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1 Introduction

The Coleman-de Luccia (CdL) geometry [1] is essential to the study of eternal infla-

tion (see [2, 3] and the references therein) and the string theory landscape [4–6]. Most

discussions of this geometry take place in the “thin-wall” limit, where the geometries

inside and outside of the bubble are pieces of de Sitter space, Minkowski space, or

Anti de Sitter space, sewn together nonanalytically at the domain wall. This picture

is sufficient for many qualitative questions, but is troublesome when applied to cal-

culations of correlation functions in the CdL background [7, 8]. This often involves

various analytic continuations from Euclidean to Lorentzian signature, and also from

one part to another of the geometry, and pathologies can appear when the geometry

is not analytic. Our goal in this paper is to give some reasonably simple analytic ex-

pressions for “thick-wall” CdL bubbles which mediate various types of decays. There

is a conservation of trouble here, however, in that we will not be able to give closed

form expressions for the scalar potentials which give rise to these geometries. Rather
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we will work out a set of general constraints that the metric needs to obey in order for

it to come from some scalar field theory with a potential, and then give examples of

geometries which satisfy all the constraints. Since it is the potential that usually comes

out of “top-down” constructions this may not seem eminently useful, but we consider

our approach to be more appropriate for “bottom-up” investigations of bulk physics

in the CdL background. Similar analyses have been applied to other less-restricted

cases such as thick domain walls [9–11] and FRW cosmologies [12], both of which are

contained in our analytic CdL geometries.

2 General Properties of the Coleman-de Luccia Geometry

2.1 Euclidean Preliminaries

The Euclidean CdL geometry is a solution of the equations of motion for the scalar/gravity

system with Euclidean action

S = − 1

16πG

∫
ddx
√
gR +

∫
ddx
√
g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
. (2.1)

The solution has SO(d) symmetry, so we can write the metric as

ds2 = dξ2 + a(ξ)2
(
dθ2 + sin2 θdΩ2

d−2
)
. (2.2)

The equations of motion for solutions with this symmetry are

φ′′ + (d− 1)
a′

a
φ′ − V ′(φ) = 0(

a′

a

)2

=
1

a2
+

16πG

(d− 1)(d− 2)

(
1

2
φ′2 − V (φ)

)
. (2.3)

If V has a local extremum at φ = φmin then there is a simple solution. When

V (φmin) = 0 we have flat space:

a(ξ) = ξ. (2.4)

When V (φmin) = ρmin > 0, we have the sphere:

a(ξ) = `ds sin(ξ/`ds)

`−2ds =
16πGρmin

(d− 2)(d− 1)
. (2.5)

When V (φmin) = ρmin < 0, we have hyperbolic space:

a(ξ) = `ads sinh(ξ/`ads)

`−2ads = − 16πGρmin
(d− 2)(d− 1)

. (2.6)
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More interesting solutions will interpolate smoothly between different minima of the

potential; these have the interpretation of causing bubble nucleation.1 The geometries

describing the decay of Minkowski space and AdS are noncompact and can be chosen

to have ξ ∈ [0,∞), while the geometry describing the decay of dS space is compact and

can be chosen to have ξ ∈ [0, ξc]. In all cases for the solution to be smooth at ξ = 0 we

need

φ(ξ) = φ0 +O(ξ2)

a(ξ) = ξ +O(ξ3). (2.7)

For the noncompact cases, as ξ → ∞ we want φ to approach its value in the false

vacuum and a to approach (2.4) or (2.6). When the false vacuum is dS then as ξ → ξc
smoothness requires

φ(ξ) = φc +O((ξc − ξ)2)
a(ξ) = (ξc − ξ) +O((ξc − ξ)3). (2.8)

2.2 Lorentzian Continuation

To find the Lorentzian geometry describing the aftermath of bubble nucleation we

analytically continue the Euclidean solution of the previous subsection. To get inside

the bubble we define

ξ = it

θ = iρ

â1(t) = −ia(it), (2.9)

which gives an open FRW cosmology

ds2 = −dt2 + â1(t)
2
(
dρ2 + sinh2 ρdΩ2

d−2
)
. (2.10)

To get the Lorentzian geometry outside of the bubble we continue

θ =
π

2
+ iω, (2.11)

which gives a “warped de Sitter” geometry

ds2 = dξ2 + a(ξ)2
[
−dω2 + cosh2 ωdΩ2

d−2
]
. (2.12)

1The Euclidean solution does not actually quite reach the minimum; the more precise boundary

conditions are stated momentarily. Also for vacua which have V < 0 it is possible for a maximum to

be stable or metastable; we include this case below in our definition of a CdL geometry.
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When the false vacuum is dS there is an additional region outside of the bubble which

is up near the future boundary of the false vacuum, which we reach by

ξ = ξc + it

θ = iρ

â2(t) = ia(ξc + it). (2.13)

Both â1 and â2 obey the Lorentzian FRW equations of motion

φ̈+ (d− 1)
˙̂a

â
φ̇+ V ′(φ) = 0(

˙̂a

â

)2

=
1

â2
+

16πG

(d− 1)(d− 2)

(
1

2
φ̇2 + V (φ)

)
. (2.14)

The metric and scalar produced by these continuations are guaranteed to be real

because they obey equations of motion and boundary conditions that are real. In

particular the simple Euclidean solutions with constant φ become various patches of

Minkowski, de Sitter, or Anti de Sitter space. The late time behaviour inside of the

bubble depends on the nature of the “true” minimum. If the minimum is infinitely far

away in field space then there are many possibilities, but if the minimum is at some

finite φ there are only three. These are Minkowski space2

â1(t)→ t, (2.15)

de Sitter

â1(t) ∼ et/`1 , (2.16)

and Anti de Sitter3

â1(t) ∼ sin(t/`1). (2.17)

If the false vacuum has positive energy and is at finite field value then we also expect

â2(t) ∼ et/`2 . (2.18)

The full analytic continuation is illustrated in Figure 1.

2We use “→” here instead of “∼” to indicate a(t) = t(1 + o(t0)), i.e. unlike the dS and AdS cases

the prefactor must go to one.
3In this case late time does not make so much sense, since we expect the geometry to crunch in

time of order `1 and there isn’t really a good asymptotic limit.
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a(ξ)

1a (t)
2a (t)

ξ

ξc

Figure 1. On the left we have the three regions of interest in the ξ plane for the Lorentzian

continuation of a compact CdL geometry. The red line gives â1(t), the blue line gives a(ξ),

and the green line gives â2(t). On the right we show the regions of the CdL Penrose diagram

that are described by these different continuations. If the geometry is noncompact then the

blue line extends to infinity and the â2 region doesn’t exist.

2.3 Constraints and a Definition

For a given potential the boundary conditions are sufficient to determine a unique

solution of the equations of motion (2.3). What we will do in this section is to identify

the constraints that a real and positive function a(ξ) must obey in addition to the

boundary conditions to ensure that a potential exists which has this a(ξ) (and some

φ(ξ)) as a solution, and also that its analytic continuation describes a Lorentzian bubble

geometry of true vacuum surrounded by false vacuum.

We begin by writing expressions for φ and V in terms of a:

8πG

d− 2
φ′2 =

(
a′

a

)2

− 1

a2
− a′′

a

16πG

(d− 2)2
V (φ) =

1

a2
−
(
a′

a

)2

− 1

d− 2

a′′

a
. (2.19)

The first of these make it clear that throughout the physical range of ξ we must have

a′2 − aa′′ − 1 ≥ 0. (2.20)

In fact if this inequality is satisfied then we can integrate the first equation in (2.19) to

find φ(ξ), which we can then invert and insert into the second equation to find V (φ).4

4If there are places where the inequality is saturated and φ comes to a rest, this inversion is slightly

more subtle. This happens for example inside the bubble if the field oscillates about the true minimum

before settling down, as in reheating. This subtlety does not affect our ability to find the potential

since the scalar traverses all relevant parts of the potential at least once.
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This inequality may appear unusual, but we show in Appendix A that it is equivalent

to the null energy condition in the region produced by the continuation (2.11).

Additional constraints come from the Lorentzian continuation. We want â1(t) to

be real and positive for all t > 0, and also to obey (2.15), (2.16), or (2.17), with the

caveat that in the last case (2.17) â1(t) need only be positive before the crunch. If the

false vacuum is dS then we want â2(t) to be real and positive for all t > 0 and to obey

(2.18). By continuing (2.19) we see that to reconstruct the scalar field and potential

we need both â1 and â2 to obey

˙̂a2 − â¨̂a− 1 ≥ 0. (2.21)

This inequality is again equivalent to the null energy condition in these two regions.

We claim that these are all of the constraints that a proposed a(ξ) needs to obey to be

considered a CdL geometry.

The condition that â1(t) is real can be rewritten in a nice way by observing that

in a neighborhood around ξ = 0 we can see from the Taylor expansion for a(ξ) that it

is equivalent to

a(−ξ) = −a(ξ). (2.22)

By analytic continuation this equation must hold in any simply-connected region con-

taining ξ = 0 in which a(ξ) is analytic. Conversely, (2.22) (together with the reality

and positivity of a(ξ) on (0, ξc)) implies that â1(t) is real and positive for small positive

t, and by analytic continuation must be so for all t > 0 unless we encounter a zero or

singularity. Similarly the condition that â2(t) is real is equivalent to

a(ξc − ξ) = −a(ξc + ξ). (2.23)

A final condition we would like to have is that the vacua involved are at least

metastable and not unstable. If the geometry is compact then the late time behaviour

(2.15-2.18) of â1,2 ensures that the scalar field is rolling down to a minimum in both

asymptotic regions. But if the geometry is noncompact then the false vacuum is reached

already in the Euclidean geometry as ξ →∞, and there is no â2. So if we do not impose

an additional condition, then the constraints we have stated so far allow situations

where there is an unstable Minkowski or AdS maximum that the field rolls down from,

which we feel does not deserve the name of a CdL geometry since it is not a tunnelling

process. If the false vacuum is Minkowski we thus need to demand that V ′′(φ(ξ)) > 0 as

ξ →∞. The simplest way to achieve this is to demand that the potential is decreasing

as ξ →∞, which from (2.19) means that(
1

a2
−
(
a′

a

)2

− 1

d− 2

a′′

a

)′
< 0 as ξ →∞. (2.24)
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Note that unlike our other restrictions, this one depends on the dimension d. If the

false vacuum is AdS, then a maximum should be allowed if its negative mass-squared

obeys the Breitenlohner-Freedman bound [13]

V ′′(φ(ξ)) > −(d− 1)2

4(`2)2
as ξ →∞. (2.25)

The potential in this inequality is written in terms of a by using (2.19). Examples of

potentials with metastable maxima of this type were given in [14, 15].

We can now gather the results of this section into a definition; a function a(ξ) is a

“CdL Geometry” if:

(a) It is real and positive on a real interval ξ ∈ (0, ξc), possibly with ξc →∞.

(b) Near ξ = 0 it obeys (2.7), and if ξc is finite then it obeys (2.8). If ξc is infinite then

as ξ → ∞ either a(ξ) ∼ eξ/`2 (“tunnelling from AdS”) or a(ξ) → ξ (“tunnelling

from Minkowski”).

(c) It is analytic in a simply connected region D containing the real interval [0, ξc],

the positive imaginary axis,5 and if ξc is finite the ray R defined by ξ = ξc + it

with t > 0.

(d) There are no zeros of a on the positive imaginary axis or on R if ξc is finite, and

throughout D we have a(−ξ) = −a(ξ). If ξc is finite we also have a(ξc − ξ) =

−a(ξc + ξ) and the dS asymptotic (2.18).

(e) On the real interval [0, ξc] we have the null energy condition (2.20). On the

positive imaginary axis and on R if ξc is finite, we have the null energy condition

(2.21).

(f) If ξc is infinite then for “tunnelling from Minkowski” the inequality (2.24) is

satisfied, while for “tunnelling from AdS” we have (2.25).

In this definition we assumed that the false vacuum was at a finite point in field space.

If we wish to restrict to cases where the true vacuum is also at a finite point in field

space then we can introduce an additional requirement:

(g) For large purely imaginary ξ we have the asymptotic geometry (2.15), (2.16), or

(2.17).

5For tunnelling to (crunching) AdS we only include the open interval between the origin and the

first zero of a on the positive imaginary axis. This also applies to constraints (d) and (e).
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2.4 Compact Coleman-de Luccia Geometries

Before presenting our examples of CdL geometries, we will make some special obser-

vations about the compact case. We first note that the reality conditions (2.22) and

(2.23) allow continuation of a(ξ) to a neighborhood of the full real axis and together

imply the periodicity

a(ξ + 2ξc) = a(ξ). (2.26)

Thus for the compact case we have Fourier Analysis at our disposal. We will henceforth

choose units where ξc = π, after which we see that we may write

a(ξ) =
∞∑
n=1

cn sin(nξ). (2.27)

There are no cosines because the function is odd. This form is not the most useful

however because the boundary conditions (2.7) and (2.8) imply nontrivial constraints

on the cn’s. We can reorganize the series using trigonometric identities to take the form

a(ξ) = sin(ξ) [1 + f(sin ξ) + cos(ξ)g(sin ξ)] , (2.28)

where f(·) and g(·) are even functions which go to zero as their argument goes to zero,

and which are analytic in a region containing the real interval (0, 1] and also the pure

imaginary axis. This form is completely general; any compact CdL geometry must

have it. It is convenient because it automatically incorporates the reality conditions

and boundary conditions at 0 and π, so the only remaining things to check are that

the scale factor is nonvanishing, the null energy condition is satisfied, and that at late

times outside the bubble we have (2.18). The cosine term has a simple interpretation

in that it breaks the symmetry between the two minima. In particular, the analytic

continuations (2.9) and (2.13) give

â1,2(t) = sinh(t) [1 + f(i sinh t)± cosh(t)g(i sinh t)] , (2.29)

which are real because f and g are even functions. Here â1 (or â2) takes the plus (or

minus) sign. Depending on the desired nature of the true vacuum we might also like

to impose (2.15), (2.16), or (2.17).

3 Examples

In this section, we first derive some general results that illustrate the difficulty of

constructing geometries that satisfy our definition. In the following subsections we

then give a series of explicit examples.
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In writing down functions a(ξ) that obey our constraints (a)–(g), the biggest chal-

lenge is the null energy conditions (2.20) and (2.21). We first consider the case where

a(ξ) (or â(t)) is linear with unit coefficient both at ξ = 0 and ξ → ∞. This is appro-

priate for tunnelling to or from Minkowski space. We parametrize this as

a(ξ) = ξ(1 + δ(ξ)). (3.1)

Here δ(ξ) must go to zero both at ξ = 0 and ξ = ∞, and we must have δ > −1 to

avoid collapse. If there is a point where −1 < δ < 0, then by continuity δ must have

a minimum ξmin with −1 < δ(ξmin) < 0. The null energy condition however takes the

form

δ(2 + δ) + ξ2δ′2 − δ′′ξ2(1 + δ) ≥ 0, (3.2)

and it is easy to check that a local minimum with −1 < δ < 0 necessarily violates it.

Thus we must have

δ ≥ 0. (3.3)

We can use this observation to constrain the behaviour of a near ξ = 0. We can expand

δ(ξ) = Aξn + O(ξn+2), with n some even integer greater than 1. Inserting this into

(3.2) we find that if n > 2 then we must have A < 0, which is not allowed because

then near ξ = 0 we would have δ < 0. So δ(ξ) must start out like Aξ2 with A > 0. We

can also rule out the possibility that δ is a rational function. If δ were rational then

at large ξ it would scale like ξ−n for some positive integer n. From (3.2), we find the

restriction n(n + 1) ≤ 2. The only possibility is n = 1, but if δ is rational then this is

impossible since (2.22) requires δ to be an even function of ξ. In our examples below

we overcome this by including radicals.

Another constraint of this type is that when the false vacuum is de Sitter, its radius

must be greater than 1 in the units where ξc = π:

`2 >
ξc
π
. (3.4)

In the thin-wall limit, this is the statement that if we draw the Euclidean CdL instanton

as a piece of a sphere glued to a piece of flat space, the hyperbolic plane, or a larger

sphere, the radius of the sphere corresponding to the metastable dS vacuum is always

larger than the “size” ξc of the instanton divided by π.6 We show this is generally true

in Appendix B. Note that when the “true” vacuum is also dS this also implies that

`1 > 1 since `1 > `2 by definition. This constraint implies that the even functions f(·)
and g(·) in equation (2.28) cannot both be rational, as this would lead to scaling (2.18)

with `−12 = (n+ 1) and n ∈ Z (we are now setting ξc = π). This is clearly impossible if

`2 > 1. So again in the compact case we will include radicals to avoid this problem.

6One can also think of this as a bound on the proper length ξc of the warped de Sitter region (2.12).
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3.1 De Sitter Domain Walls

Our simplest example of a CdL geometry describes a one-parameter family of (thick)

domain walls interpolating between two degenerate dS minima. Geometries that de-

scribe genuine decays are given later, as they are in general more complicated. The

domain walls are simple because in these cases a(ξ) is symmetric under ξ ↔ π− ξ and

therefore only involves sin ξ when written in the form (2.28). Our domain walls are

given by

a(ξ) = c

√
1−

√
1− 2

c2
sin2 ξ, (3.5)

where c is any constant greater than
√

2, as required by the reality of the inner square

root. As ξ approaches 0 or π we may expand the inner square root and check the

smoothness conditions (2.7) and (2.8). We also need to check the null energy condition

(2.20), which reads

a′2 − aa′′ − 1 =
(c2 − 2)(c−

√
c2 − 2 sin2 ξ)

(c2 − 2 sin2 ξ)3/2
sin2 ξ ≥ 0, (3.6)

which is manifestly satisfied for any c ≥
√

2.

Next, we analytically continue (3.5) to Lorentzian signature by applying (2.9). The

resulting scale factor is

â1(t) = c

√√
1 +

2

c2
sinh2 t− 1, (3.7)

whose late time behavior is

â1(t)→
√

c√
2
et/2 as t→∞. (3.8)

Matching this to (2.16), we find an asymptotically dS space with radius `1 = 2. This

agrees with the bound `2 > 1 mentioned earlier and proven in Appendix B (here

`1 = `2). We still need to check the null energy condition (2.21), which is simply the

analytic continuation of (3.6):

˙̂a21 − â1¨̂a1 − 1 =
(c2 − 2)(

√
c2 + 2 sinh2 t− c)

(c2 + 2 sinh2 t)3/2
sinh2 t ≥ 0. (3.9)

By symmetry the second analytic continuation (2.13) gives exactly the same â2(t) =

â1(t).
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We have verified that (3.5) satisfies all conditions (a)–(g) to be a CdL geometry.

We may then use (2.19) to solve for φ(ξ) and V (φ). Their analytic forms are not very

illuminating, as φ(ξ) involves a hypergeometric function and V (φ) is written in terms

of the inverse of φ(ξ). However, in many applications of CdL (such as calculating the

correlation functions) it is a(ξ) that we would like to be simple, not V (φ).

We note that a static domain wall interpolating between two degenerate dS minima

is in general not stable under small perturbations.7 The domain wall tends to minimize

its area and gradient energy by slipping off the topological (d− 1)-sphere (which is the

spatial slice of the Lorentzian geometry). We present these dS domain-wall geometries

here mainly to illustrate how to satisfy all conditions (a)–(g) in the simplest manner,

and we use them as stepstones towards more physical geometries to be discussed in the

following subsections.

3.2 Decays from dS to dS

In Sec. 3.1 we discussed domain walls interpolating between two degenerate dS minima.

When this degeneracy is broken, we arrive at the phenomenologically interesting case

[16] of decays from one dS space to another with a smaller cosmological constant. We

give analytic examples of such geometries in this subsection.

In order to interpolate between two dS minima with different cosmological con-

stants, it is necessary to break the symmetry of a(ξ) under ξ ↔ π − ξ. In the form

(2.28) this means that a(ξ) has to depend on cos ξ in addition to sin ξ. Under the

analytic continuations (2.9) and (2.13), cos ξ becomes cosh t and − cosh t respectively

as we see in (2.29). This minus sign is crucial in making the late time behaviors of â1(t)

and â2(t) different, which is necessary for them to describe asymptotically dS spaces

with different cosmological constants.

One of the simplest examples that we found is

a(ξ) =

 1 + 101/4

1 +
[
10− sin2 ξ

(√
2− sin2 ξ + cos ξ

)]1/4


1/2

sin ξ. (3.10)

One can show that this is of the form (2.28) by first writing out its Taylor expansion

in terms of sin ξ and cos ξ, and then eliminating all quadratic or higher order terms in

cos ξ by applying cos2 ξ = 1 − sin2 ξ. One can check the null energy conditions (2.20)

7We thank L. Susskind for bringing this to our attention.
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and (2.21). Upon analytic continuation we have

â1,2(t) =

 1 + 101/4

1 +
[
10 + sinh2 t

(√
2 + sinh2 t± cosh t

)]1/4


1/2

sinh t, (3.11)

where â1(t) takes the plus sign and asymptotes to

â1(t)→
√

1 + 101/4

23/4
e5t/8 as t→∞, (3.12)

and â2(t) takes the minus sign and asymptotes to

â2(t)→
√

1 + 101/4

23/4
e7t/8 as t→∞. (3.13)

The radii of the two dS vacua are `1 = 8/5 and `2 = 8/7, which again obey the bound

of Appendix B. We show this geometry in d = 4 in Figure 2, together with the scalar

potential that gives rise to it.

A family of geometries of this type can be found by varying the parameters in

(3.10) (subject to the smoothness and null energy conditions). We will not give the

exact parameter space here, but we note that it is quite large. For instance, one can

verify that all constraints are still satisfied if we change both constants “10” in (3.10)

to any number larger than 4.2, or if we change the power 1/4 to any number between

0 and 1/4.

3.3 Decays from dS to Minkowski Space

In this subsection we consider decays from dS to asymptotically Minkowski space.

These are potentially interesting for conceptual reasons, as explained in [17–19]. A

“simple” geometry of this type is

a(ξ) =
3
2

sin ξ

1 +
[
8− sin2 ξ

(√
2− sin2 ξ + cos ξ

)]1/3 + arcsin

(
sin ξ

2

)
. (3.14)

One can check that it satisfies the smoothness conditions (2.7), (2.8) and the null energy

conditions (2.20), (2.21). Upon analytic continuation we have

â1,2(t) =
3
2

sinh t

1 +
[
8 + sinh2 t

(√
2 + sinh2 t± cosh t

)]1/3 + arcsinh

(
sinh t

2

)
, (3.15)
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Figure 2. A CdL geometry describing the decay from dS to dS. We have the Euclidean

geometry a(ξ) on the top left, the first FRW geometry â1(t) that asymptotes to the true dS

vacuum on the top right, the second FRW geometry â2(t) describing the parent dS on the

bottom left, and the scalar potential V (φ) on the bottom right. The blue, red, and green

segments are traversed by the scalar field in the three regions of the CdL geometry as depicted

in Figure 1. The black dashed lines are “conjectures” from what we expect qualitatively –

the potential there cannot be solved numerically from the CdL geometry because the field

never goes there. If one could solve the potential analytically between the two minima, it can

then be continued to the dashed region.

where â1(t) takes the plus sign and the exponentially growing terms cancel, leading to

â1(t)→ t as t→∞, (3.16)

and â2(t) takes the minus sign and asymptotes to

â2(t)→
3

24/3
e2t/3 as t→∞. (3.17)

The radius of the parent dS space is therefore `2 = 3/2, again satisfying the bound of

Appendix B. We show this geometry and its potential in d = 4 in Figure 3.

As before, a family of geometries of this type can be found by varying the param-

eters in (3.14). Additionally, we could get CdL geometries that describe decays from
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Figure 3. The geometry and potential describing a decay from dS to asymptotically

Minkowski space. See the caption of Figure 2 for detailed explanations.

dS to FRW which has a zero cosmological constant but does not have the asymptotic

behavior (2.15). As discussed above (2.15) this means that the scalar field is rolling

off to infinity in the FRW. A particular class of interesting FRW solutions of this type

was studied in [8] and conjectured to have holographic duals. They are characterized

by the following late time behavior:

â1(t)→ ct as t→∞. (3.18)

We give analytic CdL geometries of this type by multiplying the “arcsin” term in (3.14)

by a constant c > 1, and multiplying the first term by (2−c) to preserve the smoothness

conditions.8 Over a range of c the null energy conditions are satisfied, and we get an

asymptotically linear scale factor â1(t)→ ct with c > 1.

3.4 Noncompact Examples

Noncompact examples have simpler functional forms, but have the added complication

of the conditions (2.24) or (2.25). These decays are arguably the least interesting,

8The lower limit c > 1 is required by the null energy condition (2.21). The apparent upper limit

c < 2 is superficial and can be relaxed by changing the “2” inside the arcsin in (3.14).
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since exactly Minkowski spaces are expected to be supersymmetric and stable, and

metastable AdS is inherently ill-defined [20–22]. A candidate example for a decay of

Minkowski space to a crunch is

a(ξ) = ξ

(
1 +

ξ2

(1 + ξ2)3/2

)
. (3.19)

The radical is still necessary because of the argument given below equation (3.3). This

obeys the null energy conditions (2.20) and (2.21), and crunches inside the bubble at

finite time. For d = 4 however it corresponds to rolling down from a maximum, and

we find we need to set d = 3 to satisfy (2.24). This can be checked analytically by

expanding (2.24) to order 1/ξ6 at large ξ.9 An improved example that works in d = 4

is

a(ξ) = ξ

(
1 +

ξ2√
1 + ξ6

)
. (3.20)

We can show that the potential leading to this geometry has a metastable minimum

by expanding (2.24) to order 1/ξ10. This potential is shown in Figure 4.
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Figure 4. The potential V (φ) leading to a CdL geometry (3.20) describing the decay from

Minkowski space to a crunching AdS. On the right we zoom in on the same potential at φc
(the asymptotic field value) and see that it is a local minimum with a very shallow barrier.

A candidate family of decays of AdS to a crunch is

a(ξ) = (1 + c) sinh ξ − 2c sinh
ξ

2
. (3.21)

9Note that for the compact examples in the previous subsections the dimension was irrelevant. It

is only for noncompact geometries that we have the inequalities (2.24) or (2.25) which depend on

dimension.
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This example is simple enough that we can check the null energy conditions (2.20) and

(2.21) analytically, finding that any c > 0 is allowed. It is also not hard to check that

the BF bound (2.25) is satisfied for d ≥ 3. This geometry and its potential are shown

in Figure 5 for c = 1, d = 4.
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Figure 5. The geometry and potential for a decay from AdS to a crunch.
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A Null Energy Condition

In this appendix we show the equivalence of the inequalities (2.20) and (2.21) to the

null energy condition

Tµνk
µkν ≥ 0, (A.1)

for any null kµ. We first apply this to the “warped de Sitter” geometry (2.12), which

we rewrite as

ds2 = dξ2 + a(ξ)2γijdx
idxj. (A.2)

The Ricci tensor is

Rξξ = −(d− 1)
a′′

a

Rij = −
[
aa′′ + (d− 2)(a′2 − 1)

]
γij

Rξi = Riξ = 0, (A.3)
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so the Einstein tensor is

Gξξ =
(d− 1)(d− 2)

2

[(
a′

a

)2

− 1

a2

]

Gij =

[
(d− 2)

a′′

a
+

(d− 2)(d− 3)

2

((
a′

a

)2

− 1

a2

)]
a2γij

Gξi = Giξ = 0. (A.4)

To check the null energy condition, consider the radial null vector k = ∂ξ + 1
a
∂ω.10

Contracting this with Gµν we find (A.1) is satisfied if(
a′

a

)2

− 1

a2
− a′′

a
≥ 0, (A.5)

which agrees with (2.20). We can easily continue this Einstein tensor to find the

Einstein tensor for the open FRW metric (2.10), and a similar computation confirms

(2.21).

B A Bound on Parent dS Radius

In this appendix we show that for any compact CdL geometry describing the decay of

dS space, the parent dS radius (which is `2 according to (2.18)) must be greater than

ξc/π. In the convenient units proposed in Sec. 2.4 where ξc = π, this means `2 > 1. We

will not need to know what kind of space the parent dS decays into, whether it is dS,

AdS, Minkowski space, or even something else.

We prove this by using the null energy conditions (2.20) and (2.21). First, we note

that it is impossible for a(ξ) or â(t) to have a local minimum within their physical

domains. Clearly if for example a(ξ) had a local minimum, we would have a′(ξ) = 0

and a′′(ξ) ≥ 0 there, manifestly violating the null energy condition (2.20). Therefore it

is impossible to have a contracting phase followed by an expanding phase. Combining

this with the boundary conditions (2.7) and (2.8), we find that a(ξ) must monotonically

increase to a maximum at some ξm and after that monotonically decrease to 0. For â2(t)

there has to an expanding phase (2.18) at late times, so â2(t) must be a monotonically

increasing function for all t ≥ 0.

10Any nonradial vector can be boosted into a radial one unless it lies entirely within the dS slice, but

in that case the Null Energy Condition is trivially saturated since the dS Einstein tensor is proportional

to the metric.
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Let us define an “energy function” E ≡ (a′2 − 1)/a2 and take its derivative

dE

dξ
=

d

dξ

(
a′2 − 1

a2

)
= −2a′(a′2 − aa′′ − 1)

a3
. (B.1)

Using the null energy condition (2.20), we find that E never increases in an expanding

phase and never decreases in a contracting phase. For a more physical argument, we

note that E is equal to the total energy up to a constant coefficient, as we can see

from the second equation in (2.3).11 The total energy is drained by friction during an

expanding phase and replenished by anti-friction during a contracting phase. Exactly

the same statements hold for Ê2 ≡ ( ˙̂a22 − 1)/â22.

It is therefore clear that E(ξ) reaches an absolute minimum exactly as a(ξ) reaches

its maximum at ξm:

E(ξ) ≥ E(ξm) = − 1

a(ξm)2
for ∀ξ ∈ [0, ξc]. (B.2)

Let us abbreviate a(ξm) as am. For the expanding phase 0 ≤ ξ ≤ ξm we rewrite the

above inequality as
a′√

1− a2/a2m
≥ 1 (B.3)

and integrate both sides from ξ = 0 to ξ = ξm, which gives

π

2
am ≥ ξm. (B.4)

For the contracting phase ξm ≤ ξ ≤ ξc there is a minus sign on the left hand side of

(B.3). After integrating from ξm to ξc we find

π

2
am ≥ ξc − ξm. (B.5)

Combining this with (B.4) we arrive at

πam ≥ ξc. (B.6)

Finally, we argue that am is bounded from above by `2. From the analytic contin-

uation (2.13) we find

E|ξ=ξc =
a′2 − 1

a2

∣∣∣∣
ξ=ξc

= −
˙̂a22 − 1

â22

∣∣∣∣∣
t=0

= −Ê2|t=0. (B.7)

11The Euclidean equations of motion (2.3) are completely the same as the Lorentzian equations

(2.14) with the inverted potential −V (φ), so we may use our usual intuition about real-time evolution.
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Physically, the field is at rest when ξ = ξc or t = 0, so the total “Euclidean en-

ergy” −V (φc) is just minus the “Lorentzian energy”. From this we have a chain of

(in)equalities

− 1

a2m
= E|ξ=ξm ≤ E|ξ=ξc = −Ê2|t=0 ≤ −Ê2|t→∞ = − 1

`22
, (B.8)

where we have the first inequality because E never decreases in a contracting phase,

and the second inequality because Ê2 never increases in an expanding phase. The last

equality comes from the asymptotically dS condition (2.18). Therefore we have

am ≤ `2. (B.9)

Combining this with (B.6), we have shown the bound on the parent dS radius

`2 >
ξc
π
. (B.10)

This inequality cannot be saturated without saturating all the above inequalities. In

particular, saturating (B.2) and (B.9) leads to a(ξ) = `2 sin(ξ/`2) which describes a

pure dS geometry rather than a CdL decay.
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