic barrier that renders such events 

kinetically limited. Defining the Burgers vector of a defect as the vector drawn from the heptagon center to the 
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pentagon center and rotated by 90° counter-clockwise,46 the Burgers vectors of the two 5–7 defects in the final state F 

sum to zero; this sum is a conserved quantity for any internal lattice reorganization, as in Fig. 4. 

 

 

Fig. 4 The top series of images shows a step-by-step mechanism for the creation of two 5–7 defects in a 

honeycomb lattice. The bottom figure gives the total energy change versus reaction coordinate. The energy 

barrier to generate two 5–7 defects increases with binding affinity ε = 2.5 (red), 3.5 (green), 4.5 (blue), and 

5.5kBT (black). 

Results presented in Fig. 4 suggest that binding affinity plays a pivotal role in defect-generation kinetics by 

dictating the barrier for lattice reorganization. However, the energy of the initial and final states in Fig. 4 are insensitive 

to the binding affinity, since all legs are bonded in these states. The transition to the final state F results in a core 

energy Ec of the defect pair, representing the energetic cost for defect creation. This cost is offset by the entropic benefit 

associated with translation of the defects throughout the lattice. Defect translation is a critical determinant of the 

thermodynamic behavior and the mechanical properties of the lattice. 

Upon creation of a pair of 5–7 defects via a mechanism typified in Fig. 4, the two defects can be separated from 

each other by a series of lattice reorganizations akin to those shown in Fig. 3 and 4. For example, the horizontal bond at 

the top of the right-side heptagon can be rotated by 90° within the lattice, resulting in the upper-right 5–7 defect 

shifting within the lattice up and to the right by one unit. This translation step is shown in Panel A of Fig. 5, along with 
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subsequent reorganization processes that further separate the defect pair. No new defects are created throughout the 

translation process in Fig. 5A, and the sum of the two Burgers vectors remains zero. 

 

Fig. 5 Panel A shows minimum-energy configurations of a honeycomb lattice (βksr0
2 = 50 and βkb = 5) as 

two 5–7 defects are separated. Panel B demonstrates that defect separation leads to large-scale lattice 

reorganization along a slip line (red) within the lattice. Panel C gives the elastic energy Es + Eb as a 

function of separation distance, obtained from numerical optimization with 3000 (red), 12000 (green), 

45000 (blue), and 180000 (black) pinwheels and from analytical theory based on continuum mechanics 

(dashed line). 

The bottom-right image in Fig. 5A labels the hexagonal columns entering and exiting each defect, demonstrating an 

analogy between the defect structure within the honeycomb lattice and two parallel edge dislocations with equal and 

opposite Burgers vectors. A column of hexagons entering the defect is split in two upon exiting from the defect, akin to 

an edge dislocation where a half plane of atoms is inserted in a perfect crystal. The slip line (i.e. a slip plane in two 

dimensions) associated with such an edge dislocation is illustrated by separating the 5–7 defects all the way to the 

edges of the honeycomb lattice as shown in Fig. 5B. The slip line is shown as a red connecting line between the two 

defects across the lattice. Fig. 5B demonstrates that defect separation results in large-scale lattice reorganization that 

incurs fluidity to the macrostructure, suggesting that defect creation and translation are essential in permitting the 

lattice to be structurally responsive. 

Panel C of Fig. 5 gives the total elastic energy Es + Ebversus separation distance between two defects for βksr0
2 = 50 

and βkb = 5. The solid curves represent the total energy obtained from numerical optimization of our model for 3000 

(red), 12000 (green), 45000 (blue), and 180000 (black) pinwheels. Our numerical optimization finds the minimum-

energy configuration for a square patch of pinwheels with free edges (i.e. no periodic boundary conditions), thus 

eliminating the interactions between defects through lattice periodicity. The dashed blue curve is a theoretical 
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prediction from continuum elasticity theory,47 where the elastic energy of an isotropic continuum with two parallel edge 

dislocations is given by  

  

 

(5) 

where α = r0
2ks/kb. Here, μ and λ are the Lamé coefficients, r is the separation distance between defects, is the 

magnitude of Burgers vector, and c is a constant related to the orientation of the line connecting the two edge 

dislocations.47 The second form of Edisloc in eqn (5) utilizes our analytical results from Sec. 2 for the Lamé coefficients, 

and the blue dashed curve in Fig. 5C gives this result with a single additive constant to match the simulation results. 

The third form of Edisloc in eqn (5) defines the dislocation coupling constant K. Fig. 5C confirms that the elastic energy of 

two 5–7 defects in an otherwise perfect honeycomb lattice follows the logarithmic behavior described in eqn (5) at 

large separation.  

Our current mechanical analyses lay the foundation for a discussion of the thermodynamic behavior of our clathrin 

model. We begin by presenting Monte Carlo simulations of our model with various values of the elastic moduli ks and 

kb. These simulations involve 1972 pinwheels in a box of size 51r0 by 50.2r0 with periodic boundary conditions. These 

box dimensions align with a fully-satisfied, undeformed honeycomb lattice with 1972 pinwheels. We seed each 

simulation with a perfect honeycomb lattice configuration in which all pinwheel legs are initially satisfied and perform 

a total of 6 × 107 Monte Carlo steps. Each Monte Carlo step consists of two stages. In the first stage, a randomly 

selected pinwheel is randomly translated without making or breaking bonds. We accept or reject the trial configuration 

based on a Metropolis selection criterion,37i.e. a probability based on Boltzmann distributed density function 

incorporating the elastic and repulsive energy change. In the second stage, we randomly select a leg from the pinwheel 

chosen in the first stage. If the leg is bound, we attempt to unbind the leg. If the leg is unbound, we attempt to bind the 

leg to a nearby available free leg. We accept or reject the second trial configuration using Boltzmann distributed 

probability density function of the accompanying elastic energy and leg-leg interaction energy change. 

Final snapshots from Monte Carlo simulations of 1972 pinwheels are shown in Fig. 6 for stretching modulus βksr0
2 = 

85 (A), 75 (B), 70 (C), 65 (D), 60 (E), and 55 (F), where the bending modulus is βkb = βksr0
2/10. In these snapshots, 5-

member and 7-member rings are colored red and blue, respectively. Our simulations shown in Fig. 6 are sufficiently 

large such that interactions between separate defects are far more prevalent than interactions between defects and their 

own images (even for case A), thus rendering the effects of periodic boundary conditions negligible. These images 

demonstrate that pinwheel rigidity plays a critical role in the propensity for the lattice to form defects and in the 

tendency for these defects to remain bound to each other. For large rigidity (βksr0
2 = 85, Fig. 6A), the lattice contains a 

low concentration of 5–7 defects that tend to be adjacent to each other, as in the first image of Fig. 5A. As the 
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stretching and bending moduli are reduced, the defect concentration increases, and the defects tend to separate due to 

structural fluctuations of the lattice. Moderate values of βksr0
2 (i.e.Fig. 6C to Fig. 6D) tend to have substantial separation 

of the defects; however, the 5–7 defects remain intact, rather than separating into isolated 5-member and 7-member 

rings. Further reduction of βksr0
2 (i.e.Fig. 6E to Fig. 6F) leads to large concentration of defects that easily separate from 

each other and that split into distinct 5-member and 7-member rings within the lattice. These qualitative observations 

underscore a complex relationship between the microscopic pinwheel elasticity and the macroscopic thermodynamic 

behavior that can be addressed in terms of the phase behavior of two-dimensional crystals. 

 

Fig. 6 Snapshots from Monte Carlo simulations of a clathrin lattice, demonstrating the effect of elasticity 

[βksr0
2 = 85 (A), 75 (B), 70 (C), 65 (D), 60 (E), and 55 (F) and βkb = βksr0

2/10] on large-scale structural 

fluctuations. To locate defects, pentagons and heptagons are shown in red and blue, respectively. 

Classical theories of dislocation-mediated melting in two dimensions (KTNHY theory)31–34 propose that dislocations 

in the ordered crystalline phase tend to unbind upon raising the temperature, leading to isolated and mobile dislocations 

in a hexatic phase. Fig. 5B demonstrates that defect separation leads to large-scale lattice reorganization; thus, 

embedding many mobile defects in the lattice leads to a structure with fluid-like mechanical properties. In our clathrin 

model, a 5–7 defect is composed of 5-member and 7-member disclinations. Further increase in temperature enhances 

the entropic benefit of separation of dislocations into their disclinations, leading to a phase transition to a disordered 

liquid state. 
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The interactions between dislocations in a fluctuating lattice are modulated by the structural fluctuations within the 

environment surrounding the dislocations. Kosterlitz and Thouless expressed this in terms of a dielectric medium 

surrounding the dislocations,31 and Nelson, Halperin, and Young utilized Renormalization Group theory to determine 

the macroscale properties that dictate the effective interactions between dislocations.32–34 In order to precisely find the 

conditions for the crystalline-hexatic phase transition, we look at renormalized properties using the KTNHY theory 

recursion relations32–34  

  

 

(6) 

Eqn (6) governs the renormalized dislocation coupling constant KR, the renormalized fugacity of a dislocation pair 

yR (i.e. the effective dislocation probability), and the renormalized shear modulus of the clathrin lattice μR for varying 

reduced linear dimension l = log(r/b) (with ). In eqn (6), I0 and I1 are modified Bessel functions of the first 

kind. The macroscale properties of the lattice are found by integrating eqn (6) from l = 0 to l → ∞, subject to the initial 

conditions KR(l = 0) = K, yR(l = 0) = exp(– βEc), and μR(l = 0) = μ, where Ec is the core energy of the defect pair, μ is the 

bare shear modulus (derived in Sec. 2), and the bare coupling constant K is given in eqn (5). 

Fig. 7 shows the renormalized dislocation coupling constant KRversus βksr0
2 (with kb = ksr0

2/10) by solving the 

renormalization group differential equations in eqn (6) as l tends to infinity. According to Fig. 7, KR decreases and 

approaches a universal constant 16π as stretching modulus βksr0
2 approaches 69 from above. At this point, the coupling 

constant KR jumps discontinuously to zero. According to the Kosterlitz-Thouless criterion for melting,31 the 

renormalized Lamé coefficient μR is also discontinuous across the melting point, as shown in the inset of Fig. 7. The 

discontinuous drop of dislocation coupling constant KR and Lamé coefficient μR at βksr0
2 = 69 indicates a crystalline-

hexatic phase transition, where the system goes from a solid phase to a liquid-like hexatic phase that does not resist 

shear deformation. 
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Fig. 7 Renormalized dislocation coupling constant KRversus the stretching modulus βksr0
2 (with kb = 

ksr0
2/10), obtained from eqn (6). The coupling constant discontinuously jumps from K/(16π) = 1 to 

K/(16π) = 0 at βksr0
2 = 69, corresponding to a crystalline-hexatic phase transition. Similarly, the shear 

modulus (inset) decreases with decreasing leg stiffness in the crystalline phase until it vanishes upon 

transitioning from the crystalline to the hexatic phase. 

The phase diagram presented in Fig. 7 provides a prediction for the crystalline-hexatic phase transition for our 

simulations presented in Fig. 6. Specifically, the transition is predicted to occur between condition C and D in Fig. 6. 

To verify the phase behavior in our simulations, we turn to structural correlation functions that have previously been 

used to determine order-disorder transitions in two-dimensional crystals.32,33 In the framework of classical theories of 

dislocation-mediated melting in two dimensions,32,33 appropriate metrics for phase transition are translational- and 

orientational-order correlation functions. 

To facilitate an analysis of the structural order, it is necessary to define an equivalent hexagonal lattice to our 

honeycomb lattice. Our construction of such a hexagonal lattice involves tagging pinwheels that have leg orientations 

(0°, 120°, 240°) in the initial honeycomb state. The equivalent lattice includes only these tagged pinwheels, which 

make up a hexagonal lattice with spacing that is superimposed over the whole honeycomb structure. Using 

standard definitions,48 we define primitive translation vectors , and reciprocal vectors 

, , resulting in six Bragg peaks α (α = 1, 2, …, 6) with magnitude . With 

this construction, we convert an initially perfect honeycomb structure to a hexagonal lattice that is more amenable to 

structural analyses. We use this equivalent hexagonal construction in all of our proceeding calculations. 

We express the ith pinwheel position as i = (0)
i + ( (0)

i), where (0)
i is the position of the ith pinwheel in the 

undeformed state, and ( (0)
i) is the lattice displacement at the position (0)

i. Note, these definitions are currently 

applied to the equivalent hexagonal lattice rather than the actual honeycomb structure. The local density is expressed 
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using a Fourier representation (i.e. in the reciprocal-vector basis), and the contribution from the six Bragg peaks to the 

density at the ith lattice point is given by  

  

 

(7) 

which is defined to be unity in the undeformed state ( (0)
i) = 0. We define the translational-order correlation function 

as  

  CG( (0)
i, (0)

j) = 〈ρG( (0)
i)ρ*

G( (0)
j)〉E, (8) 

where 〈…〉E represents an average over an ensemble of snapshots at the undeformed positions (0)
i and (0)

j. Since 

this quantity is invariant with respect to a lattice translation and rotation, the translational-order correlation function is 

expressed as a function of the separation between lattice points, such that  

  CG(R) = 〈ρG(R)ρ*
G(0)〉 (9) 

In eqn (9), the undeformed separation R is the distance between two points in the undeformed state, and the average 

〈 … 〉 now involves an average both over an ensemble of snapshots and over all lattice points whose undeformed 

separation is equal to R (i.e. | (0)
i − (0)

j| = R). This representation greatly improves the sampling of this quantity. 

The theory of dislocation-mediated melting in two dimensions32–34 indicates that the translational-order correlation 

function in the crystalline phase has the power-law behavior CG(R) R−η
G, where  

  

 

(10) 

To find ηG, one computes the renormalized Lamé coefficient μR and renormalized coupling constant KR using eqn (6) 

and find λR using the relationship between KR and λR from eqn (5). Fig. 8 illustrates the variation of ηG with stretching 

modulus βksr0
2. As stretching modulus decreases, ηG increases up to the maximum limit of 1/3 at the crystalline-hexatic 

phase transition. Further reduction in βksr0
2 leads to ηG diverging, corresponding to a change in the behavior of CG from 

a power-law decay in the crystalline phase to an exponential decay in the hexatic phase. Since the behavior of CG in the 

crystalline phase decays as a power law with R and the behavior of CG in both the hexatic phase and liquid phase decays 

exponentially, CG is a useful determinant of the transition from a crystalline phase to the hexatic phase. 

http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#eqn9
http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#cit32
http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#eqn6
http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#eqn5
http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#fig8


 

Fig. 8 Exponent ηG of algebraic decay of translational-order correlation function versus the stretching 

modulus βksr0
2 (with kb = ksr0

2/10). 

The local orientational order ψ( i) at the deformed-state position of the ith pinwheel is given by  

  

 

(11) 

where θij( i) is the orientation of the line from the equivalent hexagonal lattice site at i to its j-th nearest-neighbor 

site, and ni is the number of nearest neighbors to the ith pinwheel that is defined using a Voronoi diagram49 of the 

pinwheels located at equivalent hexagonal lattice sites. The orientational-order correlation function is defined by  

  C6( i, j) = 〈ψ( i)ψ*( j)〉E. (12) 

As in CG, we define the average over all i,j pairs with a prescribed separation, such that  

  C6(r) = 〈ψ(r)ψ*(0)〉 (13) 

where 〈…〉 involves averaging over an ensemble of snapshots while binning all i,j pairs whose deformed-state 

separation is r (i.e. | i − j| = r).  

Although the translational-order correlation function CG decays for a two-dimensional crystal, the orientational-

order correlation function C6 tends to a constant at large separation r for a two-dimensional crystalline phase.32–34 The 

hexatic phase is akin to a two-dimensional liquid crystal, and the local fluid exhibits orientational order. However, the 

local orientational correlation decays at large distances according to the power-law C6(r) r−η
6.32–34 The exponent η6 

stays below the maximum limit of 1/4 before transitioning from the hexatic phase to the liquid phase.32–34 The transition 

from a hexatic phase to a liquid phase is marked by the separation of 5–7 defects into mobile 5-member and 7-member 

disclinations. Within the liquid phase, the orientational-order correlation function decays exponentially with r. 

Therefore, the orientational-order correlation function exhibits three distinct behavior in these three phases: C6 in the 

crystalline phase tends to a constant, C6 in the hexatic phase decays as a power law, and C6 in the liquid phase decays 

exponentially. 
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Fig. 9 shows the translational-order correlation function CG (Fig. 9A) and the orientational-order correlation 

function C6 (Fig. 9B) from the 6 simulations presented in Fig. 6, i.e. βksr0
2 = 85 (condition A, red), 75 (condition B, 

cyan), 70 (condition C, magenta), 65 (condition D, green), 60 (condition E, blue), and 55 (condition F, black) and βkb = 

βksr0
2/10. The dashed lines in the plot of CG (Fig. 9A) are analytical predictions for the power-law decay CG R−η

G (ηG 

predicted from Fig. 8) for the three simulations that are predicted to be in the crystalline phase from the phase diagram 

in Fig. 7. The crystalline-hexatic transition is predicted to occur at βksr0
2 = 69, which is just below the rigidity for 

condition C. Notably, there is close agreement between the power-law decay from the analytical theory and the 

simulations for conditions A, B, and C, and subsequent reduction of the rigidity to condition D results in a marked 

change in CG to decaying exponentially. We note a leveling of CG at large separation for condition D (green curve in 

Fig. 9A), which we attribute to sampling and the finite size of the simulation box. Therefore, the translational-order 

correlation function CG provides a clear metric for determining the melting point of the lattice, which quantitatively 

agrees with classical theories of dislocation-mediated melting in two-dimensional crystals.31–34 

 

Fig. 9 Panel A gives the translational-order correlation function versus the undeformed separation 

distance R/b for βksr0
2 = 85 (red), 75 (cyan), 70 (magenta), 65 (green), 60 (blue), and 55 (black) and βkb = 

βksr0
2/10. Dashed lines (red, cyan, and magenta) are asymptotes R−η

G, indicating ηG stays below the 

maximum of 1/3 before transitioning from crystalline to hexatic phase (see text). Panel B shows the 

variation of the orientational-order correlation function with deformed separation distance r/b. 

The orientational-order correlation function C6 in Fig. 9B includes a plot of the maximum decay behavior in the 

hexatic phase, C6 r−1/4, which marks the transition from a hexatic phase to a liquid phase. The orientational correlation 

exhibits a notable transition from condition D (green) to condition E (blue). The decay of C6 for condition D exhibits a 

power-law decay for intermediate r with a decay coefficient η6 ≤ 1/4; though, C6 for condition D in Fig. 9B (green) 
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exhibits a similar leveling at large separation as CG for condition D. However, there is a considerable reduction in the 

orientational correlation between condition D (green) and condition E (blue) in Fig. 9B. For the sampling in our 

simulations, it is difficult to determine whether conditions E and F decay exponentially or as a power law, but the 

power law decay coefficient would be substantially larger than 1/4 for both condition E and condition F. Therefore, we 

identify condition E and condition F as existing in a disordered liquid phase. 

The three phases observed in our two-dimensional model represent very different scenarios of the large-scale 

physical behavior of a clathrin film, assuming the phase behaviors prevalent in our two-dimensional model persist 

when the clathrin assembles on a fluctuating membrane. The crystalline phase behaves as a solid elastic material that 

opposes shear deformation (i.e. μR ≠ 0). This property is important in the stabilization of local curvatures; however, this 

phase does not permit changes in the lattice structure to accommodate different cargo shapes and sizes. The hexatic and 

liquid phases are fluid in nature, permitting lattice rearrangements via the creation and migration of defects. Although 

responsive, these phases lack the mechanical integrity to stabilize deformations, particularly to the membrane to which 

they are attached. The orientational correlation in the hexatic phase implies that the lattice maintains a local crystalline 

ordering that persists over moderate length scales (multiple clathrin leg lengths). Therefore, the hexatic phase has a 

locally pre-assembled honeycomb that could seed the formation of cage-like structures. The liquid phase is highly 

disordered locally, thus lacking pre-seeded structural features. Modulating the elasticity and interactions between 

clathrin triskelia (and perhaps the local mechanical properties of the membrane) would act to shift the behavior of the 

lattice, potentially as a mechanism to transition between the aforementioned behavioral scenarios. Our current model is 

restricted to two dimensions and does not cover out-of-plane processes. However, we anticipate that the fundamental 

mechanisms for lattice reorganization are similar in two and three dimensions, and our results act as a basis for 

understanding these large-scale structural dynamics. 

4 Summary 

This work represents the development of a theoretical model to address the thermodynamics and kinetics of clathrin 

self-assembly. Our model formulation provides a flexible platform to study the roles of molecular elasticity, protein 

interactions, and thermally induced structural rearrangement in the self-assembly and large-scale behavior of clathrin 

lattices. We have developed a novel simulation approach that combines Brownian dynamics simulations with dynamic 

Monte Carlo, facilitating the study of hundreds of clathrin triskelia at sufficient time scales for lattice assembly. We 

perform energy optimization to study the mechanical properties of clathrin lattices, and Monte Carlo simulations are 

employed to address the thermodynamic behavior of clathrin systems that are sufficiently large to address structural 

correlations within the fluctuating lattice. This multi-faceted simulation approach provides a broad range of insights 

into the physical behavior of our clathrin model.  

The dynamics of self-assembly of our clathrin model exhibits an initial clustering followed by a percolated lattice 

that contains many internal defects that must be alleviated. Propagation of defects to large void spaces results in an 

ordered final assembly. To further understand these dynamic processes, we address the mechanisms for defect creation 

and migration. We illustrate that the creation of 5–7 defects in an otherwise perfect honeycomb lattice resembles the 
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creation of edge dislocations with equal and opposite Burgers vectors within a crystalline lattice. Leveraging this 

analogy, we interpret the thermodynamic behavior of our model in terms of established phase behaviors of two-

dimensional crystalline solids. We show that classical theories of dislocation-mediated melting in two-dimensional 

crystals can be employed to map out the phase diagram of our clathrin model. This idea is further developed by 

employing orientational- and translational-order correlation functions as a determinant of the thermodynamic phase of 

our model. 

Our results support a correspondence between our clathrin model and a two-dimensional crystalline solid. Given the 

crucial role that defects play in two-dimensional melting, the ability of a clathrin lattice to form defects and permit 

defect migration is a critical determinant of the large-scale response of the lattice. The biological function of clathrin as 

a responsive material hinges on the ability of the lattice to form closed polyhedral cages that contain a prevalence of 5-

member ring defects. Our results suggest that modulating the elastic properties of clathrin could lead to a precipitous 

change in whether the lattice is able to reorganize around an object or maintain a stable structure that opposes elastic 

deformation. 

Our current two-dimensional model is intended to study the fundamental role of elasticity in clathrin lattice 

reorganization. Further works will extend our theoretical model to address the self-assembly of clathrin into three-

dimensional nanostructures, either in solution (relevant to in vitro assembly) or on a flexible membrane (relevant to the 

biological function of clathrin). The mechanisms of defect creation and migration on a membrane are expected to be 

consistent with the mechanisms discussed in our present manuscript. Therefore, our current work represents a critical 

step in identifying the dominant physical mechanisms for lattice rearrangement, both in two dimensions as well as in 

the more biologically relevant case of membrane-bound assembly. 

 

Appendix A: Clathrin Model 

The total energy E in our model is given by  

  

 

(14) 

where rij = | i − j|, r0 is the equilibrium bond length between a bound pair of triskelia, and N is the total number of 

pinwheels. The stretching modulus ks and bending modulus kb define the elastic properties of the pinwheels, and the 

repulsive strength kr gives the magnitude of the repulsive interactions. The hardcore cutoff distance d indicates the 

separation distance where repulsive interactions are turned on, and H(x) is the Heaviside step function.  



The link indicator Lij is equal to 1 if there is a bond between pinwheels i and j, and 0 otherwise, and connectivity is 

reciprocal, such that Lij = Lji. Each clathrin pinwheel can only bind up to three other pinwheels; thus, the link indicator 

must satisfy 0 ≤ ∑N
j = 1Lij ≤ 3 for all i. The leg-index indicator αi

j identifies the leg number that connects pinwheel j to 

pinwheel i, e.g. if the third leg of pinwheel j connects to pinwheel i, then αj
i = 3. The leg-index indicator is set to zero 

for unbonded pinwheels (i.e. αi
j = 0 if Lij = 0). For any pinwheel i, there can be only one pinwheel j that has αi

j = 1, αi
j = 

2, or αi
j = 3. Thus, each pinwheel can bind up to three other pinwheels, and each leg can only connect to one other 

pinwheel. 

The stretching energy [first term in eqn (14)] and binding energy [second term in eqn (14)] only includes 

contributions from the bonded pairs (i.e. for i, j pairs where Lij = 1). The bending energy [third term in eqn (14)] 

includes a bending energy εijk
(b)(αi

j, αk
j, αl

j) from the pinwheels i, j, and k (with pinwheel j at the vertex), where the leg 

index αl
j is the third leg of pinwheel j that is not part of the i, j, k set (thus, l ≠ i and l ≠ k). Only those three-pinwheel 

combinations that have a bond between pinwheels i and j (Lij = 1) and pinwheels j and k (Ljk = 1) contribute to the 

bending energy. 

If the third leg is bound to another pinwheel (αl
j ≠ 0), the bending energy is  

  

 

(15) 

where is the angle between the pinwheels i, j, and k (pinwheel j at the vertex). The angle is defined in a 

right-hand sense, e.g. if αj
i = 1 and αj

k = 2, then the angle is defined as the counter-clockwise angle from ij = ( i 

− j)/rij to kj = ( k − j)/rkj.  

If the third leg is not bound to another pinwheel (αl
j = 0), the bending energy contains bending contributions from 

the i, j, k set and contributions from the implicit leg, whose orientation minimizes the bending energy. This results in 

the bending energy  

  

 

(16) 

which accounts for all of the leg-bending terms from explicitly-defined bonded legs and implicitly-defined unbonded 

legs.  

Appendix B: dynamic simulation methodology 
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The pinwheel equation of motion is given by an overdamped Langevin equation, where the potential and Brownian 

forces balance the drag force. The drag force used in this work neglects long-range hydrodynamic coupling between 

pinwheels. Therefore, the equation of motion for the ith pinwheel is given by  

  

 

(17) 

where ξ is the drag coefficient, t is the time, E is the system energy (defined in Appendix A), and i is the Brownian 

force vector. According to the fluctuation-dissipation theorem,35,36 the Brownian force vector is characterized by a 

Gaussian distribution with mean 〈 i(t)〉 = 0 and variance 〈 i(t) j(t′)〉 = 2kBTξδ(t − t′)δijI.  

To capture the binding dynamics, we represent the binding and unbinding processes by a set of reaction equations 

with configuration-dependent rate constants. For an unbonded i, j-pair of pinwheels (i.e. Lij = 0), the binding rate 

constant qb(i, αi
j|j, αj

i) governs the instantaneous rate of bond formation between the αi
j leg of the ith pinwheel and the αj

i 

leg of the jth pinwheel. To form this bond, both legs that participate in the bond must be free, which requires that αi
j ≠ 

αi
k for any value of k ≠ j and αj

i ≠ αj
k for any value of k ≠ i. Furthermore, a bond is considered unacceptable if the bond 

would cross any other bond in the simulation, thus avoiding unphysical frustrated states with crossed bonds. The 

unbinding rate constant qu(i, αi
j|j, αj

i) gives the instantaneous rate of bond annihilation, if the i, j-pair of pinwheels is 

currently bonded (i.e. Lij = 1) with the bonded-leg values αi
j and αj

i. 

Utilizing the system energy in eqn (14), we compute the binding and unbinding rate constants accounting for energy 

differences before and after binding and unbinding events. For these rate constants, we choose a Barker form.37 Thus, 

the binding rate constant is given by  

  

 

(18) 

if all participating legs are free to bind (available and no crossing arises upon binding); qb(i, αi
j|j, αj

i) = 0 otherwise. The 

unbinding rate constant is given by  

  qu(i, αi
j|j, αj

i) = ω − qb(i, αi
j|j, αj

i), (19) 

if the participating legs are currently bound; qu(i, αi
j|j, αj

i) = 0 otherwise. In these definitions, ω is a fundamental reaction 

frequency (independent of energy), and ΔEb(i, αi
j|j, αj

i) = E(Lij = Lji = 1, αi
j, αj

i) − E(Lij = Lji = 0, αi
j = 0, αj

i = 0) is the 

energy difference for making a bond between pinwheel i and j with leg indices αi
j and αj

i.  

Since the pinwheel positions and the reaction kinetics are tied together, the pinwheel motion and connectivity are 

evolved simultaneously by numerical simulation. For the motion of the pinwheels, we integrate eqn (17) utilizing a 4th 

order Runge–Kutta routine with a discrete time step Δt, using standard methods for the Brownian forces in the discrete-

time numerical integration.37 The bond connectivity is based on the bonds that are defined at the beginning of each time 

step. At each time step, we perform dynamic Monte Carlo to determine the bonds that are created and annihilated 

within that time step Δt, using rate constants based on the pinwheel positions at the beginning of the time step. Thus, 
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the algorithm used in our simulations updates the positions and connections at the end of each time step in order to 

determine the forces and rate constants for the next time step. 

The dynamic Monte Carlo simulation for the time period between t and t + Δt is a modification of the Gillespie 

algorithm for a first-order chemical reaction network.38,39 At the beginning of the time step, we find the total rate 

constant  

  

 

(20) 

which dictates the overall probability P(Δt) = exp(− qtotΔt) that a reaction will not take place within the time step Δt. A 

random number γ1 (evenly distributed from 0 to 1) is selected, and a reaction is determined to occur if γ1 > P(Δt). The 

reaction that takes place is selected from the binding probability pb(i, αi
j|j, αj

i) = qb(i, αi
j|j, αj

i)/qtot and unbinding 

probability pu(i, αi
j|j, αj

i) = qu(i, αi
j|j, αj

i)/qtot. Then, the time of the reaction t′ is determined to be  

  

 

(21) 

where γ2 is a random number, evenly distributed from 0 to 1.  

Additional reactions can still occur between the time period t′ and t + Δt. To allow for this possibility, the reaction 

rate constants are recalculated based on the updated connectivities, and a similar dynamic Monte Carlo step is 

performed based on these new rate constants for the shortened time step δt = t + Δt − t′ (note, δt < Δt). This process is 

repeated for progressively shorter time steps until a dynamic Monte Carlo step is unsuccessful, thus exhausting all 

possible reactions that stochastically occur within the total time step Δt. 

Appendix C: effective continuum elasticity model 

We define the equilibrium position of the ith pinwheel (0)
i and the displacement field ( ), resulting in a displaced 

position of the ith pinwheel i = (0)
i + ( (0)

i). The difference vector (0)
ij = (0)

i − (0)
j gives the equilibrium 

separation between pinwheels in the lattice, which satisfies | (0)
ij| = r0 for bonded pairs. We consider a honeycomb 

structure with stretching and bending energies [given in eqn (14)], and each pinwheel is bonded to three neighbors, 

resulting in a total binding energy of −3εN/2 (factor of 1/2 avoids double-counting bonds). We neglect the repulsive 

potential in this derivation, since the honeycomb lattice does not exhibit pinwheel overlap.  

To find the effective elastic constants of the lattice, we perturb the stretching and bending energies to lowest order 

in the displacement field . Here, we explicitly perform this procedure for the stretching energy. The stretching energy 

is conveniently rewritten as  

  

 

(22) 

where the summation over 〈ij〉 implies a sum over all i, j pairs that are bonded, and we include a factor of 1/2 to 

avoid double-counting these bonds. The displacement field ( (0)
j) is Taylor expanded near (0)

i, and the stretching 

energy is rewritten as  

http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#cit38
http://pubs.rsc.org/en/content/articlehtml/2011/sm/c1sm05053b#eqn14


  

 

(23) 

Here, we have introduced the delta function to replace (0)
i in order to perform the summation over the bonded 

index j. The sum over j index has two cases: case 1 with leg orientations (0°, 120°, 240°) and case 2 with leg 

orientations (180°, 300°, 60°). Performing the summation over j, accounting for these two cases, gives the stretching 

energy  

  

 

(24) 

where is the strain tensor, and the discrete lattice is approximated by a continuous medium by 

replacing the delta function with the equilibrium density . In its present form, the stretching energy 

[eqn (24)] provides values for this contribution to the Lamé coefficients λ and μ for the honeycomb lattice.40,41 The 

contributions from the bending energy to the Lamé coefficients are found using an analogous derivation as that of the 

stretching energy contribution.  
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