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Abstract

We point out that detectable inflationary tensor modes can be generated by particle or string sources
produced during inflation, consistently with the requirements for inflation and constraints from scalar
fluctuations. We show via examples that this effect can dominate over the contribution from quantum
fluctuations of the metric, occuring even when the inflationary potential energy is too low to produce a
comparable signal. Thus a detection of tensor modes from inflation does not automatically constitute a
determination of the inflationary Hubble scale.
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1 Introduction and Motivations

Gravitational radiation, detectable through B mode polarization in the CMB [1], provides an important
handle on primordial cosmology. In the context of inflation, quantum fluctuations of the tensor modes
in the metric yield a power spectrum of the form

〈hskhs
′
k′〉 = (2π)3δ(k + k′)δss

′Ph , Ph =
1

k3

H2

M2
P

, (1)

whose amplitude is given directly by the scale of the inflaton potential V (φ) ∼ H2M2
P (the index s here

labels the polarization state) . For this reason, a detection of primordial B modes is often identified with
a measurement of the Hubble scale H during inflation. It is also related to the range of the inflaton [3] in
Planck units, providing an ultraviolet-sensitive observable. Observational projects sensitive to B modes
are expected to test GUT-scale inflation and Planck-scale field ranges in the relatively near term. To be
detectable at least in near-term observational projects,1 the amplitude must satisfy

h ∼ hkk3/2 & 10−6 (2)

In this paper we will consider additional sources of gravitational waves which may be present during
inflation.2 The inflaton φ might generically be expected to couple to other degrees of freedom X and
produce excited states of these sectors as it rolls through points in field space where they become light.
These excited degrees of freedom can source gravitational waves (GWs), which freeze out as they cross the
horizon. A basic question is to what extent these additional sources can produce detectable primordial
gravity waves, and how their amplitude hX and other properties compare to those produced by the basic
process (1).

Of course the energy density ρX in the X sector dilutes away during inflation because of the exponen-
tial expansion. A single production event would lead to a scale-dependent feature in the GW spectrum,
an interesting possibility in itself. However, during inflation φ may well encounter multiple points with
new light degrees of freedom. For example, in the mechanism [8, 9] for inflation along angular (axion)
directions which are typically extended via monodromy, this is automatic: any such production process
is repeated at short intervals because of an underlying circle in field space. This repetition of the process
replenishes the supply of extra modes as inflation dilutes them. The requirement of reheating involves

1See [2] and references therein for a recent treatment of observational expectations.
2See [4] for an interesting analysis of gravitational waves from phase transitions during inflation, and [5] for

earlier work on some effects of particle production during inflation, in the regime of parametric resonance [6].
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coupling of the inflaton to other sectors after exit, and in [8, 9] it would be interesting to study the
implications of this for earlier particle production events. In other cases with a sufficiently rich spectrum
of fields, repeated production events may also occur, and in general it is interesting to consider possible
observational consequences.

With this motivation, in this note we estimate hX for particles and for strings produced when their
mass or tension depends sufficiently strongly on the inflaton. We find that the amplitude of the GWs
generated by various processes including particle/string production, Bremsstrahlung, string oscillations,
and decays can compete (and in some cases exceed) the contribution (1). This is of interest for two
reasons:
• It indicates that even within the context of inflation, the observation of a scale invariant spectrum

of B modes does not automatically constitute a direct measurement of the inflationary potential. This is
relevant for the goal of having a systematic treatment of inflationary mechanisms and signatures.
• It provides a new regime in which to look for observational signatures of exotic sources.3

• It introduces an additional (model-dependent) signature of some classes of inflationary mechanisms
such as [8].4

The paper is organized as follows. We start in the next section by deriving the basic requirements
for a detectable signal and how this fits well within the basic bounds on energy densities of extra sectors
during inflation. Then we review and apply the standard calculation of gravitational waves produced by
stress energy sources, giving several examples of particle and string sources which generate a competitive
signal. In an appendix we will review particle production in the presence of a time-dependent mass,
and describe the salient features we will need of string production in the presence of a time-dependent
tension.

2 Basic checks

A basic requirement of the additional sources is that their energy density ρX be subdominant to the
inflationary potential energy:

ρX � V ∼ H2M2
P (3)

by at least a factor of the slow roll parameter ε ∼ Ḣ2

H4 . 10−1. Given that they are produced by the
rolling scalar field, the energy density ρX in the additional sources will be at most of the order

φ̇2 ∼ εH2M2
P . (4)

It will be of this order if the inflaton dumps a significant fraction of its kinetic energy into the X sector,
as can happen naturally on a steep potential [9]. The fraction f ≡ ρX/H

2M2
P ≤ ε of the total energy

density which is carried by the sources will figure into our estimates below for the strength of the GW
signal.

3The interesting possibility of detecting post-inflationary exotics such as cosmic strings has been studied exten-
sively; here we are concerned with a distinct window of potential signatures.

4This mechanism makes predictions for the amplitude of GWs from tensor fluctuations and for the tilt of the
spectrum, and depending on the model parameters can lead to additional signatures which are more detailed, such
as oscillations in the power spectrum and resonant non-Gaussianity [8, 11]. The present work introduces another
model-dependent signature.
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Once produced by the extra sources X, the additional gravitational waves satisfy the standard equa-
tion of motion in the inflationary near-de Sitter background, forming linear combinations

hk(t) ≈ A1k

(
i+

k

a(t)H

)
eik/a(t)H +A2k

(
−i+

k

a(t)H

)
e−ik/a(t)H , (5)

with A(1,2)k coefficients determined by the initial conditions, which freeze out when k/a(t) reaches the
Hubble scale H as usual. (This solution ignores the slow time-variation of H.) Gravitational waves that
are produced inside the Hubble patch decrease in amplitude by a factor of H/(k/ai) before freezing out,
where ai is the scale factor at the initial time of production of the mode and k/ai ∼ ωi its physical
momentum at that time.

Gravitational waves of initial frequency ωi make up an energy density at freeze out of order

ρGW ∼ ḣ(t)2M2
P |freezeout ∼ ω2

iM
2
Ph

2
i

(
H

ωi

)4

∼ ρi
(
H

ωi

)4

(6)

where ρi is the initial energy density contained in the GWs and hi their amplitude at the time of their
production; in the last factor we took into account the redshifting noted above of the modes and of the
frequencies. We are interested in whether the resulting frozen out modes can be competitive with those
from GUT-scale inflationary theory and visible in near-term observations. Comparison with (2) shows
that for detectability and consistency with the ε condition (3) we must require

10−6 ≤ hi
H

ωi
≤
√
ε

(
H

ωi

)2

⇒ ωi ≤ 103ε1/4H (7)

Thus the possibility of observable GWs sourced by the X sector is not immediately excluded by any
simple consideration of energetics. In order to determine if this possibility is viable, we must work out
the spectrum of frequencies ωi in concrete examples. In particular, as we will discuss further below,
low-frequency GWs can be suppressed by interference from multiple scattering events in a dense gas of
X particles or strings. It is interesting to note that if the X sector degrees of freedom decayed into

high-frequency GWs with a typical frequency ωi of order
√
φ̇2

0 =
√
εHMP , the condition (7) translates

into the condition H
MP
≥ 10−6, which is to say that the effect would still be marginally competitive.

We should also emphasize that the X sector can in general also emit scalar perturbations δφ; since
its production arises from its coupling to the rolling inflaton field φ, at the time it is created there is
a nontrivial coupling between X and δφ. Its coupling to δφ at later times is model dependent (related
to the functional form of the φ-dependent mass or tension). In each of the examples below, we will
determine the strength of the scalar perturbations and estimate their non-Gaussianity to ensure that
they are consistent with phenomenological constraints.

It will be useful to rephrase the condition for detectability in terms of the energy density contained
in gravitational waves. In general, from (6), this requires

h2|freezeout ∼
ρGW
H2M2

P

≥ 10−12 (8)

and below we will estimate this quantity for particle and string sectors X.
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3 Gravitational Wave Sources

In this section, we will start by reviewing the standard derivation of gravitational radiation, following
the comprehensive treatment in [12], which includes a detailed analysis of Bremsstrahlung. We will wish
to generalize this analysis in several ways. In particular, we will consider decays and production events
as well as Bremsstrahlung. Also, we would like to include the effects of the inflaton field φ coupling to
particle or string sources, with φ determining their mass or tension.

3.1 General setup

Let us begin by briefly collecting some of the basic results on gravitational radiation, and set up our sys-
tem. We will shortly make simple estimates in special cases, but it is worthwhile to first lay out the general
problem. Given the stress-energy of sources, at the linearized level one obtains tensor perturbations [12]

hµν =
4

8πM2
P

∫
d3x′

|x− x′|
Sµν(x′, ω)e−iωt+iω|x−x′| + c.c. (9)

where Sµν = Tµν− 1
2ηµνT

λ
λ (x, ω). It is convenient to work with the Fourier transform of the stress-energy

tensor, and one finds a result for the total energy emitted per solid angle

dE

dΩ
=

2

8πM2
P

∫ ∞
0

dωω2

(
T λν∗(k, ω)Tλν(k, ω)− 1

2
|Tλ

λ(k, ω)|2
)
. (10)

A particularly simple situation to consider is one in which particles of fixed (time-independent) masses
scatter and emit GWs through Bremsstrahlung. As derived in [12], that leads to a GW signature with
total energy (

dE

dΩdω

)
=

ω2

2π2M2
P

∑
N,M

ηNηM
(PN · k)(PM · k)

[
(PN · PM )2 − 1

2
m2
Nm

2
M

]
(11)

where we have taken the limit that the wavelength of the emitted Bremsstrahlung radiation is long
compared to the scattering time and the time between scattering events. Here N,M index particles with
momentum PN , PM , and ηN , ηM are ±1 depending on whether the particle is ingoing or outgoing in a
given event. In particular, if there is no scattering, so that the incoming and out going momenta are the
same, (11) gives zero via the cancelations arising from the ηN , ηM factors.

For processes occurring well within the Hubble scale H−1, stress-energy is conserved to a good
approximation, shared between particle or string sources and the inflaton field. Before considering specific
examples, let us briefly set up the full problem. The classical action is

S =

∫
d4x
√
−g
(

1

2
M2
PR+ Lφ

)
+ SX + SXY + SY (12)

SX = −
∑
p

∫
d4x

∫
dτδ(4)(xµ − xµp (τ))m(φ(t,x))

√
−gµν(xp(τ))

dxµ(τ)

dτ

dxν(τ)

dτ
θ(t− tp) (13)

−
∑
s

∫
d4x

∫
d2σδ(4)(xµ − xµs (σ))T (φ(t,x))

√
−Detgµν(xs(σ))∂αxµ(σ)∂βxν(τ)θ(t− ts)
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where p indexes particle sources and s indexes string sources with a mass m or tension T which in general
depend on the inflaton field φ. The step functions in (12) reflect the fact that the particle or string sources
are produced during inflation, on a timescale short compared to the scale of gravitational waves we wish
to consider.

Here SXY describes couplings of the X sector (particles or strings) to other fields Y , included because
this is a generic possibility which affects their decays. Of course theX sector necessarily couples to gravity,
and in addition to producing GWs classically, X strings can decay into gravitons, and two or more X
particles can annihilate into gravitons.

Clearly, solving for the detailed dynamics and GW spectrum from (12) is prohibitively difficult in
general since the system is nonlinear; but this is also not necessary for our goal of estimating the leading
contributions in some cases. For sufficiently large density, for example, one may instead treat the collection
of sources X as a fluid, along the lines recently reviewed and applied in [13]. For sufficiently small density,
it is tractable to sum the effects of individual sources.

3.2 Examples of competitive effects

Let us now consider some illustrative cases where the GW signature is competitive with (or exceeds)
the tensor modes arising from the standard mechanism (1). We will consider the production event itself,
the effect of decays of the produced particles, and the effect of ordinary Bremsstrahlung radiation from
scattering events. Formally, these can all be thought of as Bremsstrahlung, putting appropriate incoming
and outgoing lines in (11) (or a generalization of that equation to account for time dependent masses).

An individual production, scattering, or decay event produces gravitational waves at all frequencies
below the inverse timescale of the event. Multiple events, involving the same or different sources, can
enhance the effect on the one hand, but also can introduce interference which suppresses the effect.
For example, in a gas of particles with an approximately spherically symmetric distribution of particle
positions and velocities, the quadrupole vanishes to first approximation and the net GW spectrum is
a subleading effect. Moreover, if one considers the contribution of a single particle subject to multiple
scattering events without relevant momentum loss, its net GW emission at very long wavelengths is
simply determined by the scattering angle between the first and last event, with no enhancement from
the additional events. This follows from the positive and negative contributions in (11) for incoming and
outgoing lines. We will take these suppression factors into account in our estimates below.

3.2.1 GWs from Production

In this section, we discuss conditions under which the production event itself contributes a competitive
tensor signal. Let us first consider gravitational waves, and then we will also address scalar emission. To
analyze this, we need to specify the functional form of m(φ). During the production itself, we assume a
coupling of the form φ2χ2, so that m(φ) = φ ≈ φ̇t. We will consider two examples for the later evolution:
(i) m(φ) continues to depend linearly on φ ≈ φ̇t, and (ii) m(φ) transitions to a constant at some time
tc < H−1 after the production event. In the appendix §A.1 we describe a mechanism by which such
a transition may arise. In a production event, the homogeneous rolling scalar field loses energy into χ
particles, and also into scalar radiation (reducing φ̇ in the process).

Case (i): m(φ) = φ ≈ φ̇t
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Case (i) is interesting, as it is in some sense simplest to consider the φ2χ2 model without assuming
a more complicated functional form for the χ mass. We will consider the GW emission arising from the
sudden appearance of the produced particles and the associated scalar radiation modes.

The stress-energy tensor for the particles, obtained by varying (13) with respect to the metric takes
the form

Tµνpart =
∑
n

δ(3)(~x− ~xn(t))
pµnpνn
p0
n

θ(t) (14)

where

p0 =
gφ(t, ~x)√

1− ~̇x2
~p =

gφ(t, ~x)~̇x√
1− ~̇x2

(15)

The spatial components are of the form

T ij ∼ pipj

p0
δ(~x− ~xn(t))θ(t) ∼ pipj

gφ̇t
δ(~x− ~xn(t))θ(t) (16)

The additional t-dependence in the denominator in (16) translates into an additional factor of ω in its
Fourier transform relative to the case studied in [12] which had a constant mass for the particles. The
resulting gravitational wave emission is of the order

dEGW
dω

∼
(
E

MP

)2 (ω
E

)2
(17)

(This scales like the result [12] (11), times the extra factor of (ω/E)2 just noted.)
From this we obtain at frequencies of order H that ρGW ∼ HnχH

2/M2
P where nχ is the number

density of produced particles and hence at frequencies ω ∼ H we have

h2 ∼ ρGW
ρtotal

∼ f H3

EM2
P

(18)

where we defined f ≡ Enχ/ρtotal (with ρtotal ∼ H2M2
P ) to be the fraction of the total energy density

that is contained in the produced particles. As we explain more in detail in the next subsection, there is
only a factor of nχ here because all of the production events are independent. Turning this around, we
see that (

H

MP

)2

∼ h2

(
E

fH

)
≥ 10−12 ×

(
E

fH

)
(19)

where in the last step we put in the condition that h be detectible. The second factor here is > 1,
so the inflationary scale H would have to be larger than 10−6MP in order for these particle sources to
produce a detectible tensor signal. But this would require a higher scale of inflation than gives a standard
contribution (1) to tensor modes of order h ∼ 10−6.

However, there is also stress-energy in the inflaton field φ, which can source GWs. We can estimate
the scalar radiation as in the appendix, focusing on the upper limit of the integral in (98). This yields
an energy density of order

ρδφ ∼
√
φ̇NχH

3 (20)
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(at coupling g ∼ 1), with the δφ particles carrying typical energies of order Eδφ ∼
√
φ̇. (The latter

follows because we choose the upper range of k in (101), since we get the largest GW signal and the
largest energy denstiy from the largest energy δφ particles.)

From these δφ particles, we obtain GW Bremsstrahlung which is a factor of E2
δφ/H

2 times (18):

h2 ∼ fδφ
HEδφ
M2
P

(21)

Using that , with now Eδφ ∼
√
φ̇ ∼ ε1/4(HMP )1/2 we get:

H

MP
∼ h

 h1/3

f
2/3
δφ ε1/6

 ∼ h( h1/3

f2/3ε1/6

)
× ε1/6

(
MP

H

)1/3

(22)

Here fδφ is the fraction of the total energy density which is carried by the δφ particles. This fraction
is less than f , the fraction carried by the χ particles, since those are ramping up in mass throughout a

Hubble time, ultimately reaching energy Eχ ∼ φ̇/H. At g ∼ 1 we have from (20) that fδφ ∼ Hf/

√
φ̇.

This was used in the last step of (22). Since H/MP ≤ h, and since we require f < ε � 1, we see from
this that the signal is still too weak to be competitive in this example.

Although this example with a simple φ2χ2 coupling does not work at the level of production by
itself, we will find below in §3.2.3 that subsequent decays can produce a very competitive signal. Before
considering decays, however, let us consider a second model for m(φ).

Case (ii): m→ const

As our next example, let us consider case (ii) in which the mass becomes constant after a time
tc � H−1, and does not interact further in a Hubble time. In this case, for gravitational waves of
frequency ω ∼ H, we can work directly with the results (11) from the time-independent analysis of [12].
This gives

h2 ∼ f EH
M2
P

. (23)

As above, we are interested in comparing the amplitude of gravitational waves produced by Bremsstrahlung
to those produced by ordinary inflation (1), and so let us rewrite this as

H

MP
∼ h

(
hMP

fE

)
. (24)

This means that for a given h the value of H/MP needed to produce it is a factor of

hMP

fE
. (25)

smaller than the standard value. Since E < MP and f < 1 we conclude it is only possible to reduce the
Hubble parameter by an amount less than h which at the limit of detectability is roughly 10−6. Thus
we have six orders of magnitude of potential gain. To obtain the full six orders requires having particles
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of energy close to MP having energy density comparable to that in the inflaton, but simply to obtain a
competitive signal requires

E

MP
≥ h

f
(26)

The energy in our particles is of order their mass E ∼ M . The asymptotic value of their mass depends
on tc:

M ∼ gφ̇tc, (27)

or equivalently
E2 ∼M2 ∼ εg2M2

P (Htc)
2 (28)

Next we will study the consistency of the requirement (26) with the constraint imposed by the need
to limit the scalar power emitted from the production event. The extent of the coupling to the scalar is
determined by ∂φm(φ). Once the mass becomes constant, there is no longer any coupling to the scalar,
but during the period between t = 0 and t = tc in which the mass grows linearly with φ (and with
t), there is a constant coupling to the scalar and we wish to estimate the scalar power from this whole
process.

For frequencies ω � 1/tc, there is destructive interference between the production event at t = 0 and
the event at t = tc when the coupling jumps to zero. This cancelation is exact at ω = 0, but for nonzero
ω there is a residual contribution that arises from expanding a factor of eiωt that arises in the Fourier
expansion of the radiation. In the radiated power, this introduces a suppression factor of (ωtc)

2 relative
to the case analyzed in (107) where there was no time tc at which the scalars decouple. Because of the
redshifting of modes within the Hubble patch before they freeze out, we get the largest contribution by
taking modes of ω ∼ H and paying this (Htc)

2 suppression price. The scalar fluctuations are of order:

ζ2 ∼ g2f

ε

H

E
(Htc)

2. (29)

To assess the viability of the scenario we compute the scalar to tensor ratio,

ζ2

h2
∼ g2f

ε

H

E
(Htc)

2 ×
M2
P

fEH
∼ 1

ε2
. (30)

Thus this scenario is viable as long as ε ∼ 10−1.
Since the new source for ζ fluctuations dominates, we need to ensure that the resulting scalar fluctua-

tion satisfies the current bound on non-Gaussianities, at the level of 10−3. The amount of non-Gaussianity
scales as 1/

√
Nφ, with Nφ representing the number of δφ fluctuations contained in an Hubble patch, and

therefore we have the constraint Nφ & 106. The constraint on the power spectrum gives an upper bound
to the value of Nφ, and we need to check that there is an open window. We have

h2

ε2
∼ ζ2 ∼ Nφ

H4

φ̇2
⇒ Nφ ∼

g2f2(Htc)
2

h2
, (31)

after using φ̇2 ∼ εH2M2
P and (24) and (28) to substitute for (H/MP ). We see that for extreme values

Htc ∼ 1, g ∼ 1, f ∼ 10−1 and h ∼ 10−6, Nφ can be as large as 1010, which gives quite a large
window where the non-Gaussianity of the scalar fluctuations is compatible with observations, though
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this allowed window shrinks if we move ourselves away from the most extreme region of parameter space.
Interesting there is also a non negligible region of parameter space where the resulting non-Gaussian
signal is detectable, but not yet ruled out. If all these constraints are satisfied, we can obtain a dominant
tensor contribution from our sources, with H/MP low enough to suppress the usual contribution (1).

Finally, let us check that the scattering rate Γ is indeed ≤ H, since otherwise we would need to take
into account additional interactions, and that tc . H−1, since otherwise we would revert to case (i) above
and pay an additional price in ω/E factors. The latter condition is (setting g ∼ 1 for simplicity)

E � φ̇

H
(32)

Regarding the scattering rate Γ, we have

Γ ∼ σnpv ∼
1

E2
× φ̇3/2 ×

√
φ̇

E
∼ φ̇2

E3
(33)

The last factor v, the particle velocity, is p/
√
p2 +m(t)2 ∼ p/m(t), where p ∼

√
φ̇ is the momentum of

the created particles. Now putting in (32) we see that

Γ� H × H2

φ̇
. (34)

Since the latter factor is � 1 in general in our model, this is consistent with a sufficiently slow decay
rate, Γ ≤ H.

3.2.2 Decay of massive particles into massless ones

In this section, we consider gravitational waves produced during decays of massive particles χ present
during inflation. As we have discussed, such particles may be produced via a coupling to the rolling
inflaton such as g2φ2χ2; in some circumstances [9], this process repeats periodically during inflation.
Here we assume that χ couples to other light degrees of freedom Y , such that they can decay within
a Hubble timescale. Similarly to what happens for the case of electromagnetic radiation in β-decay,
gravitational Bremsstrahlung radiation is produced not only in the case of scattering of particles, but
also in a decay process.

As we described above in §3.1, the amount of gravitational radiation per unit solid angle per unit
frequency is given by [12](

dE

dωdΩ

)
=

ω2

2π2M2
P

∑
Di,Dj

e
ikµ(xµDi

−xµDj )
F [{PDi}, {PDj}, k] , (35)

where

F [{PN}, {PM}, k] =
∑
N,M

ηNηM
PN · k PM · k

[(PN · PM )2 − 1

2
m2
Nm

2
M ] . (36)

Here Di labels the collisions, xµDi the location in space time where each collision/decay occurs, and {PDi}
is the set of momenta involved is each collision. η is −1 for incoming particles and 1 for outgoing ones.
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For a single decay of one massive particle with mass M into two massless ones the above formula
gives: (

dE

dωdΩ

)
=

1

4π2

M2

M2
P

. (37)

Here (E/Mpl)
2 is the effective dimensionless gravitational coupling squared, analogous to α in electro-

magnetic Bremsstrahlung.
For an arbitrary number of decays, the above formula becomes very complicated: events at different

locations interfere if their relative distance is smaller than the frequency of the emitted wave, and the
factor (36) involves momenta that belong to different events. In the present work, our main purpose
is not to perform a precise calculation of the emitted gravitational radiation in one particular scenario.
Most humbly we simply wish to estimate the order of magnitude of the effect in reasonable examples, in
order to determine whether or not there is a direct relation between inflationary tensor modes and the
height of the inflaton potential.

Tensor modes at wavelengths much shorter than H−1 are highly suppressed by redshift (6). In
each scattering, decay, or production event the energy produced in gravitational waves is frequency-
independent for wavelengths longer than the timescale of the process. For these reasons, the leading
contribution comes from those gravitational waves that are produced directly with Hubble frequency.
Focusing on these wavelengths allows us to neglect the modulation due to the different location of the
events, and consider them all at the same point in space.

We must take into account possible destructive interference among the various decays, which result
from the sum over momenta at different events in (36). The energy emitted in gravitational radiation goes
as the square of the stress-energy tensor. So if there are Npart particles decaying in an Hubble patch, then
naively the amount of gravitational radiation should go as N2

part. Clearly this is an overestimate. If these
particles are randomly distributed in an Hubble patch, their decay products will tend to be spherically
distributed in the limit in which Npart is very large, and this will lead to a suppression of the emission
of gravitational radiation. We can determine the net effect of the increased number of particles in the
following way. The quadrupole-squared of the random distribution of particles will have a typical size
proportional to Npart instead of to N2

part. This is very much like the variance of N independent random
variables, which goes as N and not as N2, and also much like the typical realization of a random walk in
quadrupole space, where we sum randomly all the quadrupoles associated to each event. Another way to
think about this is to notice that the momentum sum in (36) assuming the two set of momenta belong
to two different decays is not zero. However, it becomes zero if one averages over the outgoing direction
of the momenta of the second decay. Now, in the case in which there are many decays happening at
the same point, then the sum in (36) where the second momenta are taken from the various collisions
effectively corresponds to averaging over the outgoing direction of the momenta of the second decay. In
this case therefore the two sums over decays collapse to one, leaving us with a single factor of Npart.

Altogether, if there are Npart particles decaying within an Hubble patch, with Npart large, the amount
of produced gravitational radiation goes as(

dE

dωdΩ

)
∼ 1

4π2

M2

M2
P

× Npart . (38)
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This leads to the following amplitude in gravitational waves

h2 ∼ 1

ρtotal

dρgw
d lnω

∣∣∣∣
ω∼H

∼ H

ρtotal

M2npart

M2
P

, (39)

where npart is the number density of the decaying particles before they decay and where we have neglected
numerical factors. If we call f the fraction of the energy density carried by the particles prior to their
decay, we can re-write the above expression in a more useful way

h2 ∼ fHM

M2
P

. (40)

Let us see how big this number can be.
Since the decaying particles do not redshift as approximately a cosmological constant, we need to

have f . ε, with ε being the slow roll parameter, a number much smaller than one (but not necessarily
tiny, let us say not larger than 10−1). Notice that for standard slow-roll inflation, saturating this bound
means that a fraction of order one of all the kinetic energy of the inflaton is dissipated in the creation
of particles. In more general models this does not need to be the case, but this is an interesting regime
to consider since it provides a mechanism to dissipate excessive kinetic energy on a steep potential, as in
trapped inflation [9].

The mass M of the decaying particle can be bound to be at most of order Mpl. We therefore can
write the above formula as

h2 ∼ ε H
MP
· M
MP
· f
ε
. ε

H

MP
. (41)

Alternatively, we can express the necessary value of H/MP in order to have detectable signal:

H

MP
∼ h

(
hMP

fM

)
, (42)

which implies that the value of H/MP can be reduced from the standard case by a factor of order
hMP /(fM). This is quite a big improvement with respect to the ordinary case H/MP ∼ h. For example
if we take f of order 10−1 this means that we could detect gravitational waves for values of H/MP as low
as 10−11. This represents five orders of magnitude improvement with respect to the ordinary case (and
ten orders of magnitude if you count in terms of the more physical parameter H2).

With a large window of opportunity for competitive GWs, let us consider more specific examples,
relaxing some of the assumptions just made. For example, rather than taking M ∼MP , we can consider
the mass which is built up after the specific production mechanism in the appendix, arising from a
coupling of the form g2φ2χ2, and check how massive the χ particles become before decaying. If we call
∆t the time since the particle was created we can write:

M ∼ gφ̇∆t ∼ g
√
εMP (H∆t). (43)

We can take (H∆t) ∼ 1 and get:
H

MP
∼ h

(
h

gfε1/2

)
. (44)
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If we consider f ∼ ε we obtain that H/MP ∼ 10−12/gε3/2. If ε ∼ 10−1 and g ∼ 1, we obtain H/MP ∼
3 × 10−10, so the usual mechanism for tensor modes is suppressed by a large factor relative to the new
sources in this example.

We can be a bit more general and relax the (H∆t) ∼ 1 assumption. We can assume that there are
many production events in a Hubble time, at a rate dNhits/dt and that in each of these production events
nc is the number density of created χ particles and that the decay rate of the particles is Γd. The energy
density in the χ particles is given by:

ρχ =

∫
d∆t nc

dNhits

dt
e−(3H+Γd)∆tM ∼ nc

dNhits

dt
M̃ t̃. (45)

with M̃ ∼ g
√
εMP (Ht̃) and t̃ ∼ min[1/H, 1/Γd]. We have also replaced the discrete sum over production

events by an integral. We conclude that the typical mass of the χ particles is determined by the shortest
between a Hubble time and the lifetime because even if the lifetime is much longer than Hubble the
abundance of very old particles dilutes exponentially. Only production events in the last t̃ contribute
particles at any given moment because particles from previous events have either decayed or diluted.

We need to demand that the energy in the χ particles and its decay products (Y ) be a small fraction
of the vacuum energy driving the expansion. We must take into consideration that the energy in the
decay products of χ does not have time to redshift during a Hubble time. This is especially relevant
when Γd >> H. We have

ρχ + ρY ∼ fH2M2
P ∼ nc

dNhits

dt
M̃

1

H
, (46)

which is just an energy M̃ for each of the particles created in a Hubble time wether they have decayed
or not.

The amplitude of the tensor modes can be estimated by adding the contributions from all the χ
decays in a Hubble time. For simplicity we will approximate the density of χ particles as constant during
a Hubble time, given by ρχ in equation (45) divided by M̃ . We then have:

h2 ∼ fHM̃

M2
P

×
{

Γd
H , if Γd < H
1 , if Γd > H ,

(47)

where the factor Γd/H accounts for all the decays in a Hubble time. Thus for a fixed f the tensor
amplitude is maximized when Γd ∼ H. For Γd << H there are too few decays in a Hubble time to
produce a lot of gravity waves and if Γd >> H the mass of the χ particles at the time of their decay is
not large. We can turn this into an estimate for the Hubble scale for a given h:

H

MP
∼ h

(
h

gfε1/2

)
×


(
H
Γd

)
, if Γd < H ;(

Γd
H

)
, if Γd > H .

(48)

This is the same result we got when assuming H∆t ∼ 1 but enhanced by a factor H/Γd or Γd/H
depending respectively on wether H is larger or smaller than Γd.

As before we need to make sure that the scalar power is below or at the same level as observed. The
estimate is very similar to the example of gravity waves created at production which we analyzed before,
in particular the case when the scalar coupling turned off. Again we could imagine than now the scalar
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coupling turns off prior to the decay, at a time tc. If this is so the mass of a χ particle does not continue
to grow after tc and thus tc provides an upper limit for t̃, t̃ → min[t̃, tc]. As before the scalar power is
suppressed by a factor (Htc)

2. For the purpose of this suppression, the case when the scalar coupling
never turns off corresponds to tc ∼ t̃ as the decay of the χ into particles with no scalar charge effectively
acts in the same way as the shutting off of the scalar coupling and the Hubble time also provides a bound
to the possible level of cancelations. Thus we always have tc ∼ t̃.

We can now compute the ratio between scalar and tensor power,

ζ2

h2
∼ g2

(M̃/MP )2
× (Htc)

2 ×
H2M2

P

φ̇2
∼ 1

ε2
, (49)

where the first term accounts for the ratio of couplings, the second for the suppression of Bremsstrahlung
in the scalar case and the third comes from the conversion between φ and ζ fluctuations and the normal-
ization of the gravity wave energy density. Thus the scenario is viable as long as ε ∼ 10−1. Following the
same steps that led to eq. (31), it is straightforward to check that the scalar power spectrum can easily
satisfy the constraint on non-Gaussianity.

Finally we need to check wether it is possible to neglect the annihilation of χ particles into δφ
particles. The rate for this reaction goes like Γ ∼ σnv ∼ σNpartH

3v (where v is their velocity and σ their
annihilation cross section). The cross section for 2→ 2 scattering from the interaction term g2φ2χ2 goes
like

σ ' g4

(8π)2

1

E2
χ

.
g4

(8π)2

1

φ̇
(50)

where in the last step we used that the energy Eχ carried by the massive χ particles is ≥
√
φ̇ (it goes

like M �
√
φ̇ at late times). Multiplying this through by NpartH

3v, and including a factor Nhits for the
number of production events during a Hubble time, we get

Γ . H

(
g3

(8π)2
Nhits

)
(51)

This is less than H, and hence completely negligible, as long as Nhits < (8π)2/g3, a condition which is
easy to satisfy.

3.2.3 Creation of string pairs and their decay into rings of particles

Next, let us consider a microscopic example leading to decay-induced Bremsstrahlung gravitational radi-
ation. In this example, the rolling inflaton first produces pairs of strings, which decay into smaller string
loops and then into particles. Consider a pair of long strings of length L produced via a time-dependent
string tension, T ≈ Ṫ t. In the appendix below, we discuss the production of pairs of these strings,
finding that the two members of the pair are created close to each other and with opposite orientation.
These can quickly (on a timescale of Ṫ−1/3 � H−1) fall apart into LṪ 1/3 smaller string loops.5 (Here we
conservatively assume there are no small couplings in the system that suppress the interconnection of the
strings; this is a feature of the “tensionless string theories” which arise on branes in the relevant string

5We thank J. Polchinski for this point.
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constructions.) The total angular momentum of the original pair of long strings is zero, and the small
loops into which it breaks do not have any preferred orientation or direction of spin; we will therefore
treat these as random in our estimates. These smaller loops can then decay, in particular into scalar
modes (and other light particles such as gravitons), with a random distribution of momentum directions.
There is no quantum number protecting them from decay, and no small coupling which suppresses their
decay rate.

The original pair of long strings is not spherically symmetric, and supports a quadrupole. However,
given the breakup into smaller loops and decay into light particles, for the purpose of long-wavelength
emission we may describe the system as an instantaneous production of the final decay products. The
final decay products, for example δφ perturbations, do not have time-dependent masses, and so the
analysis of [12] goes through unmodified.

Including this, in the same way as in §3.2.2 we obtain

dE

dωdΩ
∼ Ṫ 2/3

M2
P

NloopsNrings (52)

where Nrings is the number of produced pairs of long strings (which then decay into rings of particles)
Hence, using Nloops ∼ Ṫ 1/3/H,

ρGW |ω∼H ∼ H ×H3 × Ṫ 2/3

M2
P

Ṫ 1/3

H
×Nrings ∼ H4Nrings

Ṫ

HM2
P

(53)

leading to

h2 ∼ ρGW
ρTot

|ω∼H ∼
(
H

MP

)2

Nrings

(
Ṫ

HM2
P

)
(54)

In order to assess the strength of this effect, we need a model which determines Ṫ . In the scenario
[8], Ṫ ∼ ηMP φ̇ with η < 1 a coupling. Since φ̇/HMP ∼

√
ε� 1, the GW emission from a single ring of

loops is subdominant to the contribution from tensor quantum fluctuations, by a factor of η
√
ε� 1. To

get a competitive or better signal, we require

Nrings >
1

η
√
ε

(55)

We can bound Nrings above by imposing that the total energy NloopsNringsṪ
1/3H3 be less than εH2M2

P

withNrings > HM2
P /Ṫ so as to produce a viable signal. This leads altogether to the condition Ṫ 1/3 > H/ε,

which is easy to satisfy.
Finally, given the order one coupling of our strings to scalar perturbations δφ, we must check if that

would produce a contribution to the scalar power spectrum which is too large. We expect that the energy
goes into scalars with wavelength of order Ṫ−1/3 to first approximation. In particular, decay into a large
number of low-frequency modes is suppressed. The system is weakly coupled for energies much less than
the string tension, which at time Ṫ−1/3 is of order Ṫ 2/3. Emission into many δφ particles of low frequency
ω ∼ Ṫ 1/3/n is suppressed by a factor (ω/Ṫ 1/3)n ∝ n−n.

Given that the strings decay preferentially into δφ particles of frequency ∼ Ṫ 1/3, the resulting contri-
bution to their energy density at freezeout is ∆ρδφ ∼ εH2M2

P (H/Ṫ 1/3)4 (where the last factor accounts
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for the redshifting before freezeout). The ratio of this to the usual source of scalar perturbations (for
which ρδφ ∼ H4) is εH2M2

P /Ṫ
4/3. Evaluating this for Ṫ 1/3 ∼ ξH/ε (with ξ ≥ 1), we obtain a ratio

∆ρδφ/ρδφ ∼ ξ−4ε5M2
P /H

2. For ε ∼ 10−2, this is easily subdominant for modest values of ξ.
Finally, let us consider the possibility of Bremsstrahlung radiation into scalar modes. This is absent

here: given the decay of the small loops into light particles such as δφ perturbations, the decay products
do not couple to φ and hence there is no appreciable scalar Bremsstrahlung.

3.2.4 Bremsstrahlung from Scattering

The final case we will study is the Bremsstrahlung radiation produced is when particles accelerate due
to collisions. In a process where an energy E is transferred, Bremsstrahlung at low frequencies (ω � E)
emits an equal amount of energy per unit frequency

dEg
dω
≈
(
E

MP

)2

. (56)

for a single scattering event. However, in a gas of particles there will be multiple interactions. At
sufficiently low frequency, the emission might be suppressed if particles interact before they can emit a
graviton. We will parameterize this as:

dEg
dω
≈
(
E

MP

)2
{

1 , if ω > γ2 Γint ;(
ω

γ2 Γint

)p
, otherwise .

(57)

Here Γint is the rate of interaction in the frame in which our gas of particles overall has no net momentum
and γ is the boost factors of the scattering particles.

These suppression factors [19] can be intuitively understood as the following.6 Consider a process
where a particle interacts twice, hitting two targets which are a distance ` apart (in our cosmological
frame). The rate of interaction is Γ ∼ v‖/`, where v‖ = v cos θ is the component of the particle’s velocity
which is along the direction from the first to the second scattering event (in terms of an average scattering
angle θ). The first interaction produces some GWs by Bremsstrahlung, and would give (56) if that were
all that happened. In the second interaction, the particle emits by Bremsstrahlung a second graviton.
This new wavefront interferes with the one emitted in the first interaction, effectively creating a higher
frequency graviton. The frequency of the higher frequency graviton is determined by how far the first
emitted wavefront gets before the particle scatters again. From the wavefront geometry we have

ω−1 = `/v‖ − `/c ' l/γ2v‖ , (58)

where in the second passage we have approximated 1 − v2
‖/c

2 ∼ 1 − v2/c2 = 1/γ2 which is valid for not

too large deviation angles and v < c. We also have Γ = v cos θ/`, so we can rewrite this in terms of Γ
instead of `. This gives

ω ∼ Γγ2 . (59)

For massless particles, v = c and it is necessary to retain the θ dependence in (58), giving ω ∼ Γcos(θ)/(1−
cos(θ)).

6We thank M. Peskin for a useful discussion of this issue.
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For the moment we take the factor of p as a free parameter, and will analyze the GW signal in various
ranges of p. We will comment later on its possible values in particular cases which have been analyzed
in the literature. It should also be stressed, as we will highlight next, that the threshold frequency γ2Γ
at which the suppression starts, is only the first of a series of thresholds in which different physical
mechanisms suppressing Bremsstrahlung become important and the value of p changes accordingly. We
will see an example of this next. We take our initial threshold to be γ2Γ, which is the one that occurs
when suppression is due to multiple scattering, as a guidance which is particular relevant for our setup.
Generalization to different setups should be straightforward.

Let us assume that there is a number density of particles np each with typical energy E interacting
with a rate Γint. Since during inflation we expect the density of gravitational waves to be stationary, we
then have:

dρgw
dω

∼ np
Γint
H

dEg
dω

. (60)

Even without assumption of stationarity, because of redshift, we are interested only in gravitons produced
in about an Hubble time. This leads to the same factor of 1/H above. By using np = ρp/E, and redshifting
the gravitational waves down to the Hubble scale where they freeze out, we obtain:

h2 ∼ 1

ρtotal

(
dρgw
d lnω

)
ω∼H

∼ f × Γint
H
× ω

E
× dEg

dω
×
(
H

ω

)4

, (61)

where we defined f = ρp/ρtotal.
We would like to understand if this is & 10−12 in a reasonable window of parameters, and whether

this occurs in situations where the scale of inflation is too low to produce detectable tensor modes by the
usual mechanism (1).

Thermal equilibrium Since we are interested in gravitons produced in about an Hubble time, we
need to have Γint to be at least as large as H. Since Γint is the numerator, let us start with a large
Γint � H. This implies we are in thermal equilibrium. We will include the possibility of a nontrivial
species number N∗ and consider relativistic particles, giving

ρp ∼ N∗T 4 , E ∼ T , Γint ∼ N∗α2T , (62)

where α is the strength of the interaction. We can use this to solve for T :

T

MP
∼
(
f

N∗

)1/4( H

MP

)1/2

. (63)

The amount of gravity waves produced in this case becomes

h2 ∼ f H3T

M2
Pγ

6Γ2
int

(
ω

γ2 Γint

)p−3

. (64)

We will have to take into consideration the suppression of the Bremsstrahlung emission. Depending on
the strength of the suppression, the value of the index p, it will be advantageous to consider waves emitted
at either ω ∼ H or ω ∼ γ2 Γint. We consider each case in turn.
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Index p ≥ 3: In this case the suppression is strong enough that one is better off with GW with
ω ∼ γ2 Γint. We then get:

h2 ∼ f H3T

Γ2
intM

2
Pγ

6
. (65)

Note that Γint is in the denominator so that we are better off having the smallest possible rate compatible
with thermal equilibrium Γint ∼ H. Also, in order to minimize the redshift, it will be convenient to take
γ ∼ 1. By using (63), we can rewrite (65) in terms of H/MP to obtain:(

H

MP

)
∼ h×

[(
h1/3γ4N

1/6
∗

f5/6

)(
Γint
H

)4/3
]
. (66)

The factor in parenthesis on the right represent how much we can reduce the value of H/MP with
respect to the standard value H/MP ∼ h. Reducing Γint/H to order one and by taking the extreme case
N∗ ∼ f ∼ 1 and h ∼ 10−6, we see that there are at most two orders of magnitude to be gained and
the window closes as the interaction rate increases above H. More realistically f should be smaller than
10−1, decreasing the possible improvement to about one order of magnitude.

Index 1 ≤ p ≤ 3: In this case the suppression is sufficiently weak that one is better off with GW
with ω ∼ H. We have

h2 ∼ f ×
Γ1−p
int H

pT

γ2pM2
P

. (67)

Note that here with 1 ≤ p ≤ 3, γ and Γint are in the denominator, so one better off with the lowest
possible Γint ∼ H consistent with thermal equilibrium and with γ ∼ 1. We obtain:(

H

MP

)
∼ h

(
h1/3N

1/6
∗

f5/6

)(
Γint
H

)2(p−1)/3

γ4p/3 , (68)

which, after saturating the limit Γint ∼ H and minimizing by taking γ ∼ 1, reduces to what we obtained
the former case p > 3, leading to at most two orders of magnitude in possible gain, even in the extreme
case.

Index 0 ≤ p ≤ 1: In this case the suppression is not strong and again one is better off with GW
with ω ∼ H, but now Γint is in the numerator so we are better off with the largest possible Γint. Note
that because

h2 ∼ f ×
Γ1−p
int H

pT

γ2pM2
P

(69)

in the limit p→ 0 there is a lot to be gained as the result becomes independent of H. However, we should
consider the constraints coming from thermal equilibrium, as increasing Γint tends to increase T and this
in turns tends to increase either f or H, both of which should be small. In fact, by using eq. (62) for
Γint and then (63) for T , we obtain the improvement for generic p < 1:

H

MP
∼ h

(
h1− p

2 γ2p

f
3
2
− p

4N
1
2
− 3

4
p

∗ α2(1−p)

) 2
2+p

. (70)

18



This expression is minimized for f ∼ α ∼ γ ∼ 1. The maximum possible improvement would be given
by p→ 0, leading to

H

MP
∼ h

(
h

N
1/2
∗

)
, (71)

which is about 6-7 orders of magnitude for reasonable number of species. However, p → 0 would mean
that destructive interference is absent, which is not plausible. Determining the value of p for a given
physical system (if the power law parameterization (57) applies) is quite complicated.

In the world of collider physics, detailed studies of the Bremsstrahlung suppression have been per-
formed in the case of a relativistic particle impacting on a fixed target, as this is the case of relevance in
particle detectors and in fixed target experiments. Here we follow the recent treatment of [19], where it is
found that a value of p = 1/2 can be obtained in the case of ultrarelativistic scattering for frequencies in
the interval γ2 Γint & ω & Γint/γ

2. For lower frequencies ω . Γint/γ
2, the suppression factor p becomes

equal to p = 2 7. Notice that we have a non-vanishing interval of frequencies where the suppression is
controlled by p = 1/2 only in the ultrarelativistic limit γ � 1, so we cannot take γ ∼ 1 in (70), which
would increase the possible gain. In this case (p=1/2), we have

H

MP
∼ h

(
h3/5γ4/5

f11/10N
1/10
∗ α4/5

)
. (72)

If we impose the constraint Γ & H & Γ/γ2, then the gravitational modes ω ∼ H which we are considering
have frequency large enough to avoid the suppression p = 2, which kicks in at ω ∼ Γ/γ2, while still
avoiding any suppression from redshifting. This contraint implies

γ4/5 & N
3/10
∗ f1/10α4/5

(
MP

H

)1/5

& 1 , (73)

By plugging the above expression into (72) and solving again for H/MP , we find

H

MP
& h

(
h1/3N

1/6
∗

f5/6

)
, (74)

which implies that even in this case there are at most two orders of magnitude to be gained. Plugging
back on the constraint on γ, we obtain

γ &

(
N∗f α

3

h

)1/3

& 1 , (75)

which can be realized achieving high boost γ & 102 with reasonable number of species.

7This is due to the fact that the small-angle approximation for the particle trajectory is no longer valid for
such low frequency gravitons. We should point out that the minimum frequency at which we find Bremsstrahlung
emission to be suppressed with a p = 1/2, the so-called LPM regime, is different from the value quoted in [19].
But our crossover scale, determined by the geometry of the scattering events described above, agrees with the one
quoted in the rest of the literature [20].
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It is not hard to imagine setups in which during the inflationary epoch there might persist the same
conditions as in colliders, at least in principle. In particular, we need particles to interact in a highly
boosted regime so that the scattering angle is small, since in the opposite regime the work [19] argues
that the suppression factor turns into p = 2. As a proof of principle, let us take for example the case in
which the inflaton produces two kind of species of particles due to its motion: one heavy non-relativistic
scalar particle H and one light relativistic scalar particle L. If the only interaction is a quartic vertex
HHLL, then we see that these light particle will thermalize by scattering with the bath of H particles,
each interaction happening in the same kinematic regime as in cases studied for the particle colliders. LL
elastic scattering is suppressed as it happens only due to the mediation of a loop of H particles, which
can be thought to be very heavy with respect to the energy of the L particles. The Bremsstrahlung
radiation produced in the LH interactions would then be expected to have a suppression factor p = 1/2,
based on the results of [19].

Particles with a few additional interactions: So far in this section we have assumed that the
particles were in thermal equilibrium, though sometimes we were led to take Γint ∼ H. In this regime,
it is not clear if the particles should obey a thermal distribution, and therefore, in order to explore the
range of possibilities, it is interesting to consider the separate regime where the particle interact with a
rate of order Hubble, but are not in thermal equilibrium.

Consider the case when after production the particles interact a few more times in a Hubble time.
This will allow us to solve for the energy using that:

H ∼ Γint = np〈σv〉 ∼ np
α2

E2
, (76)

with α strength of the interaction. This together with npE ∼ fρtotal ∼ fH2M2
P results in an expression

for the typical energy:

E ∼MP

(
fα2H

MP

)1/3

, (77)

which leads to

h2 ∼ f4/3α2/3

γ6

(
H

MP

)4/3( ω

Hγ2

)p−3

. (78)

Depending on the value of p, we are better off with emitting gravity waves at frequencies of order
γ2Γ ∼ γ2H (p > 3) or H (p ≤ 3). In either case we obtain:(

H

MP

)
∼ h

(
h1/2γq

fα1/2

)
, (79)

where q = 9/2 for p > 3 or q = 3p/2 for p ≤ 3. We can reduce H at most by three orders of magnitude.

Away from equilibrium: At then end of this section, we are naturally led to consider the case in
which Γint . H and thus we are not near thermal equilibrium. The particles we consider are a result
of the decay of the inflaton so they go through at least one interaction, when they are created. The
Bremsstrahlung from their creation process was analyzed in detail above in §3.2.1, and, as we saw, we
obtained a larger window of GWs.
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Scalar perturbations As in the previous examples, we must ensure that the scalar perturbations
are consistent with current data and constraints. In the present case of production of gravitational waves
through scattering, the connection to the scalar fluctuations is model dependent. We have analyzed the
Bremsstrahlung radiation in this section assuming that the scattering particles do not have any coupling
to the inflation, as occurs for appropriate mass functions. This reduces the question to whether the
scalar modes from the production process are too great, in a case where the mass of the created particles
becomes constant after production. As discussed above (29), we have

ζ2 ∼ g2f

ε

H

E
(Htc)

2 (80)

Now tc is related to the mass M ultimately attained by the created particles:

Htc ∼
HM

gφ̇
∼ 1

g
√
ε

M

Mp
(81)

In the examples for which the scattering particles have γ � 1, the mass is much smaller than the energy
E of the particles, so Htc can be as small as we wish, suppressing ζ2.

In the examples with γ ∼ 1, the mass M must be of order the energy scale E of our sources. This
leads to

ζ2 ∼ g2f

ε3/2

(
H

Mp

)
(Htc) ∼

gf

ε2
HM

M2
p

(82)

which needs to be ≤ 10−10. In the examples in thermal equilibrium above, using (63) we find

ζ2 ∼ gf5/4

N
1/4
∗ ε2

(
H

Mp

)3/2

. 10−10 (83)

With an order of magnitude gain in our GW signal, H/Mp ∼ 10−7 and this marginally fits. Similar
comments apply to the case of particles with a few additional interactions.

4 Discussion

We have seen that a detection of tensor modes, even approximately scale-invariant tensor modes, from
inflation does not automatically constitute a measurement of the inflationary potential energy. In this
section, we discuss possibilities for distinguishing tensor modes from sources of the sort we have considered
in this work from the standard source (1), in the event of a detection of primordial B modes.

4.1 Power spectrum

Our sources may be approximately scale invariant (e.g. in [8, 9]) with the inflaton coupling to new
sectors of light degrees of freedom which are closely spaced along its trajectory. In that case, their power
spectrum would be similar to that expected from (1). However, if the inflaton couples to light fields
more sporadically, one could obtain a non-scale-invariant signal, which would distinguish the sources
from (1). In the scale-invariant case, it would be intersesting to consider additional methods for breaking
the degeneracy.
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One approach is to consider non-Gaussianity. In the next subsection, we will discuss non-Gaussianity
of the tensor spectrum. This was studied recently in [21] for vacuum fluctuations, where strong constraints
on the shape were found. In the presence of a source sector of the kind we have here we expect a wider
range of possible shapes for the three point function, though we will only estimate their magnitude here.
It is worth noting that scalar non-Gaussianity arises in some of our examples: if the energy in produced
sources is large (of order εH2M2

P ), and the mechanism [9] applies, then non-Gaussianity among the scalar
modes is also predicted.

4.2 A non-Gaussian window?

In this section we have seen that there are several physical mechanism that could produce a signal in
gravity waves that would be detectable and larger than the standard one due to the vacuum fluctuations.
This means that we cannot derive the energy scale of inflation from observation of a scale invariant
spectrum of gravity waves. It is worth pointing out that the scale invariance of gravity waves would still
teach us about the time-translation invariance of the background when these modes were produced, a
pristine signature of the quasi de-Sitter background which model-independently characterizes inflation
[14]. It is however interesting to ask if it will be possible to distinguish between gravity waves as due
to our mechanisms (in the scale invariant case) and the standard ones due to vacuum fluctuations. A
possible distinction might arise from observation of the statistical properties of the gravity waves. Though
it would be interesting to make a comprehensive study of this phenomenon using the Effective Field
Theory of Inflation [14], it is hard to imagine that vacuum fluctuations of gravitons during inflation can
be very non-Gaussian. This is because the energy scale controlling the free Lagrangian for the gravitons
is MP , and this is a very high energy scale compared to the inflationary scale and to the usual canonical
normalization of scalar fluctuations Ḣ1/2MP /cs. Instead the new mechanisms of production that we have
been describing in this section have nothing to do with vacuum fluctuations. Indeed, they are the result
of interactions, and so are naively very non-Gaussian. However, there is another mechanism making to
distribution Gaussian. This is the high number of gravitons being produced. Since each production event
is independent, in the limit of high number of events the distribution becomes Gaussian, with a deviation
of non-Gaussianity, parametrized by a dimensionless number that we call NG and that can be thought
of as the skewness of the distribution 8, that scales as the inverse square root of the number of gravitons

at a given frequency at horizon crossing N
−1/2
gravitons. It is easy to estimate that the number of graviton is

given by

Ngravitons ∼ H−4ρgravitons(ω ∼ H) ∼
M2
P

H2
h2 . (84)

Notice indeed that this is order one for vacuum fluctuations. If we define the gain factor ggain as a
number in greater than one corresponding to the amount of decrease in H/MP that we can have while
still achieving a detectable signal with respect to the standard mechanism

H

MP
∼ h

ggain
(85)

we have

ggain ∼
√
Ngravitons ⇒ ggain ∼

1

NG
. (86)

8In terms of the usual parameter fNL, we have NG ∼ fNLh
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The amount of non-Gaussianity scales inversely to the gain. Observational constraints on NG scale as

the inverse square root of the number of modes that are signal dominated N
−1/2
modes. Given the smallness

of the signal in gravity waves, it is hard to imagine that non-Gaussianities will be tested below the level
10−1 − 10−2, implying that we would be able to distinguish these two scenarios only in the regime of
modest gain, which is nevertheless a relevant fraction of the parameter space we have found with our
examples. It is finally interesting to point out that there are also non-negligible regions of parameter space
where the scalar fluctuations ζ present some detectable non-Gaussian features. It would be interesting
to study the details of the non-Gaussian distribution in the future.
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A Appendix: Particle and String Production

So far we have used the fact that a sector of sources X may be produced through time dependent motion
of the inflaton. In this section, we will review and extend the computations of this effect. We assume
couplings of the inflaton φ to other degrees of freedom; this might be the generic situation and is necessary
for reheating. For example, couplings of the form 1

2g
2φ2χ2 endow the fields χ with a time dependent

mass
m(t)2 = g2φ(t)2 +m2

0 (87)

as φ rolls. In string theory, it is as common to have time dependent string tensions, for example of the
form

T (t)2 = η2M2
Pφ

2(t) + T 2
0 (88)

for some dimensionless coupling η that depends on the string coupling gs and the shape and size “moduli”
of the extra dimensions. Sufficiently close to φ = 0, we can approximate

φ(t) ≈ vt (89)

with v = φ̇ the field velocity (of dimension 2).
A simple way to see how such effects arise in string theory is to consider the realization of scalar fields

from the relative motion of branes (as well as various dual descriptions of this). As two branes come
together, strings stretching between them are particles in the worldvolume theory of the pair of branes
which become light as in (87)(89). Similarly, membranes stretching between two branes constitute strings
in the worldvolume theory. The tension T (t) of these strings is given by the membrane tension times the
distance between the branes, which is proportional to φ(t). (In both cases, if the branes miss each other
a nonzero mass m0 or tension T0 remains at the minimal distance between them.) In this section, we will
first review the production of particles from (87)(89) and then generalize this to estimate the production
rate of strings from (88)(89).
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Figure 1: Light degrees of freedom can be particles (left figure) or higher dimensional defects such
as strings (right figure).

A.1 More general mass functions

For some of our examples in the main text, we wish to consider a mass m(φ) for our produced source
particles χ which becomes approximately constant (independent of φ) at some point after production.
In this subsection, we describe a simple toy model with a few interactions depending on an additional
heavy scalar φH which yields this behavior classically upon integrating out φH . This is closely related to
a model described in [22].

The model has potential terms

(
M2
H(φH − φ0)2 + φ2

H(φ− φi)2
) χ2

i

M2
∗

= m(φ, φH)2χ2 (90)

where the index i refers to the production event which occurs at when the inflaton rolls through the point
φ = φi in field space.

Once the particles are produced, there is a number density nχ (which, as we will see below, is of order
ṁ3/2 at the time of production). This leads to energy density

ρχ ∼ mχnχ ∼ 〈χ2〉m(φ, φH)2. (91)

Equivalently,

〈χ2〉 ∼ nχ
m(φ, φH)

(92)

After the production event at φ = φi, at first φ−φi is very small and the first term in (90) freezes φH
at φ0. However, once φ−φi becomes as large as MH , the second term begins to dominate, and φH adjusts
to a more energetically favorable value φH = φH∗[φL]) which depends on φL. Exactly as in the similar
toy model of [22], the result of integrating out φH is that for φ − φi � MH , the mass m(φ, φH∗[φL])
becomes constant.
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This type of model – and others more faithful to a concrete UV completion – may provide a rea-
sonable starting point for studies of the radiative stability of the scenario where m(φ) transitions to
a constant. Incorporating supersymmetry helps suppress loop corrections, though this alone does not
prevent Hubble scale mass corrections. Incorporating monodromy renders the corrections approximately
periodic, restoring a discrete shift symmetry, but it is important to ensure that their amplitude is small
enough to be viable.

A.2 Bogoliubov Coefficients: Particle case

A particle with mass squared m(t)2 = v2t2 and frequency ω(t) =
√
v2t2 + k2 has a WKB wavefunction

ψ(t) ≈ 1√
2ω(t)

e−i
∫ t ω(t′)dt′ (93)

which solves
(−∂2

t − v2t2 − k2)ψ(t) = 0 (94)

to good approximation in the regime ω̇ � ω2.
We start with this pure positive frequency wavefunction in the far past and evolve it to the far

future, where it picks up a negative frequency term proportional to the Bogoliubov coefficient β that
determines the number of produced particles. In terms of creation and annihilation operators, this
means aearly = αalate + βa†late. So if we start in the vacuum, i.e. the state is the state killed by aearly,

it is not killed by alate but instead is eβ(a†)2/2α|late vacuum > up to normalization. (We are describing

it in the Heisenberg picture, for which states do not evolve.) Taking the expectation value of a†latealate
reveals that |β|2 is the number of produced particles.

In the above example, expanding ω(t′) ≈ vt′ + k2

2vt′ , the wavefunction at large t becomes, doing the
integral in the exponent,

ψ(t) ≈ 1√
2vt

e−i(
t2v
2

)t−i
k2

2v

Continuing t→ e−iπt, staying at large |t| to preserve the WKB approximation [18], pulls out the Bogoli-
ubov coefficient

βk ∼ e−πk
2/2v.

Then the total number density of particles is
∫
d3k|βk|2 ∼ v3/2. That is the dominant k is ∼

√
v.

This was done in the case with the mass going through zero. If instead ω2 = v2t2 + µ2 + k2, we get

|β|2 ∼ e−π(k2+µ2)/v (95)

So the number density of produced particles is model dependent, with v3/2 being the upper bound.

A.2.1 Associated scalar emission

In the bulk of this paper, we are interested in the gravitational wave emission from these produced
sources. An important consideration is the level of scalar emission that accompanies their production
and interactions. Here let us estimate this for the production event just reviewed.
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A somewhat similar process was analyzed also in [9]. In the specific scenario worked out there, the
scalar field dynamics is strongly affected by a very finely spaced set of points where different sectors of
particles become light. In that case, because the scalar can lose energy to the many sectors of temporarily
light fields, the Green’s function for the scalar perturbation is not well approximated by its form in a free
scalar field theory. For our purposes in the present work, we may consider a somewhat simpler regime in
which these events are spread out enough that the scalar Green’s function is the standard one. At the
end of this section, we will verify that this is a self-consistent approximation.

Let us calculate the scalar radiation emitted from the particle production event, treated as a version
of Bremsstrahlung. This is similar to electromagnetic or gravitational Bremsstrahlung, but with the

source in this case obtained from the Born-Infeld action −
∫
dτgφ

√
ṫ2 − ~̇x2

to be

ρχ(x) =

Nχ∑
n=1

∫
dτ

1

γn
δ(4)(xµ − xµn(τ)) (96)

where γn = 1/

√
ṫ2n −~̇x2

n = p0
n/mn where dot is derivative with respect to τ . From this, we obtain scalar

radiation

δφrad(x) = g

Nχ∑
n=1

∫
d3~k

(2π)3

−m2
n/p

0
n

2|~k|
e−ik·(x−xn)

k · pn
+ c.c. (97)

where we have summed over multiple χ pairs produced in the event.
We can simplify this by taking into account the fact that the particle slows down quickly; p0 ≈ m.

Putting that in and considering a production event where Nχ particles are all produced at t = 0 gives

δφ(x) ∼ g
∫ √φ̇
H

d3~k

~k2
e−ik·x

Nχ∑
n=1

ei
~k·~xn . (98)

We have put the lower limit at H because below that we cannot use the flat spacetime analysis, and the

upper limit at

√
φ̇ because the particle production process takes a time of order 1/

√
φ̇ 9. Note that here

~k is the physical momentum, which we could call ~̃k/a(t) in terms of the comoving momentum ~̃k.
Let us determine the expectation value of δφ(x)2:

〈δφ(x)2〉 ' g2

∫ √φ̇
H

d3k

(2π)3

1

k2

∫ √φ̇
H

d3k′

(2π)3

1

k′2
e−i(k−k

′)·x〈
Nχ∑
n=1

ei
~k·~xn

Nχ∑
n′=1

e−i
~k·~xn′ 〉 . (99)

Let us evaluate the term on the right inside the expectation value. Since particles are uncorrelated, this
is proportional to δn,n′ . This leads to

〈
Nχ∑
n=1

ei
~k·~xn

Nχ∑
n′=1

e−i
~k·~xn′ 〉 ∼

Nχ∑
n=1

〈ei(~k−~k′)·~xn〉 ∼ NχH
3

∫
d3x ei(

~k−~k′)·~xn ∼ NχH
3(2π)3δ(3)(~k − ~k′) , (100)

9In sec. 3.2.1 we consider the case in which χ particles are coupled to φ for a time shorter than an Hubble time,
which, as we will see, leads to a suppression of the amount of δφ radiation produced at low frequencies.
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where in the next to last step we have approximated the summation with the continuum limit and taken
into account of the fact that the integral is limited to an order one Hubble patch. Plugging back into (99)
and carrying one of the two k integrals through the delta function, we have

〈δφ(x)2〉 ' g2H3Nχ

∫ √φ̇
H

d3k

(2π)3

1

k4
. (101)

We are interested in the resulting curvature perturbation at horizon crossing, where ζ ∼ Hδφ/φ̇. Since
fluctuations in δφ redshift asH/ω, with ω being their frequency of emission, for each logarithmic frequency
bin we obtain

dPζ
d logω

∼ H4

φ̇2
g2Nχ

(
H

ω

)3

. (102)

Because of the redshift, the contribution to ζ is dominated by δφ fluctuations emitted directly at ω ∼ H,
leading to

Pζ ∼
H4

φ̇2
g2Nχ . 10−10 , (103)

where the last relation follows from the normalization. For large g2Nχ, we need a sufficiently small
inflationary scale in order to match the normalization. This is an additional constraint, but one that can
be satisfied for the examples given above.

It is useful to obtain the same result as above in a way that is more similar to the way we obtain our
result for gravitational waves. The energy density is δφ waves due to Bremmstrahlung is given by

dρφ
d logω

∼ ω2d〈δφ2〉
d logω

∼ nχω
dE

dω
, ⇒ d〈δφ2〉

d logω
∼ nχ

ω

dE

dω
, (104)

dE/dω follows the same expression as for gravitational waves with (E/MP )2 replaced by g:

dE

dω
∼ g2 , (105)

leading to
d〈δφ2〉
d logω

∼ g2nχ
ω
∼ g2H3Nχ

ω
, (106)

which nicely agrees with what found above in (101). We can turn this into an estimate for ζ2,

ζ2 ∼ g2nχ
H

H2

φ̇2
∼ g2f

ε

H

E
, (107)

and notice that this also implies
Nφ ∼ g2 Nχ , (108)

with Nφ,χ representing the number of respectively φ and χ particles in an Hubble patch. Finally, let us
come back to the check we mentioned above, that we may use the free scalar Green’s function in (97)
in a useful range of parameters. To study this, we should compare the scalar perturbations δφ with the
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distance ∆φ between particle production events. If the ratio δφ/∆φ is less than 1, then the perturbations
do not typically lose energy to χ production. By taking δφ ∼ 〈δφ(x)2〉 and using (101), this ratio is

δφ

∆φ
∼ HNhits

φ̇
δφ ∼ gN

1/2
χ H2

φ̇
·Nhits . P

1/2
ζ Nhits , (109)

where Nhits is the number of particle production events per Hubble time and where in the last passage we
have used the constraint from (103) 10. This ratio can be small consistently with a large Nhits, consistent
with approximate scale invariance. (Because the events are discrete, there will be structure on small
scales in the power spectrum, but for sufficiently finely spaced events these oscillations wash out.)

A.3 String Case

It is interesting to generalize this to strings with a time dependent tension T (t) [7].11 In general this is
not simply a sum over string oscillator states treated as particles [16], since the tension can vary rapidly
enough that the string cannot causally adjust to maintain its oscillator configuration. We find that large
pairs of loops are formed, but the relative oscillations between the strings and anti strings making up
the pair are displaced from each other by a short distance, roughly of order Ṫ−1/3. (This is required by
causality.) They generically oscillate relative to each other, and may quickly decay into smaller loops
of that size, though joining transitions forming longer loops also occurs at some level, depending on the
density [17].

A.3.1 Circular Loops

Let us start by considering the simplest configuration (circular loops). The generalization of (94) for a
circularly symmetric loop’s wavefunction Ψ(r, t) is

(−∂2
t + ∂2

r − b2t2r2 − k2)Ψ(r, t) = 0 (110)

where we took the time-dependent tension T (t) to behave as T (t)2 = b2t2; i.e. b = Ṫ .
This can be derived from the Hamiltonian constraint in the string worldsheet theory

Sstring =

∫
dσdτ

√
−gT (t)(gαβ∂αX

M∂βX
NGMN ) (111)

given in terms of the spacetime metric

GMNdx
MdxN = −dt2 + dr2 + r2dθ2 + d~x2

⊥ (112)

Varying (111) with respect to the metric produces the constraints

0 ≡ Tαβ = −T (t)(∂αX
M∂βX

NGMN −
1

2
gαβ∂γX

M∂γXNGMN ) (113)

10One could use the upper bound of the integral in (101) to estimate δφ/∆φ to ensure that even the most
high-energy modes are not affected by particle production. This would lead to multiply the last term in (109) by
a factor of (H2/φ̇)1/4 � 1, which leads to an even milder constraint on Nhits.

11We thank J. Polchinski for very useful discussions.
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We are interested in a simple circularly symmetric configuration, with θ = σ and r, ~x⊥ and t being
functions of τ . For simplicity we are ignoring motion of the string in the r, θ plane but this could be
included. The Tστ = 0 constraint is solved by gστ = 0. The others are solved by

− ṫ2 + ṙ2 + ~̇x2
⊥ + r2 = 0 (114)

Now writing this in terms of momenta, using pt = ∂L
∂ṫ

= −T (t)ṫ = i∂t (the last being the representation of
the momentum operator in position space), and similarly for the other coordinates and momenta, yields
(110).

In our problem (110), br is like v in (94) except there is also the ∂2
rΨ term. However, if we work

at r � t we have a regime where this term is subdominant in (110), basically because the derivatives
with respect to r pull down factors of 1/r, which is smaller than 1/t. That is, taking (93) with now
ω2(t) = b2t2r2 + k2, we get

Ψ̈ ≈ −ω2(t)Ψ = −(b2r2t2 + k2)Ψ (115)

but
Ψ′′ ≈ −(b2t4)Ψ (116)

For r � t, this is subdominant to the first, b2r2t2 term in (3). It can also be subdominant to the
k2 term in (3) for the dominant k ∼

√
br. In order for the large t expansion to be valid, we needed

ω̇/ω2 ∼ 1/(brt2) � 1. This seems to be consistent with the above analysis as long as r is large enough,
r � b−1/3.

According to this calculation, the time-varying tension T = bt can produce many pairs of large loops,
because we get from this

|β|2 ∼ e−πk2/br (117)

This was all done in the case that the tension goes through zero. One can also study similarly the case
where it does not, giving (c.f. (95) with µ = Tminr)

|β|2 ∼ e−
π
b

( k
2

r
+T 2

minr) (118)

Although the loops can be large, the distance between them is much smaller, consistent with causality.
Moreover, they move very slowly overall: the peak momentum from (117) is k∗ ∼Mv ∼

√
br. Using that

M ∼ b2/3r at the time t ∼ b−1/3 of production, we find that the strings have a relative velocity

∆vstring ∼
1

b1/6r1/2
(119)

Therefore the time it takes to separate the two members of the pair by a distance Ṫ−1/3 = b−1/3 is

tseparation ∼ b−1/6r1/2 (120)

This is much greater than the timescale Ṫ−1/3 ∼ b−1/3.
This is important because the latter is the timescale for relative oscillations of the string in more

general configurations. The circular configuration is not generic, and it is interesting to consider the
problem more generally by studying the string path integral [7]. This yields a similar result, but with the
two members of the pair of loops oscillating relative to each other at a relative distance b−1/3 ∼ Ṫ−1/3. The
simplest string-theoretic examples which develop light strings (which are sometimes called “tensionless
string theories”) do not have a small coupling suppressing interconnection of the strings or decay into
scalar modes. As a result, the pair production of large strings in these cases is quickly followed by the
pair breaking up into a ring of smaller loops. This is the situation analyzed in §3.2.3.
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