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Abstract

The ionization of residual gas by an electron beam in an
accelerator generates ions that can resonantly couple to the
beam through a wave propagating in the beam-ion system.
The original theory of the Fast Ion Instability [1, 2] was de-
veloped assuming both a constant external focusing and the
beam size. The theory predicts an instability in which an
initial perturbation grows as∼ exp(α

√
t). In the present

paper we consider a more realistic model that takes into
account variation of the beta function in the lattice and as-
sociated with it variation of the beam size. We find that,
in combination with ion decoherence effect, the spatial in-
homogeneity can result in 1) purely exponential growth,
∼ exp(Γt), and 2) typically smaller growth rates. Detailed
calculations are performed for the lattice of the Advanced
Light Source at the LBL.

1 INTRODUCTION

A fast beam-ion instability which is caused by the inter-
action of a single electron bunch train with the residual gas
ions [1, 2] can be of potential danger in future high-current,
low-emittance accelerators. The instability mechanism is
the same in both linacs and storage rings assuming that the
ions are not trapped from turn-to-turn. The ions generated
by the head of the bunch train oscillate in the transverse
direction and resonantly interact with the betatron oscil-
lations of the subsequent bunches, causing the growth of
the initial perturbation of the beam. First experimental ob-
servation of the fast ion instability on the Advanced Light
Source at the LBL has been recently reported in [3].

The original model of the instability developed in Ref.
[1, 2] neglected the spatial variation of the beta function
and ion frequency along the beam path. Evidently, this as-
sumption somewhat overestimates the growth rate of the
instability because it exaggerates the synchronism between
the oscillations of ions located in different positions. It
turns out that inclusion of the effect of the ion frequency
variation indeed weakens the instability [4]. This effect is
especially important for TBA and Chasman-Green lattices
used in some synchrotron light sources and characterized
by large excursions of the beta function within the cell. In
this paper, we study the fast ion instability with account of
the spatial inhomogeneity of ion and beam parameters.

For the sake of simplicity, we focus on the interaction of
an electron beam with ions, although similar effects apply
to a positron beam trapping free electrons. We also assume
a one-dimensional model that treats only vertical linear os-
cillation of the beam and ion centroids.

As in Refs. [1, 2], we adopt a model that treats the bunch

train as a continuous beam. This model is applicable if the
distance between the buncheslb is smaller than the beta-
tron wavelength,lb � c/ωβ, and the ion oscillation wave-
length,lb � c/ωi.

2 THEORY

We will use the following equation of motion from [2] in
which we now include the effect of spatial variation of pa-
rameters along the beam path,

∂2y (s, z)
∂s2

+K(s)y (s, z)

= −κ(s)
z∫

0

z′
∂y (s, z′)
∂z′

D (s, z − z′) dz′, (1)

wherey is the offset of the centroid of the beam as a func-
tion of longitudinal positions and the variablez measures
the distance along the bunch train,z = ct− s, K(s) is the
focusing strength of the lattice,D is the decoherence func-
tion of the ions, andκ is the coefficient responsible for the
beam-ion interaction,

κ ≡ 4λ̇ionre
3γcσy (σx + σy)

, (2)

whereγ denotes the relativistic factor for the beam,re is the
classical electron radius,σx,y is the horizontal and vertical
rms-beam size respectively, andλ̇ion is the number of ions
per meter generated by the beam per unit time. For a given
cross sectionσi for collisional ionization, we have

λ̇ion[m−1s−1] ≈ 0.9 · 109σinepgas , (3)

wherene is the number of electrons in the beam per me-
ter, pgas is the residual gas pressure in torr, andσi is the
cross section in Mbarns (σi is about 2 Mbarns for carbon
monoxide ionized by 40 GeV electron beam). The deco-
herence function is determined by the following relation,

D (s, z) =
∫
dωi cos (ωiz/c)f (s, ωi) , (4)

wheref (s, ωi) is the distribution function of ions over the
frequency of transverse oscillationsωi normalized so that∫
f (s, ωi) dωi = 1. The decoherence function represents

the oscillation of the centroid of an ensemble of ions which
is initially offset from the equilibrium position by one unit.

We will also assume that the interaction between the
beam and the ions is small,

c2κl � ω2
i , ω

2
β , (5)
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so that the instability develops on a time scale which is
much larger than both the betatron period and the period of
ion oscillations. Typically this inequality is easily satisfied
in the experiment. In such a situation, the most unstable
solution of Eq. (1) can be represented as a betatron wave
propagating in the beam with a varying amplitude,

y (s, z) = ReA (s, z)
√
β(s)e−iψ(s)+iωi0z/c , (6)

where the complex amplitudeA (s, z) is a ‘slow’ function
of its variables,

∣∣∣∣∂ lnA
∂s

∣∣∣∣ � ωβ
c
,

∣∣∣∣∂ lnA
∂z

∣∣∣∣ � ωi0
c
, (7)

β(s) is the beta function,ψ(s) is the betatron phase, and
ωi0 is the averaged over the ring ion frequency,ωi0 =
C−1

∫
dωdsωf(s, ω), whereC is the circumference of the

ring. For a fixedz and constantA, the s-dependence in
Eq. (6) describes a pure betatron oscillation, while, for
a fixed s (that is in the ion rest frame), thez-dependent
part implies oscillations with the frequencyωi0. Hence the
wave resonantly couples the ions and the electrons.

It is reasonable to assume that, with a good accuracy, the
variation of the ion frequency from point to point does not
change the shape of the ion distribution function but only
shifts it along the frequency axis,

f (s, ωi) = F (ωi − ωi0 − δωi (s)) , (8)

whereδωi (s) is the deviation of the local ion oscillation
frequency in the center of the beam fromωi0. We will also
assume thatδωi is small,δωi (s) � ωi0; in the opposite
case, whenδωi is comparable toωi0, the large variations of
the ion frequency should strongly suppress the instability.

Substituting Eqs. (4), (6), and (8) into Eq. (1) and ne-
glecting the second derivative∂2A/∂s2 on the right hand
side gives the following equation

∂A (s, z)
∂s

=
κωi0β

2c(2 + iβ′)

z∫
0

z′dz′A (s, z′)e−iωi0(z−z′)

×
∫
dωif(s, ωi)

[
e−iωi(z−z′) + eiωi(z−z′)

]
. (9)

If we now assume that the length of the bunch trainl is
much larger than the ion wavenumber,lωi/c � 1, and
recall that the ion frequencyωi is close toωi0, we con-
clude that the first term in the brackets rapidly oscillates
with the frequency≈ 2ωi0, whereas the second term is a
relatively smooth function of(z − z′). Clearly, the second
term makes the dominant contribution. Leaving only this
term in the equation leads to the following expression for
the amplitudeA,

∂A (s, z)
∂s

=
κωi0β

2c(2 + iβ′)

z∫
0

z′A (s, z′)D̂ (s, z − z′) dz′,

(10)

where
D̂ (s, z) = eiδωi(s)z/cD0 (z) , (11)

and

D0 (z) =
∫
dωF (ω) eiωz/c (12)

is the decoherence function in the homogeneous case (see
Ref. [2]).

It has been shown in Ref. [2] that the decoherence func-
tionD0 (z) can be approximated by the following expres-
sion,D0 (z) = (1 + iαωi0z/c)−1/2, whereα = 3/8 is
a numerical factor. This function decays very slowly as
z → ∞, which explains why the effect of decoherence
(equivalent, in some sense, to Landau damping) only in-
significantly decreases the growth rate of the instability [2].
Mathematically, slow decay manifests itself in the fact that∫ ∞
0 D0(z)dz does not converge at infinity.
Situation completely changes for inhomogeneous case.

Now, because of the presence of the oscillating factor in
Eq. (11), the integral

∫ ∞
0 D̂(s, z)dz converges almost ev-

erywhere (except the points whereδωi = 0), and we can
introduce a (complex) decoherence lengthld:

ld (s) =

∞∫
0

D̂ (s, z) dz. (13)

A simple picture of instability arises in the limit of short
decoherence length

|ld| � l. (14)

In this limit, the main contribution to the integral on the
right-hand side of Eq. (10) comes from the region where
z′ ≈ z, and we can putz′A(z′) out of the integral substi-
tutingz for z′,

∂A (s, z)
∂s

= Λ(s, z)A(s, z), (15)

where

Λ(s, z) =
κ(s)ωi0β(s)zld(s)

2c(2 + iβ′(s))
. (16)

The solution to the last equation is,

A(s, z) = A0(z) exp
[∫ s

0

Λ(s′, z)ds′
]
, (17)

which means that the instability develops with the averaged
growth rateΓ

Γ(z) = c 〈ReΛ(s, z)〉 . (18)

where the angular brackets denote averaging over a period
of the lattice (or circumference in a circular accelerator).
As a matter of fact,Γ(z) is a linear function ofz.

Equation (16) predicts how the growth rate scales with
the parameters of the beam and the vacuum pressure. For
large variation of the ion frequency,δωi/ωi0 > 0.3, the
decoherence lengthld is inversely proportional to the ion
frequency,ld ∼ c/ωi0, and we obtain the following rough



estimate for the maximal growth rate at the end of the bunch
train,

Γ ∼ cκ(s)βl
4

. (19)

This equation gives a scaling of the growth rate of the in-
stability with the bunch currentIb, number of bunches in
the trainnb, and the vacuum pressurep,

Γ ∝ pnbIb = pI, (20)

whereI = nbIb is the total beam current. This scaling
differs from the regime when|ld| � l studied in Refs. [1,
2] where the characteristic timeτ of the instability scales
asτ−1 ∝ pn2

bI
3/2
b .

3 GROWTH RATE OF THE INSTABILITY FOR
THE ALS EXPERIMENT

Using Eq. (18) we calculated the growth rate of the fast ion
instability for the conditions of the dedicated experiment in
the Advanced Light Source at the LBL [3]. The horizontal
and vertical beta functions for one period of the ALS lattice
are shown in Fig.1. We assumed the following parameters
in the calculation: beam energy 1.5 GeV, accelerator cir-
cumference 196.8 m, bunch spacing 0.61 m, vertical emit-
tance 9.4×10−11 m, horizontal emittance 4.1×10−9 m.
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Figure 1: Plot of horizontal and verticalβ-functions in the
ALS. Only one period of the lattice is shown.
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Figure 2: Frequency ofHe ion oscillations as a function
of position for the lattice shown in Fig. 1. Beam current
I = 0.2 A, number of bunchesnb = 240.

We also assumed a residualHe gas of pressurep = 80
nTorr [3] and used the ionization cross section of 0.15
Mbarn [5]. The variation of the ion frequency along the
beam path in one period of the ring is shown in Fig 2, and
the ratio of the calculated decoherence length given by Eq.

(13) and the bunch train lengthl is shown in Fig. 3. One
sees that the inequality (14) holds almost everywhere ex-
cept for two positions in the half-period of the ring. The
average ion frequency for this case is 41 MHz, with the
rms spread of about 12 MHz.
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Figure 3: Absolute value of the ratio of the decoherence
length and the train length as a function of position in a
half of the ALS period.

Table 1: Inverse growth rate of the instability

I, A nb Γ−1, ms
0.2 240 0.40
0.1 240 0.83
0.2 150 0.34
0.2 320 0.42

The results of the calculations for several different
regimes are given in Table 1. The growth times predicted
by Eq. (18) turns out to be orders of magnitude larger
than predicted by the theory that assumes a constant ion
frequency in the ring. The growth rate for a given total cur-
rent is almost independent of the train length, in accordance
with the scaling law (20).
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