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Detection of the field induced by a beam outside of the beam pipe can be used as a beam diagnostic.

Wires placed in longitudinal slots in the outside wall of the beam pipe can be used as a beam pickup. This

has a very small beam-coupling impedance and avoids complications of having a feedthrough. The signal

can be reasonably high at low frequencies. We present a field waveform at the outer side of a beam pipe,

obtained as a result of calculations and measurements. We calculate the beam-coupling impedance due to

a long longitudinal slot in the resistive wall and the signal induced in a wire placed in such a slot and

shielded by a thin screen from the beam. These results should be relevant for impedance calculations of

the slot in an antechamber and for slots in the PEP-II distributed ion pump screens. The design of the low-

frequency beam position monitor is very simple. It can be used in storage rings, synchrotron light sources,

and free electron lasers, like LINAC coherent light source.

I. INTRODUCTION

The electromagnetic (EM) field induced by a beam out-
side of a thin beam pipe may be quite noticeable. The
analytical solution for electromagnetic fields in a round
beam pipe in the frequency domain can be found elsewhere
[1]. The field waveform can be determined by numerically
solving the wave equations in the time domain [2]. As a
numerical example, Fig. 1 shows the time profile of the
field induced by a bunch on the inner side (pancake thin red
line) and on the outer side (blue line) of a stainless-steel
tube. The bunch length is 10 mm, the tube radius is 5 mm,
and the wall thickness is 0.1 mm. One can see that the field
amplitude outside of the pipe decreases by only a factor of
100.

Another example is given in Fig. 2 for an aluminum
chamber with a radius of 2.5 mm and with a tube thickness
of 0.5 mm (parameters of the LINAC coherent light source
[3], round chamber). The signal outside of the pipe in this
case may reach an amplitude of 35 V=m for a 1 nC bunch.

In both examples, the main contribution to the signal is
given by the low-frequency modes which can penetrate
through the wall. Such frequencies for short bunches are
much lower than the width of the bunch spectrum.
Therefore, the signal is practically independent on the
bunch length which simplifies any design of the beam
position monitor (BPM) electronics. Another common
feature of both results is the time delay between the signals
on the inner and outer sides defined by the diffusion time of

the magnetic field through the wall (about 3 ns in Fig. 1 and
200 ns in Fig. 2).
The field outside of the beam pipe can be detected and

used to build a BPM without any feedthrough thereby
preserving the smooth beam pipe wall seen by the beam.
An idea of a BPM based on the detection of the EM field
behind a thin foil was suggested long ago [4]. Based on this
approach, a low impedance BPM was proposed and tested
by one of the authors (A. A.) for the VEPP-5 collider, a B-
factory project planned to be built in Novosibirsk [5]. To
prove the feasibility of the approach an experimental
model was built. The experimental signal measured the
outside of the beam pipe with a 15 mm inner radius [5] is

FIG. 1. (Color) The radial component of the E field on the inner
(red line) and outer (blue line) sides of a beam pipe. Scales for
the fields are on the left and right plot side.*novo@slac.stanford.edu
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shown in Fig. 3. At that time, the full solution for EM fields
was not obtained but simple estimates were used to derive
the signal amplitude and duration. The dipole mode of the
beam EM field was simulated by a short pulse propagating
in a two wire transmission line. The transmission line was
inserted into an aluminum pipe with the central part of the
pipe replaced with a 50 �m thick stainless-steel foil. The
magnetic field penetrating through the foil was measured
using a 12 turn coil with a 2� 2 cm cross section. An
oscilloscope snapshot of the current pulse in the trans-
mission line and the signal measured by the coil are shown
in Figs. 3(a) and 3(b), respectively [5]. The measured
signal amplitude and duration were in good agreement
with expected values.

This kind of a BPM could be used in a free-electron
lasers like LCLS where the wall thickness can be as small
as 0.5 mm [3]. In general, a BPM can be made from a loop
of wire set into a thin longitudinal groove (or several
grooves) in the outer side of the beam pipe wall, see
Fig. 4. For simplicity, we consider a round beam pipe
denoting the inner radius a, the thickness of a screen �,
and the wall conductivity �w. In the first approximation,
the effects of several wires are additive because the pipe
walls provide natural screening reducing the cross talk

between wires. Consequently, it suffices to consider the
effect of a single wire.

II. EM FIELDS IN A BEAM PIPE WITH A SLOT

Let us begin with calculations of the EM fields in a pipe
with a slot using Maxwell’s equations for a particle moving
in a round beam pipe along the z axes with the offset r0 and
velocity v. Assuming a time dependence of the form e�i!t,
equations for the !-frequency components of EM fields
generated by the particle are

r� E ¼ i!

c
B; r� B ¼ 4�

c
ðjb þ �EÞ � i!

c
E;

(1)

where� is the wall conductivity considered a constant over
!, �b is the particle density, and jb is the current. The
second equation can be rewritten introducingD ¼ �E to be

r� B ¼ 4�

c
jb � i!

c
D; � ¼ 1þ i

4��

!
: (2)

The first of the two equations in (1) gives divB ¼ 0, and
from Eq. (2) and the continuity equation

� i!�b þ div jb ¼ 0; (3)

it follows that divD ¼ 4��b.
In cylindrical coordinates with the polar axis along the

beam pipe axis,

�b ¼ e

vr
�ðr� r0Þ�ð�Þei!z=v: (4)

The wave equation follows from r�r� B ¼
rðrBÞ � 4B and Maxwell’s equations. In the regions of
constant �,

4 Bþ
�
!

c

�
2
�B ¼ � 4�

c
r� jb; (5)

where the current jb ¼ ẑv�b has only a z component along
the beam pipe, and

FIG. 3. (a) The signal from the transmission line terminating resistors. The horizontal scale is 5 ns=div and the vertical scale is
20 V=div. (b) The signal from the measuring coil. The horizontal scale is 50 ns=div and the vertical scale is 20 V=div.

FIG. 2. Field outside of the Al 0.5 mm round beam pipe.
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At the boundaries, where � changes its value, tangential
components of E and B have to be continuous. Then
the normal components of D and B are continuous
automatically.

Let us expand Bðr;�; zÞ over the azimuthal harmonics

and assume a dependence on z of the form ei!z=v,

Bðr;�; zÞ ¼ ei!z=v
X1

m¼�1
½r̂Br

mðrÞ þ �̂B�
mðrÞ

þ ẑBz
mðrÞ�eim�; (7)

where r̂ð�Þ, �̂ð�Þ, and ẑ are unit vectors. For a round beam
pipe the only direction breaking azimuthal symmetry is the
direction to the slot. We assume below that � ¼ 0 corre-
sponds to this direction and refer to the plane of a slot as the
horizontal plane.

Equation (5), rewritten for the components B�
mðrÞ ¼

Br
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where

�mðrÞ ¼ e

2�vr
�ðr� r0Þ: (9)

Inside the beam pipe, � ¼ 1. In the ultrarelativistic case,
the equations in (8) simplify to�
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In the region of r < r0 the solution does not contain a
singularity at r ! 0 and has to be matched with the solu-
tion in the region r0 < r < a. The conditions for matching
at r ¼ r0 are defined by the right-hand side (RHS) of
Eq. (10):

B�;>
m ðr0Þ � B�;<

m ðr0Þ ¼ � ieZ0

2�r0
;

�
@B�;>

m ðrÞ
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� @B�;<
m ðrÞ
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�
r¼r0

¼ � ieZ0ðm� 1Þ
2�r20

:

(11)

Here Z0 ¼ 4�=c ¼ 120� �.
The fields at r < r0 are
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:

(12)

Er;<
m ðrÞ ¼ � i

2k2r20

�
r
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�
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� c�mk2r20 � ieZ0k
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(13)

The fields at r0 < r < a are
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where k ¼ !=c. The components of the electric field are

FIG. 4. (Color) Sketch of the BPM design.
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For r > a, the equations in (8) can be rewritten adding to
both sides of equations a term ð!=cÞ2ð1� �ÞB�

m . In the
ultrarelativistic case, the first equation in (8) for the case of
r > a takes the form�
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Here k2w ¼ ð!cÞ2ð�� 1Þ is a constant given by the � of the
metal,

k2w ¼ i
4��

!

�
!

c

�
2
; kw ¼ 1þ i

�!

; (17)

and �! ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��!

p
is the skin depth.

The RHS R�
mðrÞ is equal to zero in the metal. In the slots,

r > aþ �, j�j<�=2, the RHS is then

R�;z
m ðrÞ ¼ k2w

X
n

Z �=2

��=2

d�

2�
B�;z
n ðrÞeiðn�mÞ�

¼ �k2w
2�

X1
n¼�1

sðn�mÞB�;z
n ðrÞ; (18)

where � is the angular slot width, and

sðn�mÞ ¼ sin½ðn�mÞ�=2�
ðn�mÞ�=2 : (19)

The solution of the homogeneous equation (16) at r > a
is given in terms of Bessel functions,

B0;�
m ðrÞ ¼ ��

mH
ð1Þ
m�1ðkwrÞ þ 	�

mH
ð2Þ
m�1ðkwrÞ;

B0;z
m ðrÞ ¼ � ikw

2k
ð�þ

m � ��
mÞHð1Þ

m ðkwrÞ

� ikw
2k

ð	þ
m � 	�

mÞHð2Þ
m ðkwrÞ:

(20)

This solution is valid in the metal for a < r < aþ �,
and the tangential components of the fields B and E ¼
ði=k�Þr � B have to be matched with the solution inside of
the beam pipe at the beam pipe radius r ¼ a. For frequen-
cies for which the skin depth �! � a, we can use the
asymptotic expression of the Bessel functions,

B0;�
m ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

�kwr

s
f��

me
i½kwr�ð�=2Þðm�1Þ�ð�=4Þ�

þ 	�
me

�i½kwr�ð�=2Þðm�1Þ�ð�=4Þ�g;

B0;z
m ðrÞ ¼ ikw

2k

ffiffiffiffiffiffiffiffiffiffiffiffi
2

�kwr

s
fð�þ

m � ��
mÞei½kwr�ð�=2Þm�ð�=4Þ�

þ ð	þ
m � 	�

mÞe�i½kwr�ð�=2Þm�ð�=4Þ�g:

(21)

The solution of the inhomogeneous equation (16) for
r > aþ� can be obtained using Green’s function
G�

mðr; r0Þ,

B�
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Explicitly,

G�
mðr; r0Þ ¼ �i

�

4

ðr� r0Þ½Hð1Þ

m�1ðkwrÞHð2Þ
m�1ðkwr0Þ

�Hð1Þ
m�1ðkwr0ÞHð2Þ

m�1ðkwrÞ�: (23)

Here 
ðr� r0Þ is the step function, 
ðr� r0Þ ¼ 1 for r >
r0 and zero otherwise. Equation (22) then takes the form of
the integral equation,

B�
mðrÞ ¼ B0;�

m ðrÞ � i
�k2w
8

X1
n¼�1

sðn�mÞ

�
Z r

aþ�
r0dr0½Hð1Þ

m�1ðkwrÞHð2Þ
m�1ðkwr0Þ

�Hð1Þ
m�1ðkwr0ÞHð2Þ

m�1ðkwrÞ�B�
n ðr0Þ: (24)

Using asymptotic values for the Bessel functions and
defining b�ðrÞ ¼ ffiffiffi

r
p

B�
mðrÞ, Eq. (24) for r > aþ � takes

the form

b�mðrÞ ¼
ffiffiffi
r

p
B0;�
m ðrÞ þ �kw

2�

X1
n¼�1

sðn�mÞ

�
Z r

aþ�
dr0 sin½kwðr� r0Þ�b�n ðr0Þ: (25)

For r < aþ �, b�mðrÞ ¼
ffiffiffi
r

p
B0;�
m ðrÞ.

In the case of a thick wall, b�mðrÞ has to decay at large r.
If there are no slots, then 	�

m ¼ 0, B�
mðrÞ ¼ B0;�

m ðrÞ,
B�
mðrÞ ¼ ��

mH
ð1Þ
m ðkwrÞ;

Bz
mðrÞ ¼ ikw

2k
ð�þ

m � ��
mÞHð1Þ

m ðkwrÞ:
(26)

For a beam pipewall with a slot, the condition	�
m ¼ 0 is

not valid because the integral term in Eq. (25) gives an
exponentially growing contribution. Therefore, 	�

m can be
defined only after Eq. (25) is solved.



To proceed further, we notice that, for a beam pipewith a
slot, there are azimuthal harmonics with m> 0 even for a
beam with a zero offset. Such harmonics have the same
magnitude at all symmetrically placed slots and we are not
interested in such harmonics if the goal is to build a beam
position monitor detecting the difference of the signals on
the opposite wires. The signal in this case is given by the
harmonics due to the nonzero beam offset. We can expect
that such azimuthal harmonics b�n get smaller for larger n.
This is certainly the case when there are no slots. In this
case, if the beam has a zero offset r0 ¼ 0 there is only the
n ¼ 0 harmonics and with a small r0 the harmonics b�n /
ðr0=aÞn. For narrow slots such a hierarchy still exists
although nonzero harmonics may be present even for the
zero offset case. This allows us to use a perturbation
technique taking into account only the lowest azimuthal
harmonics and neglecting the coupling between higher
order azimuthal harmonics. However, if the goal is to build
a pickup, the following results can be used as an estimate to
obtain the order of the signal.

Let us consider first the mode m ¼ 0 neglecting cou-
pling to the nonzero modes. Equation (25) takes the form
of the Volterra integral equation of the second kind:

b�0 ðrÞ ¼ f�0 ðrÞ þ
�kw
2�


ðr� a� �Þ

�
Z r

aþ�
dr0 sin½kwðr� r0Þ�b�0 ðr0Þ; (27)

where f�0 ðrÞ is the field in the beam pipe wall with no slots

f�0 ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
2

�kw

s
f��

0 e
i½kwr�ð�=2Þ�ð�=4Þ�

þ 	�
0 e

�i½kwr�ð�=2Þ�ð�=4Þ�g: (28)

Solution of Eq. (27) at r > aþ� can be obtained using
a Laplace transform, defining

~bðpÞ ¼
Z 1

aþ�
dre�prb�0 ðrÞ;

~f0ðpÞ ¼
Z 1

aþ�
dre�prf�0 ðrÞ:

(29)

Integrating by parts, we get

~bðpÞ ¼
~f0ðpÞ

1� KðpÞ ; (30)

where KðpÞ is the Laplace transform of the kernel in
Eq. (27),

KðpÞ ¼ �kw
2�

Z 1

0
dre�pr sinðkwrÞ ¼ �

2�

k2w
p2 þ k2w

: (31)

The inverse Laplace transform gives at r > aþ�:

b�0 ðrÞ ¼ f�0 ðrÞ þ
Z r

aþ�
dr0Rðr� r0Þf�0 ðr0Þ; (32)

where

RðrÞ ¼
Z i1þ"

�i1þ"

dp

2�i
epr

KðpÞ
1� KðpÞ : (33)

Here " > 0 and the contour is to the right of the integrand
singularities.
Simple calculations give

RðrÞ ¼ �kw
2��

sin½�kwr�; (34)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �=2�

p
.

Equation (32) then gives

b�0 ðrÞ ¼ bgðrÞ þ bdðrÞ;
bgðrÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�kw

p e�ikwðr�a��Þ��ikwðaþ�Þ�ið�=2Þ�ið�=4Þ

� ½��
0 ð�1þ �Þe2ikwðaþ�Þ

þ 	�
0 ð1þ �Þe2i½�ð�=2Þþð�=4Þ��;

bdðrÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffi
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p eikwðr�a��Þ��ikwðaþ�Þ�ið�=2Þ�ið�=4Þ

� ½��
0 ð1þ �Þe2ikwðaþ�Þ

þ 	�
0 ð�1þ �Þe2i½�ð�=2Þþð�=4Þ��:

(35)

The term bgðrÞ grows exponentially with r and has to be
canceled out. That defines

	�
0 ¼ i��

0 �0e
2ikwðaþ�Þ; (36)

where

�0 ¼ 1� �

1þ �
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

2�

r
: (37)

Hence,

B�
0 ðrÞ¼���

0 ð1þ iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1

�kwr

s �
eikwrþ1��

1þ�
e�ikwrþ2ikwðaþ�Þ

�
;

ða<r<aþ�Þ

B�
0 ðrÞ¼���

0

ð1þ iÞffiffiffiffiffiffiffiffiffiffiffiffi
�kwr

p 2

1þ�
eikwðr�a��Þ�þikwðaþ�Þ;

ðr>aþ�Þ:
Note hat B�

0 ðrÞ and its derivative are continuous at r ¼
aþ �.
Calculations of Bz

0ðrÞ give for r < aþ �

Bz
0ðrÞ ¼

ð1þ iÞ
2k

ffiffiffiffiffiffi
kw
�r

s
ð�þ

0 ���
0 Þðeikwr ��0e

�ikwrþ2ikwðaþ�ÞÞ;
(38)

For the harmonicsm> 0, calculations can be carried out
in the similar way. For m> 0 and a < r < aþ�, the
solution is b�mðrÞ ¼ f�m ðrÞ,



f�m ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
2
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i½kwr�ð3�=4Þ�ð�m=2Þ�

þ 	�
me

�i½kwr�ð3�=4Þ�ð�m=2Þ�g; (39)

with constants ��
m and 	�

m .
For m> 0 and r > aþ� and taking into account cou-

pling to the m ¼ 0 mode, Eq. (25) gives

b�mðrÞ ¼ h�mðrÞ þ �kw
2�


ðr� a� �Þ
Z r

aþ�
dr0

� sin½kwðr� r0Þ�b�mðr0Þ; (40)

where

h�mðrÞ ¼ f�m ðrÞ þ �kw
2�

sðmÞ
ðr� a� �Þ
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Z r

aþ�
dr0 sin½kwðr� r0Þ�b�0 ðr0Þ: (41)

Note that the solution of Eq. (40) is automatically
matched with Eq. (39) at r ¼ aþ� with its derivative.
The explicit form of the solution can be obtained with a
Laplace transform similar to the method used in the m ¼ 0
case,

b�mðrÞ ¼ h�mðrÞ þ �kw
2��


ðr� a��Þ

�
Z r

aþ�
dr0 sin½�kwðr� r0Þ�h�mðr0Þ: (42)

Equation (32) can be obtained from here replacing h�mðrÞ
with f�0 ðrÞ. Equation (42) can be simplified using Eq. (32),

b�mðrÞ ¼ f�m ðrÞ þ �kw
2��
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To cancel the exponentially growing terms at r ! 1, we
put

	�
m ¼ i�0
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m þ sðmÞ
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0 e

im�=2

�
e2ikwðaþ�Þ�i�m: (44)

That defines the fields in the wall in terms of the coef-

ficients ��
m and c�;>

m , m ¼ 0; 1; . . . . These coefficients are
determined by matching the tangential components of the
E and B fields at r ¼ a for each m. Calculations are
straightforward but cumbersome. Because the full expres-
sion is too long to produce here, we give the explicit result
in the limit kw � k, k2a=kw � 1 neglecting terms with
additional factors k=kw or 1=ðkwaÞ. In this case,

cþm ¼ � eZ0

2�a

�
r0
a

�
mþ1

�
k

kw

�
2
�

kwa

ð1þmÞð1þ �0e
2ikw�Þ

�

�
��
r0
a

�
mð1� �0e

2ikw�Þ � e2ikw�
sðmÞ�0

ðmþ 1Þ�g0
�

�
2iðmþ 1Þ � k2a

kw
ð1� �0e

2ikw�Þ
��
; (45)

c�m ¼ eZ0

2�a

�
r0
a

�
m�1

�
�i

�
r0
a

�
m � sðmÞ

kwag0

�0

�

�
�

e2ikw�

ð1þmÞð1� �0e
2ikw�Þ

�

�
�
k2a

kw
þ i½k2a2 � 2mðmþ 1Þ�ð1� �0e

2ikw�Þ
��
;

(46)

�þ
m ¼ ð1þ iÞ eZ0

4

ffiffiffiffiffiffiffi
kw
�a

s
e�ikwaþim�=2

1þ �0e
2ikw�

�
�
�
r0
a

�
m

þ e2ikw�
�0sðmÞ
�g0

�
iþ m

kwa
� k2a

ð1þmÞkw
��
; (47)

��
m ¼ �þ

m

�
1� 2k2

k2w

�
þ ð1þ iÞeZ0k

2sðmÞ
2g0k

3
wa

2ð1� �0e
2ikw�Þ2

�
�0

�

�

�
ffiffiffiffiffiffiffiffiffi
kwa

�

s
e�ikwaþ2ikw�þim�=2: (48)

where

g0 ¼ ið1þ �0e
2ikw�Þ þ k2a

kw
ð1� �0e

2ikw�Þ: (49)

The coefficients ��
0 for the harmonics m ¼ 0 can be

obtained from here by putting sðmÞ ! 0 and then m ! 0.

III. RESULTS

Equations (39)–(46) define the fields in the wall and the
beam pipe. For example, the azimuthal component of

B�
mðrÞ in the range a < r < aþ� is

B�
mðrÞ ¼ e3i�=4þikwr

�ð1þ �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�kwr

s
f�e�2ikwðr�a��Þð�1þ �Þ

� sðmÞð�þ
0 þ ��

0 Þ
þ �e�im�=2½�e�2ikwðr�a��Þð�1þ �Þ
þ ð1þ �Þ�ð�þ

m þ ��
mÞg: (50)

The field B�
mðrÞ ¼ ð�i=2ÞðBþ

m � B�
mÞ in the range r >

aþ � is defined by



B�
mðrÞ ¼ ð1þ iÞ

�ð1þ �Þ
eikw½aþ�þ�ðr�a��Þ�ffiffiffiffiffiffiffiffiffiffiffiffi

�kwr
p

� f�isðmÞð�� 1Þ½�i� kwðr� a��Þð1þ �Þ�
� ��

0 e
�im�=2 � 2���

mg: (51)

The radial dependence of them ¼ 1 harmonics of B�ðrÞ
within the wall at a frequency of 1 MHz is illustrated in

Fig. 5 for three values of the screen thickness
(a) � ¼ 0:01 cm, (b) � ¼ 0:2 cm, and (c) � ¼ 0:5 cm.
The other parameters were: a ¼ 5 cm, stainless-steel wall
conductivity � ¼ 1:4� 104 ��1 cm�1, � ¼ 0:04, and the
offset r0 ¼ 0:001 cm. At a frequency of 1 MHz �! ¼
0:042 cm. The radial behavior shows the resonance char-
acter caused by reflection from the slot.
The magnetic flux �mð!Þ due to the mth harmonics

through the wire contour with the length L shown in
Fig. 4 is obtained by integrating

�mð!Þ ¼ L
Z 1

aþ�
drB�

mðrÞ

¼ Lð1þ iÞ
2kw�

2ð1þ �Þ
eikwðaþ�Þ�im�=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kwðaþ�Þp

�
�
sðmÞ ð�� 1Þ

�
ð�þ

0 þ ��
0 Þeim�=2

� 2�ð�þ
m þ ��

mÞ
�
: (52)

�mð!Þ defines the harmonics of the voltage Vmð!Þ in-
duced in the contour,

Vmð!Þ ¼
I

E!:dl ¼
�
ik

2�

�
�mð!Þ: (53)

The spectral density is shown in Fig. 6.
Induced voltage UmðtÞ in the contour by a single beam

particle lagging at zi from the bunch center is obtained by
integrating over all frequencies

UmðtÞ ¼ 2Re

�Z 1

0
Vmð!Þd!e�i!zi�i!td!

�
: (54)

The signal from a bunch is obtained by summing up
contributions of all particles. For a Gaussian bunch with an
rms length �b and population Nb, we replace the sum by a
convolution of the spectrum density of the bunch,

FIG. 5. (Color) Radial dependence of the m ¼ 1 harmonics of
B�ðrÞ within the wall for (a) � ¼ 0:01 cm, (b) � ¼ 0:2 cm, and
(c) � ¼ 0:5 cm. The vertical lines correspond to the radius aþ
�. Note the difference in scale. Other parameters are given in the
text.
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FIG. 6. (Color) Spectral density Vmð!Þ of the dipole harmonics
m ¼ 1 of the azimuthal B� field per single beam particle, L ¼
10 cm. Other parameters are the same as in Fig. 5.



Ubunch
m ðtÞ ¼ 2Nb Re

�Z 1

0
Vmð!Þe�ð1=2Þð!�b=cÞ2e�iksd!

�
:

(55)

The result from integration of a single electron for m ¼
1 mode is shown in Fig. 7 for L ¼ 10 cm and a ¼ 5 cm.

The longitudinal beam impedance Zl
mð!Þ per unit length

for a beam in the beam pipe is given by the coefficient cþm ,

Zl
mð!Þ ¼ � 1

e

ðmþ 1Þcþm
kr0

�
r

r0

�
m
; (56)

Zl
mð!Þ ¼ Z0
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ð1� �0e

2ikw�Þ
��
: (57)

For r0 � a the longitudinal impedance is dominated by
the contribution of the m ¼ 0 mode. Neglecting terms
k2a�ð!Þ � 1 and for � � �ð!Þ we have

Zlð!Þ ¼ Z0

2�a

�
k

kw

��
1� �0e

2ikw�

1þ �0e
2ikw�

�
: (58)

In the limit that � ! 1 Eq. (58) gives the usual result
for the longitudinal impedance per unit length

Zlð!Þ ¼ ð1� iÞ Z0

2�a

�
k�ð!Þ

2

�
: (59)

For an open slot � ! 0 and small � � 1, k2a�ð!Þ �
1, Eq. (57) gives

Zlð!Þ ¼ ð1� iÞ Z0

2�a

�
k�ð!Þ

2

��
1� 3�

8�

�
: (60)

The dominant contribution to the transverse impedance
per unit length is related to the longitudinal dipole imped-
ance m ¼ 1 by the Panofsky-Wenzel theorem.
For small � � 1,

Ztrð!Þ ¼ ð1� iÞZ0�ð!Þ
4�a3

�
1� �0e

2ikw�

1þ �0e
2ikw�
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� e2ikw�
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2ikw�
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4i� k2a
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ð1� �0e

2ikw�Þ
��
:

(61)

For large � � �ð!Þ, the expression in the curly brack-
ets is equal to one giving us the usual transverse resistive
wall impedance per unit length. Equation (61) shows that,
contrary to the usual resistive wall impedance, Ztrð!Þ for a
beam pipe with a slot depends on the offset r0. This
dependence is weak provided

r0
a

� �

4�
e�2�=�; (62)

but gives

Ztrð!Þ ¼ ð1� iÞZ0�ð!Þ
4�a3

�
1� �

4�

�
a

r0

��
(63)

for an open slot � ! 0. The second term in the impedance
equation (63) corresponds to a constant force acting on the
beam due to a longitudinal slot in the beam pipe.
Calculating the wakefield due to the last term in Eq. (63),
we got

WtrðzÞ ¼ i
Z d!

2�
Ztrð!Þe�i!z=c;

WtrðzÞ ¼ � �

2�a2r0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z0�z

p ;

(64)

and using the equation of motion for a particle located at a
distance z from the head of a bunch with a bunch popula-
tion Nb

d2x

ds2
þ gðsÞxðsÞ ¼ Nbre

�
WtrðzÞr0; (65)

we get for the average perturbation of the closed orbit to be

hxðsÞi ¼ �Nbre
�

�
�

2�

���
	x

a

�
2
	

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Z0�z

p : (66)

Here re is the classical electron radius, and 	x is the
horizontal beta function. The effect is very small, hxðsÞi ’
0:5 �m for a particle at a distance of z ¼ 1 cm for pa-
rameters Nb ¼ 6:0� 1010, � ¼ 6:0� 103, 	x ¼ 15 m,
a ¼ 5 cm, and stainless-steel conductivity.
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