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Abstract wherez is the longitudinal coordinaté, is the relative en-

ergy deviationy is the slip factor, the dot indicates differ-

A nonlinear equation is derived that governs the evolut|o1entiation with respect to time and

of the amplitude of unstable oscillations with account o

quantum diffusion effects due to the synchrotron radiation. w2 , s

Numerical solutions to this equation predict a variety of K (z,t) = =2z — —% /dz’n w2 —2). (2)
. K K . . - nc Tofy

possible scenarios of nonlinear evolution of the instability g

some of which are in good qualitative agreement with exl- Eq. (2 q h bed h ;
perimental observations. n Eg. (2),wso denotes the unperturbed synchrotron fre-

guencyTj is the revolution periods, is the classical elec-
tron radius;y is the relativistic factorp (z, t) is the longi-
1 INTRODUCTION tudinal beam density| "7 (z,t) dz = N, whereN is the

The distribution function) (z, 0, t) satisfies the Vlasov

the parameters of t.he accelerating regimg. ) equation with a Fokker-Planck “collision” term on the right
Recent observations on the SLC damping rings at SLAG3nd side

[1] with a new low-impedance vacuum chamber revealed o
new interesting features of the instability. In some cases, ot +{H,¥} =R, 3)

after initial exponential growth, the instability eventually,yhere we have the Poisson brackets on the left hand side,
saturated at a level that remained constant through the ag- s the Hamiltonian corresponding to the equations of

cumulation cycle. In other regimes, relaxation-type oscilyotion Eqg. (1), andR describes the effect of the syn-
lations were measured in nonlinear phase of the instabilitynotron radiation

In many cases, the instability was characterized by a fre- 5 5
guency close to the second harmonic of the synchrotron rR=Y ( 5 _1/)> 4
oscillations. 95 \ 120 T g5 ) @)
Several attempts have been made to address the nonlj - P :
A Eq. (4),v5 is the damping time for the amplitude of the
ear stage of the instability [2, 3, 4] based on either com, a- (o ping P

ulat o . d,%énchrotron oscillations, andis the diffusion coefficient
puter simulations or some specific assumptions regardin@ ¢ iated with the guantum nature of the radiation. In the

the structure .Of the_ unstable mode. A_n attempt of a mo_rgquilibrium state, the distribution function is given by
general consideration of the problem is carried out in thl's_|aissinski solution

paper. We adopt an approach recently developed in plasma

physics for analysis of nonlinear behavior of weakly un- 4 (2, 46) = const x exp (—Ho (2, _5)/0770%) , (5)
stable modes in dynamic systems [5]. Assuming that the
growth rate of the instability is much smaller than its frewhereor = +/k/vp is the rms energy spread of the

guency, we find a time dependent solution to Vlasov equdeam in the absence of the wake, dfidis the equilibrium
tion and derive an equation for the complex amplitude dffamiltonian.

the oscillations valid in the nonlinear regime. Numeri- It is convenient to introduce dimensionless variables,
cal solutions to this equation predict a variety of possible = z/0., p = —0/op, T = tws, and F = 0.1,
scenarios of nonlinear evolution of the instability some owhere o is the rms length of the beam without wake,
which are in good qualitative agreement with experimentat. = og|n|c/wso. In these variables, the Hamiltonidh
observations. takes the form

1
H sy = —p? +U s R 6
2 BASIC EQUATIONS (@p,7) = 5p* + U (2,7) (6)

We start from the equations of motion in longitudinal di-Where the "potential energy is

rection (see, e.g., Ref. [6] ):

1 7 T
| U=zt =1 [ars@ —a) [dpF o). @)
p=—epd, §=K (1), () 2 EN
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with with the kernel given by

Nr,
= Tia (8) 27 2w
0YWs0020E 1 i
TOos . . Knm = 5_ //dedelez(méh—n@)K(J,e, J1701)7 (14)
andS (z) = [, °dzw(z). Note that the functior$ is a 27

dimensionless function of its argument. 00

Let us perform a canonical transform franandp to ac- andK (J, .J1,6,61) = S (2 (J,0) — x (J1,61)). The inte-
tion and angle variableg andd, of the equilibrium Hamil-  gral on the right hand side of Eq. (13) defines an analytical
tonian Hy, and denote by the deviation of the potential function in the upper half plane of the complex variabte
energy from the equilibriumy = U — Uy. SinceH, de- for Imw < 0 the integral must be analytically continued
pends onJ only, the total Hamiltoniarff (6, J, t) takes the into the lower half plane.
form

H(0,J,7)=Ho(J)+V(0,],7). 9) 4 NONLINEAR THEORY

The Vlasov equation foF' in terms of action-angle vari- Let us assume that the instability has a threshold corre-
ables is sponding to a critical value of the paramefet I. with the
. - frequency at the threshold = w. (Imw. = 0). We will
8_F +w 8_F 8_V&_F _ 6_V(’9_F - R (10 be interested in the analysis of the nonlinear phase of the
S - bl . o . ]
or 00~ 9J o0 90 8J instability in the vicinity of the threshold when the growth
rate of the instability]", is much smaller thaw,, I' < w..
It turns out that in this case one can separate a “slow” time
scale on which the amplitude evolves from “fast” oscilla-
tions with the frequency. and derive nonlinear equations
for the evolution of the amplitude of the instability by av-

Suppose thaf? (.J) is the equilibrium distribution func- €raging ovet. [7]. _ o
tion, andd F (J, 0, 7) = F—F, (J) is its deviation fromthe ~ First, we rewrite the result of the previous section in a
equilibrium. In linear theorny§ F = f; (J,0) e=*™ 4 c.c., ~concise form, .

where the notation “ c.c.” denotes a complex conjugate to L(w, 1)V, =0, (15)

the first term. The perturbation of the potenfiais V. = where the linear operatak represents a set of integral
Ve ™7 + c.c.. SinceV,, is a periodic function o, we  equations (13). A particular form of the operafbis not

can expand it in Fourier seriel, = >" v, (J) ™. essential for the analysis. The frequency of the oscillations
For simplicity, we will neglect here the effect of the syn-.,_ at the threshold and the corresponding eigenfunction

chrotron damping in the linear theory by dropping the V... = u. are determined by the equation
term in Eq. (10). This greatly simplifies the linear analysis

and is usually assumed in the literature. However, it can be L (we, ) uc = 0. (16)

shown that the effect of the synchrotron damping is crucial Wi i L harsliahtl ds th
for the nonlinear stage of the instability and will later be € now consider a situation wherslightly exceeds the

included in the derivation of the nonlinear equations. ;hfrreshold,l - chQAI',l\iVith _AI < rI]c,fand denoteftrr]]e
Substituting the expressions f6F andV’ into Eq. (10) differences —w, = Q2+l (wis now the frequency of the
i I Lo unstable mode above the threshold), wHeis the growth
gives in linear approximation X . :
rate, and(? is the coherent frequency shift. Following a

wherew, = w; (J) is the frequency of synchrotron oscilla-
tions with the wake taken into accouat, (J) = dHy/dJ.

3 LINEAR THEORY

of) oo ’ general prescription of nonlinear theory of oscillations [8],
—iw f1 + Ws g = F} Z invy, (J) ™, (11)  we will assume the following type of solution (in time rep-
n=—o0 resentation) fol/,
whereF}), = 9F,/d.J. A solution to Eq. (11) is V= [A(T)uce ™ +cc] + AV (L,0,7), (17)

, nvn (J) o where|Au.| > |AV|. The first term in Eq. (17) describes
fi=—F Y o (12)  oscillations with the eigenfunction,, frequencyw, and
o0 ° varying amplitudeA (7), and the second term is a correc-
tion due to the deviation of the exact eigenfunction fram

Now, linearizing Eq. (7) and substituting Eq. (12) into it~ " : :
yields an infinite set of integral equations that determinelé is important to emphasize here tha(r) is supposed to

eigenfrequencies and eigenfunctions for the collective o?—esa |S|9W ftuhnct|on I(_)f tlmdvﬁl In A/07]| <§ wC'.t ively. aft
cillations of the bunch: olving the nonlinear Vlasov equation iteratively, after

cumbersome calculations that we omit because of the lack
of space (see details in Ref. [7]), one can obtain an equation
for the complex amplitudel. This equation contains con-
tributions from resonances characterized by different val-
(13) ues of the action,,, wherenw (J,,) = w. with n being

n=—

Fy (J1) vm (1)

- w—mws (J1)’

vn (J) = IZm/ AT K (J, 1)
0



and integer. In a typical situation, only one valuewofon-

tributes to the result due to a small synchrotron frequen
spread within the bunch. Introducing scaled parameter
amplitudea, growth rateg, and time¢ according to equa-

tionsa = A\/ﬁ/Bf’/Geim, g = T/BY? ¢ = BY’r,

5 ANALYSIS

quation (18) admits an asymptotic solution in the form
a = const X exp (iA€) that corresponds to oscilla-

tions with a constant amplitude and a coherent frequency

shift \. This solution is valid in the limit — oo and

2
whereB,, = n? (w{)" D (Jn), andp and¢ are the abso- exists only if|¢| < «/2. It is given by the following

lute value and the phase of a matrix element of the kerng),
(see [7] for details) the equation for the amplitude takes th

form
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Figure 1: Plots of the absolute value of the amplitude,
versus time for ¢ = 0. (a) —g = 0.1, (b) —g = 0.3, (c) —
g=04,(d)-g=0.48,(€)—g = 0.5, () —g = 0.6, (9) -
g=0.7,(h)—g=0.38.

¢/2

Oda _ i 2

G 0= 0/d<a<e 0)¢
§—-2¢

x / doa (€ — ¢ —o)a* (€ — 20 — o)e ¢ (o+3C) (18)
0

The parameteq here plays a role of dimensionless growth [8]
rate of the instability that is measured in time units related
to the synchrotron damping rate. Note that Eq. (18) con-

tains only two real parameterganda.

rmula that can be easily verified by direct substitution,
G = 181/6g1/2 (T (L) cos¢) ~V/% e=i€tané whereT (1)
stands for the gamma function. According to this solution,
the steady state amplitudid increases in proportion to the
square root of the dimensionless growth rate?2. It turns
out however, that this solution is only stable for relatively
small values of the parameter

We have solved Eq. (18) numerically for several sets of
g ande. The results forp = 0 are presented in Fig. 1.

Even visual comparison of the instability signal from
Ref. [1] shows a clear resemblance to some of our curves.
In one case (Fig. 5 of Ref. [1]), after injection in the ring,
the amplitude of signal from spectrum analyzer tuned to a
sideband frequency began to grow monotonically and after
some time of the order of synchrotron damping time satu-
rated at approximately constant level. This situation is very
similar to our Fig. la. In another case (Fig. 4 of Ref.
[1]), oscillations with decreasing amplitude were observed,
which can be identified with Fig. 1b or 1c. In later mea-
surements [9], amplitude oscillations with approximately
constant modulation were measured. This situation re-
minds our Fig. le.

Further work is planned to make a more definite compar-
ison of the theory with the experiment.
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