SLAC-PUB-14580
FAST ION INSTABILITY IN REAL LATTICE

G. V. Stupakov
Stanford Linear Accelerator Center, Stanford University, P.O. Box 4349, Stanford, CA 94309

Abstract train as a continuous beam. This model is applicable if the

o . . _distance between the bunchgss smaller than the beta-
The ionization of residual gas by an electron beam in a%

accelerator generates ions that can resonantly couple toﬁ h Elr:a}velength;b < ¢/wg, and the ion oscillation wave-
beam through a wave propagating in the beam-ion systerﬁ.ng by < cfwi.

The original theory of the Fast lon Instability [1, 2] was de-

veloped assuming both a constant external focusing and the 2 THEORY

beam size. The theory predicts an instability in which anve will use the following equation of motion from [2] in

initial perturbation grows as- exp(av/t). In the present which we now include the effect of spatial variation of pa-
paper we consider a more realistic model that takes inf@meters along the beam path,
account variation of the beta function in the lattice and as-

sociated with it variation of the beam size. We find that, >y (s,2) +K(s)y (s, 2)

in combination with ion decoherence effect, the spatial in- 0s? yis
homogeneity can result in 1) purely exponential growth, z By (s, ')

~ exp(T't), and 2) typically smaller growth rates. Detailed = —k(s) / Z’T’,D (s,2—2")d7, (1)
calculations are performed for the lattice of the Advanced 0 *

Light Source at the LBL. ) .
wherey is the offset of the centroid of the beam as a func-

tion of longitudinal positions and the variable measures
the distance along the bunch train= ct — s, K(s) is the
A fast beam-ion instability which is caused by the interfocusing strength of the latticé) is the decoherence func-
action of a single electron bunch train with the residual gatéon of the ions, and: is the coefficient responsible for the
ions [1, 2] can be of potential danger in future high-currenfpeam-ion interaction,
low-emittance accelerators. The instability mechanism is .
the same in both linacs and storage rings assuming that the k= Ao
ions are not trapped from turn-to-turn. The ions generated 3ycoy (0z + 0y)

by the head of the bunch train oscillate in the '[ransvergﬁherey denotes the relativistic factor for the beamis the

direction and resonantly interact with the betatron OSC'Ic':l1gissical electron radius,. ,, is the horizontal and vertical
lations of the subsequent bunches, causing the growth OF « beam size respectivel aig,, is the number of ions
the initial perturbation of the beam. First experimental ob- P Y, "

servation of the fast ion instability on the Advanced Lighlper meter generated by the b.ea.m per unit time. For a given
. cross sectiow; for collisional ionization, we have

Source at the LBL has been recently reported in [3].

The original model of t_he ins_tak_)ility developed in R(_af. Xion[m™'s™1] % 0.9 - 10°041epgas » (3)
[1, 2] neglected the spatial variation of the beta function
and ion frequency along the beam path. Evidently, this ag¢theren, is the number of electrons in the beam per me-
sumption somewhat overestimates the growth rate of ther, pyqs is the residual gas pressure in torr, ands the
instability because it exaggerates the synchronism betweeross section in Mbarns{ is about 2 Mbarns for carbon
the oscillations of ions located in different positions. Itmonoxide ionized by 40 GeV electron beam). The deco-
turns out that inclusion of the effect of the ion frequencyherence function is determined by the following relation,
variation indeed weakens the instability [4]. This effect is
especially important for TBA and Chasman-Green lattices D(s,2) = /dwi cos (wiz/c)f (s,w;) (4)
used in some synchrotron light sources and characterized

by large excursions of the beta function within the cell. IRvhere f (s, w;) is the distribution function of ions over the
this paper, we study the fast ion instability with account Ofrequency of transverse oscillations normalized so that
the spatial inhomogeneity of ion and beam parameters. £ (s,w;) dw; = 1. The decoherence function represents
For the sake of simplicity, we focus on the interaction ohe oscillation of the centroid of an ensemble of ions which
an electron beam with ions, although similar effects appli jnjtially offset from the equilibrium position by one unit.

to a positron beam trapping free electrons. We also assumepe will also assume that the interaction between the
a one-dimensional model that treats only vertical linear 0$5a5m and the ions is small,

cillation of the beam and ion centroids.
Asin Refs. [1, 2], we adopt a model that treats the bunch Frl < w?, wj, (5)
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so that the instability develops on a time scale which isvhere

much larger than both the betatron period and the period of D (s,2) = e/ Dy (2), (11)
ion oscillations. Typically this inequality is easily satisfied

in the experiment. In such a situation, the most unstabfe ,

solution of Eq. (1) can be represented as a betatron wave Dy (2) = / dwF (w) /¢ (12)

ropagating in the beam with a varying amplitude, . L
propagating ying amp is the decoherence function in the homogeneous case (see

y(s,2) = ReA (s, z) \/B(s)e W) Tiwioz/e — (g) Ref. [2]).

It has been shown in Ref. [2] that the decoherence func-
where the complex amplitudé (s, z) is a ‘slow’ function ~ tion Dy (2) can be approximated by the following expres-

of its variables, sion, Dy (2) = (1 + iaw;oz/c)~'/?, wherea = 3/8 is
a numerical factor. This function decays very slowly as
‘3111%1‘ wg ‘3111%1‘ wio (7y % — oo, which explains why the effect of decoherence
s c’ 0z ¢’ (equivalent, in some sense, to Landau damping) only in-

) ) . significantly decreases the growth rate of the instability [2].
f(s) is the beta functiony(s) is the betatron phase, and \jathematically, slow decay manifests itself in the fact that
wio is the averaged over thg ring ion frequenayy = Ji7° Do(2)d= does not converge at infinity.
C! [ dwdsw f(s,w), whereC'is the circumference of the " gjtyation completely changes for inhomogeneous case.
ring. For a fixed> and constant!, the s-dependence in Now, because of the presence of the oscillating factor in
Eq. (6) describes a pure betatron oscillation, while, fopq (11), the integral, ™ D(s, z)dz converges almost ev-
a fixed s (that is in the ion rest frame), thedependent gn\where (except theOpoints whefe; = 0), and we can

part implies oscillations with the frequengy,. Hence the jntroduce a (complex) decoherence lenigth
wave resonantly couples the ions and the electrons.

Itis reasonable to assume that, with a good accuracy, the i
variation of the ion frequency from point to point does not la(s) = /D (s,2)dz. (13)
change the shape of the ion distribution function but only o

shifts it along the frequency axis,
A simple picture of instability arises in the limit of short

f(s,wi) = F (w; — wip — dw; (8)), (8) decoherence length
| < L. (14)

In this limit, the main contribution to the integral on the

assume thadw; is small,éw; (s) < wio; in the opposite right-hand side of Eqg. (10) comes from the region where
2’ =~ z, and we can put’ A(z’) out of the integral substi-

case, whelw; is comparable ta,q, the large variations of < ,
the ion frequency should strongly suppress the instabilitytuting = for 2,

wheredw; (s) is the deviation of the local ion oscillation
frequency in the center of the beam fram. We will also

Substituting Egs. (4), (6), and (8) into Eq. (1) and ne- 9A (s, 2)
glecting the second derivativi# A /ds? on the right hand T’ = A(s,2)A(s, 2), (15)
side gives the following equation 5
where (s)wioB(s)2a(s)
0A (s, 2 Kw; [ i (s A _ Bs)wiobls)zlals) 1
8(8 ) _ 22 —fiﬁﬁ’) /z’dz'A (s, 2")e"wio(z=2) (5,2) 2¢(24i0'(s)) (9
0 The solution to the last equation is,

x/dwif(s,wq;) {e‘“”’(z_zl) +ei==2D ) (9) s
A(s, z) = Ag(2) exp {/ A(s’,z)ds’] : 7)

If we now assume that the length of the bunch trais 0

much larger than the ion wavenumbér,/c > 1, and which means that the instability develops with the averaged

recall that the ion frequenay; is close tow;y, we con- growth ratel’

clude that the first term in the brackets rapidly oscillates

with the frequencyr 2w;o, whereas the second term is a ['(z) = c(ReA(s, 2)) . (18)

relatively smooth function ofz — z’). Clearly, the second . .

term makes the dominant contribution. Leaving only thig/here the angular brackets denote averaging over a period

term in the equation leads to the following expression iopf the lattice (or circumference in a circular accelerator).

the amplitude4, As a matter of factF(z') is a linear function of. .
Equation (16) predicts how the growth rate scales with
BA (s, ) Kewio3 z R the parameters of the_beam and the vacuum pressure. For
L = — /z'A(s,z')D (s,z—2')dz', large variation of the ion frequencyw;/w;o > 0.3, the
Os 2¢(2 +10) s decoherence length is inversely proportional to the ion

(10) frequencyly ~ ¢/w;0, and we obtain the following rough



estimate for the maximal growth rate at the end of the bundii3) and the bunch train lengttis shown in Fig. 3. One

train, sees that the inequality (14) holds almost everywhere ex-
Lo cri(s)Bl (19) Cept for two positions in the half-period of the ring. The
4 average ion frequency for this case is 41 MHz, with the

This equation gives a scaling of the growth rate of the infms spread of about 12 MHz.
stability with the bunch currenk,, number of bunches in

the trainn,, and the vacuum pressuse 0.3 .
T o« puply = pl, (20) g - ]

02L /| ‘ 3

wherel = nyl, is the total beam current. This scaling — r ‘ ‘\‘ \‘\‘ ]
differs from the regime whefi;| > [ studied in Refs. [1, :U g [ “\‘ 1
2] where the characteristic timeof the instability scales o 01 F | \ I ]
— 3/2 = F | || ]
astt oc pn2I./?. g \J Al N ]
B “ ]

3 GROWTH RATE OF THE INSTABILITY FOR N ‘ /\f\’ﬁw L
THE ALS EXPERIMENT 0 2 6 8

Using Eq. (18) we calculated the growth rate of the fast ion s ()

instability for the conditions of the dedicated experimentin_ i
the Advanced Light Source at the LBL [3]. The horizontal 19U€ 3: Absolute value of the ratio of the decoherence
and vertical beta functions for one period of the ALS Iattic&%:e;gth and the tral'n length as a function of position in a
are shown in Fig.1. We assumed the following paramete If of the ALS period.

in the calculation: beam energy 1.5 GeV, accelerator cir-
cumference 196.8 m, bunch spacing 0.61 m, vertical emit-

tance 9.410- ' m, horizontal emittance 45210~ m. Table 1: Inverse growth rate of the instability

I,A n, I !',ms
0.2 240 0.40
0.1 240 0.83
- 0.2 150 0.34
| 0.2 320 0.42

The results of the calculations for several different
3 12 16 regimes are given in Table 1. The growth times predicted
s (m) by Eqg. (18) turns out to be orders of magnitude larger

than predicted by the theory that assumes a constant ion
Figure 1: Plot of horizontal and verticaHunctions in the  frequency in the ring. The growth rate for a given total cur-
ALS. Only one period of the lattice is shown. rentis almost independent of the train length, in accordance
with the scaling law (20).
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We also assumed a residud gas of pressurg = 80 [5]
nTorr [3] and used the ionization cross section of 0.15
Mbarn [5]. The variation of the ion frequency along the
beam path in one period of the ring is shown in Fig 2, and
the ratio of the calculated decoherence length given by Eq.



