
Draft version April 13, 2011
Preprint typeset using LATEX style emulateapj v. 11/27/05

EXTRINSIC SOURCES OF SCATTER IN THE RICHNESS–MASS RELATION OF GALAXY CLUSTERS

Eduardo Rozo1,2, Eli Rykoff3, Benjamin Koester4, Brian Nord5,7, Hao-Yi Wu6, August Evrard5, Risa
Wechsler6

Draft version April 13, 2011

ABSTRACT

Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding
of the richness–mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact
of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors,
photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies
contribute negligible noise. Miscentering, however, can be important, and likely contributes to the
scatter in the richness–mass relation of galaxy maxBCG clusters at the low mass end, where centering is
more difficult. We also investigate the impact of projection effects under several empirically motivated
assumptions about cluster environments. Using SDSS data and the maxBCG cluster catalog, we
demonstrate that variations in cluster environments can rarely (≈ 1% − 5% of the time) result in
significant richness boosts. Due to the steepness of the mass/richness function, the corresponding
fraction of optically selected clusters that suffer from these projection effects is ≈ 5% − 15%. We
expect these numbers to be generic in magnitude, but a precise determination requires detailed,
survey-specific modeling.

Subject headings: cosmology: clusters

1. INTRODUCTION

The abundance of galaxy clusters as a function of
mass has long been recognized as a powerful cosmologi-
cal tool (Peebles et al. 1989; Evrard 1989). Clusters are
highly complementary to other dark energy experiments
(Cunha et al. 2009), and, along with weak lensing tomog-
raphy, cluster abundances can distinguish between dark
energy and modied gravity as the fundamental driver of
our Universe’s current phase of accelerating expansion
(Shapiro et al. 2010). Unfortunately, cluster mass is not
a direct observable, so one is forced instead to compute
the abundance of galaxy clusters as a function of observ-
ables that correlate with mass. If the observable–mass
relation is well understood, one can effectively recover
the cosmological information inherent in the halo mass
function.
Over the next several years, a variety of large scale pho-

tometric surveys such as the Dark Energy Survey (DES)8

and the Large Synoptic Survey Telescope (LSST)9 are
expected to observe large fractions of the sky to ex-
tremely faint magnitudes. Using a wide variety of
techniques (e.g. Gladders & Yee 2000; Miller et al. 2005;
Koester et al. 2007; Dong et al. 2008; Wen et al. 2009a;
Milkeraitis et al. 2010; Hao et al. 2010), these surveys
will identify hundreds of thousands of clusters out to red-
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shift, z ∼ 1 and beyond, resulting in catalogs of incredi-
ble statistical power. To fully realize the promise of such
catalogs, however, we must have a detailed understand-
ing of the richness–mass relation of these systems. In
particular, we must understand not only what the mean
scaling between richness and mass is, but also how indi-
vidual galaxy clusters scatter about this relation.
In general, we expect there to be two distinct sources

of noise which must be characterized, namely intrinsic
and extrinsic scatter. By intrinsic scatter, we mean the
fact that the galaxy content of halos of a given mass will
randomly vary from halo to halo, even if we could unam-
biguously identify which galaxies belong to which halo
with complete confidence. In this work, we will simply
assume that intrinsic scatter can be adequately modeled
as Poisson. This Poisson model is found to be a rea-
sonable description of the scatter in the halo occupation
distribution of both dark matter halos (Kravtsov et al.
2004) and simulated galaxies (e.g. Berlind et al. 2003;
Zheng et al. 2005), and is a key-component of halo
model fits of galaxy clustering (e.g Blake et al. 2008;
Zheng et al. 2009; Zehavi et al. 2010; Tinker et al. 2010).
We note, however, that recent work suggests the intrin-
sic scatter may in fact be significantly super-Poisson in
the large occupation limit (Boylan-Kolchin et al. 2010;
Wetzel & White 2010; Busha et al. 2010). If so, this can
only decrease the relative importance of the extrinsic
sources of scatter considered here.
Let us turn then to the focus of this paper: extrin-

sic sources of scatter. In principle, there is a plethora
of effects that must be accounted for, such as halo tri-
axiality, photometric errors, projection effects, etc., so
the prospect of such a calibration is truly daunting. In
practice, however, not all of these possibilities are nec-
essarily observationally relevant. The goal of this pa-
per is to identify all sources of extrinsic scatter that are
observationally relevant. Having identified the relevant
sources of scatter, we intend to return in a future work to
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the problem of modeling the relevant sources of scatter
quantitatively. Note that if a source of extrinsic scat-
ter is negligible relative to Poisson intrinsic scatter, it is
also negligible relative to super-Poisson scatter, so our
analysis is conservative in that sense.
To identify which sources of measurement noise are ob-

servationally relevant we rely on a Monte Carlo approach:
using analytic models, we simulate galaxy clusters under
a variety of different assumptions about extrinsic sources
of noise, and then estimate their richness to determine
whether the richness–mass relation was affected at a sig-
nificant level (where “significant” is quantitatively de-
fined below). While this method lacks the sophistication
of N-body simulations, it has the significant advantage of
permitting control of every detail of the simulated clus-
ters. More specifically, we can turn on the sources of
extrinsic scatter one at a time in order to identify those
that are observationally relevant. Moreover, it gives us
the ability to very quickly simulate hundreds of thou-
sands of clusters, which is necessary for us to accomplish
our goals. We believe this Monte Carlo approach should
suffice for our stated goal of identifying relevant sources
of scatter, though clearly further work will be required to
quantitatively characterize those sources of scatter that
are observationally relevant.
This paper is the second in a series of papers that

have as their final goal the development of a fully op-
timized richness estimator that is both qualitatively and
quantitatively understood. The first of these papers
(Rozo et al. 2009, henceforth referred to as paper I) in-
troduced the general matched filter formalism we use
to estimate cluster richness, and tuned it to minimize
the scatter in X-ray luminosity of galaxy clusters at
fixed richness (similar approaches towards richness esti-
mation and cluster finding can be found in Kepner et al.
1999; White & Kochanek 2002; Kochanek et al. 2003;
Dong et al. 2008). Here, we identify those sources of
extrinsic scatter that can impact the observed richness–
mass relation, while a companion paper (paper III) con-
siders various modifications to the richness estimator λ in
an effort to further improve the fidelity with which clus-
ter richness traces mass (Rykoff et al. 2010, henceforth
referred to as paper III). Our final richness estimator is
extremely robust, and we believe is close to being fully
optimal for counting red-sequence galaxies from photo-
metric data. We intend to follow these two papers with
an additional quantitative study of the sources of extrin-
sic scatter identified in this work.
The layout of this paper is as follows: in section 2

we quickly review the richness estimator λ from paper I,
while section 3 details our method for generating Monte
Carlo realizations of galaxy clusters. Section 4 explores
a wide variety of extrinsic sources of scatter, and section
5 considers the impact of projections effects on cluster
richness for a variety of empirically motivated assump-
tions about the environment of galaxy clusters. Section
6 summarizes our results. Appendix A details the rea-
soning behind the definition adopted in the main body of
the work as to what constitutes an observationally rel-
evant source of scatter. Unless otherwise stated, all of
our calculations assume a fiducial flat ΛCDM cosmology
with h = 0.7 and Ωm = 0.25.

2. THE RICHNESS MEASURE λ

We begin by summarizing the algorithm behind the
matched filter richness λ originally proposed in paper I.
Let i index all galaxies around a putative cluster center,
and yi be a random variable such that yi = 1 if a galaxy
is a member of a galaxy clusters, and yi = 0 otherwise.
The richness is defined as the total number of cluster
galaxies

λ =
∑

i

yi. (1)

Define pi as the membership probability of galaxy i, so
that P (yi = 1) = pi and P (yi = 0) = 1 − pi. The mean
and variance of the richness λ are given by

〈λ〉=
∑

i

〈yi〉 =
∑

i

pi (2)

Var(λ)=
∑

i

Var(yi) =
∑

i

pi(1− pi). (3)

If the membership probabilities pi are known, then equa-

tion 2 can be used to define the richness estimator λ̂ via
λ̂ = 〈λ〉, while equation 3 would correspond to the sta-

tistical uncertainty in λ̂.
Expanding the product in the expression for the vari-

ance, we find
Var(λ) = 〈λ〉 (1− p̄) (4)

where p̄ is the mean membership probability,

p̄ =

∑

i p
2
i

∑

i pi
=

1

〈λ〉
∑

i

p2i . (5)

This implies that as long as the mean membership prob-
ability is close to unity, the statistical uncertainty in the
richness is significantly smaller than Poisson.
The membership probabilities are estimated as follows:

let x be a vector describing the observable properties of a
galaxy (e.g. galaxy color, magnitude, and position). We
model the projected galaxy distribution around clusters
as a sum S(x) = λu(x|λ) + b(x), where λ is the number
of cluster galaxies, u(x|λ) is the number density profile
of cluster galaxies normalized to unity, and b(x) is the
density of background (i.e. non-member) galaxies. The
probability that a galaxy found near a cluster is actually
a cluster member is simply

p(x) =
λu(x|λ)

λu(x|λ) + b(x)
. (6)

Inserting these probabilities back into equation 2 we
arrive at

λ =
∑

p(x|λ) =
∑

R<Rc(λ)

λu(x|λ)
λu(x|λ) + b(x)

. (7)

Equation 7 can be solved for the value of λ, which in
turn defines our richness estimator. In principle, the
sum should extend over all galaxies. In practice, one
needs to add over all galaxies within some cutoff radius
Rc and above some luminosity cut Lcut, for which we set
Rc = 1 Mpc and Lcut = 0.2L∗ unless otherwise noted.
The choice of a fixed metric aperture is purely for sim-
plicity. Paper III has a detailed discussion of the impact
of the radial aperture on the richness–mass relation, and
optimizes the radial aperture so as to minimize the scat-
ter in LX at fixed richness.
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We consider three observable galaxy properties: R, the
projected distance from the cluster center; m, the galaxy
i-band magnitude; and c, the galaxy g − r color, as ap-
propriate for low redshift galaxy clusters. We adopt a
separable filter function

u(x) = [2πRΣ(R)]φ(m)G(c) (8)

where Σ(R) is the two dimensional cluster galaxy density
profile, φ(m) is the cluster luminosity function (expressed
in apparent magnitudes), and G(c) is color distribution
of cluster galaxies. The pre-factor 2πR in front of Σ(R)
accounts for the fact that given Σ(R), the radial prob-
ability density distribution is 2πRΣ(R). We summarize
each of these filters below.

2.1. The Radial Filter

We assume cluster galaxies follow an NFW pro-
file (Navarro et al. 1995). The corresponding two-
dimensional surface density profile is (Bartelmann 1996)

Σ(R) ∝ 1

(R/Rs)2 − 1
f(R/Rs) (9)

where Rs is the characteristic scale radius, and

f(x) = 1− 2√
x2 − 1

tan−1

√

x− 1

x+ 1
. (10)

This formula assumes x > 1. For x < 1, one uses the
identity tan−1(ix) = i tanh(x). As in paper I, we set
Rs = 0.15 h−1Mpc. While the profile is singular as R →
0, the membership probability remains finite with p → 1
as R → 0. The filter Σ(R) is normalized to unity within
our chosen fixed metric aperture Rc = 1 Mpc,

1 =

∫ Rc

0

dR 2πRΣ(R). (11)

2.2. The Luminosity Filter

The luminosity distribution of maxBCG clusters is well
represented by a Schechter function (e.g. Hansen et al.
2007), which we write as

φ(m) = C10−0.4(m−m∗)(α+1) exp
(

−10−0.4(m−m∗)
)

(12)
where C = 0.4 ln(10)φ∗. The normalization φ∗ is fixed
by requiring that φ be normalized to unity above a lu-
minosity cut Lcut, which we set to Lcut = 0.2L∗. This
is fainter than the cut adopted in paper I, but matches
the final cut we adopt in paper III. We also set α = 0.8,
and we calculate m∗ using passively evolved stellar pop-
ulation models (see Koester et al. 2007, for details). An
accurate polynomial interpolation for icut(z) is

icut = 19.605 + 2.327x+ 0.205x2 + 0.202x3 (13)

where x = ln(1+ δz) and δz = (z− 0.2)/0.2. This fitting
function is accurate at the level of ∆icut = 0.002 over the
redshift range 0.1 ≤ z ≤ 0.3.

2.3. The Color Filter

For a color filter, we assume red-sequence galaxies have
a Gaussian color distribution with intrinsic dispersion
σint = 0.05mag. The corresponding color filter, G(c) is

G(c|z) = 1√
2πσ

exp

[

(c− 〈c|z〉)2
2σ2

]

, (14)

where c = g− r is the color of interest, 〈c|z〉 is the mean
of the Gaussian color distribution of early type galaxies
at redshift z, and σ is the width of the distribution. The
mean color 〈c|z〉 = 0.625 + 3.149z was determined by
matching maxBCG cluster members to the SDSS LRG
(Eisenstein et al. 2001) and MAIN (Strauss et al. 2002)
spectroscopic galaxy samples. The net dispersion σ is
taken to be the sum in quadrature of the intrinsic color
dispersion σint = 0.05 and the estimated color error σc

of each individual galaxy.

2.4. Background Model

The last necessary ingredient for estimating λ is a back-
ground model. We assume the background galaxy den-
sity is constant in space, so that b(x) = 2πRΣ̄g(mi, c)
where Σ̄g(mi, c) is the galaxy density as a function of
galaxy i−band magnitude and g − r color. In pa-
per III we estimate Σ̄g by binning SDSS galaxies in
color–magnitude space using a cloud-in-cell (CIC) algo-
rithm (e.g. Hockney & Eastwood 1981). We use those
results to define our background model at every point
through linear interpolation. Further details of how the
background density model is constructed can be found in
paper III. For our purposes, the key is that we have an
empirically determined function Σ̄g(mi, c) that returns
the mean galaxy density of the universe as a function of
i-band magnitudes and g − r color.

3. METHOD

Our idea is simple: using the filters Σ(R), Φ(m), and
G(g−r) , we generate Monte Carlo realizations of a single
cluster, and measure the scatter in richness. We can
then repeat the experiment including an extrinsic source
of scatter, and determine whether the newly introduced
effects is observationally relevant or not.
We simulate the galaxy density field around a galaxy

cluster out to a 3 Mpc radius, comfortably larger than
the 1 Mpc aperture used to estimate cluster richness. To
generate the galaxy fields, we first select the expectation
value λ̄in for the number of red sequence galaxies in a
cluster within a 1 Mpc radius. Using the radial filter
Σ(R), we extrapolate in radius to compute the expected
number of red sequence galaxies within 3 Mpc, which
we label N̄3. The number of galaxies assigned to the
cluster is a Poisson realization of mean N̄3. Each cluster
galaxy is assigned a radius, angle, magnitude, and color,
by randomly sampling the filters Σ(R), Φ(m), and G(c).
The brightest galaxy is always placed at the center of
the cluster. If λ̄in is small, it is possible for no galaxies
to be bright enough to pass the magnitude cut. Since
observationally we are restricted to systems with at least
one bright galaxy, whenever this happens we simply add
a central galaxy. Note that means that when λ̄in → 1,
we expect large biases in the sampled of detected clusters
simply because one misses all systems with no galaxies.
Once cluster galaxies are in place, we use a similar pro-

cedure to populate our sky patch with non-cluster galax-
ies. Given a background model b(R,m, c), we compute
the expected number of such galaxies, draw the number
of background galaxies from a Poisson distribution of the
appropriate mean, and then assign to every galaxy a ra-
dius, angle, magnitude, and color using the background
filters. Note that the background model used to generate
our Monte Carlo simulations need not be the same as the
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background model employed to estimate λ. Throughout
section 4, however, we will use the density model from
section 2.4 both for populating our simulations with non
cluster galaxies, and for estimating richness. To con-
vert the observed mean galaxy density from gal/deg2

to gal/Mpc2, we assume a flat ΛCDM cosmology with
Ωm = 0.3 and h = 0.7.
Once a patch has been generated as described above,

we estimate its richness, which we henceforth refer to
as λout. The richness is estimated as described in sec-
tion 2. To measure the statistical properties of λout, we
repeat this procedure a minimum of 400 times. When
confronted with noisy realizations (e.g. when consider-
ing miscentering), we increase the number of samples up
to 10,000 realizations (per choice of miscentering param-
eters). Finally, we emphasize that since λ̄in is a deter-
ministic function of the mass (e.g. λ̄in ∝ Mα), holding
λ̄in constant is equivalent to holding halo mass constant.
That is, the scatter we measure is precisely the scatter
in richness at fixed mass, σln λ|M . Throughout, we use
the word “scatter” to signify the standard deviation of
lnλout at fixed λ̄in.
It is obvious from the above description that in these

Monte Carlo realizations there is no allowance for con-
tamination of the cluster field by correlated galaxies. We
address this difficulty in section 5, where we change the
background model used to populate cluster fields with
non-cluster galaxies. For our purposes, the most rel-
evant result concerning projection effects is that they
are rare, but severe. That is, projection effects don’t
really broaden the peak of the probability distribution
P (λout|λ̄in). Rather, they build a small non-gaussian
where λout is much larger than expected. Throughout
section 4, we focus exclusively on the central component
of the distribution P (λout|λ̄in).
Using the method described above to generate Monte

Carlo realization of galaxy clusters, we can measure the
distribution P (λout|λ̄in). In most cases, we focus exclu-
sively on the mean and scatter of this distribution. The
two obvious questions that can be addressed with such
data are: 1) is our richness estimator biased? 2) is the
scatter of our richness estimator consistent with Poisson?
Concerning the first question, we emphasize that biases

in our richness estimator are irrelevant. The richness
measure λ is only meant to be interpreted as an observa-
tional quantity that scales with mass with little scatter.
The scaling or richness with both mass and redshift needs
to be empirically calibrated regardless of whether λout is
biased relative to λ̄in or not. Thus, biases in

〈

λout|λ̄in

〉

are of no practical consequence. It is the scatter in λout

that we are primarily concerned about.
Finally, we need to determine how much extrinsic scat-

ter can we tolerate before the extrinsic scatter becomes
observationally relevant, i.e. how far can we deviate from
Poisson scatter. Here, we focus on whether the scat-
ter in λout can be modeled as Poisson for the purposes
of the Dark Energy Survey (DES). In appendix A, we
demonstrate that differences between the true and pre-
dicted scatter of the richness–mass relation are irrelevant
so long as these differences are about 5% or less, (i.e.
∆σlnλ . 0.05). Thus, for this work, we will say that a
source of scatter is observationally irrelevant whenever

∆σlnλ ≤ 0.05.10

4. SOURCES OF SCATTER FOR THE RICHNESS–MASS
RELATION OF GALAXY CLUSTERS

We wish to determine what sources of statistical
and/or systematic uncertainty can significantly impact
the observed richness–mass relation. The effects we con-
sider are halo triaxiality, cluster-to-cluster scatter in the
properties of ridgeline galaxies, photometric errors, pho-
tometric redshift errors, and cluster miscentering. Before
we proceed, however, we must set a baseline, and deter-
mine what the richness–mass relation of galaxy clusters
is in the absence of any such additional sources of noise.

4.1. The Intrinsic Scatter of the Richness–Mass
Relation

The top panel in Figure 1 shows the distribution of λout

obtained from 104 realizations of a cluster with λ̄in = 50
galaxies. The solid curve is the best-fit Gaussian, and the
vertical dotted line is the input richness. Two things are
evident from this figure: first, our richness estimator is
nearly unbiased, and second, the distribution P (λout|λ̄in)
can be adequately modeled as Poisson. Of course, read-
ers will be quick to note that the actual number of cluster
galaxies we place in our 3 Mpc field is itself drawn from
a Poisson distribution. Are we engaging in circular rea-
soning?
The answer is only partially. Consider the process used

to create and test the Monte Carlo simulations: given
λ̄in, we draw a Poisson realization for the number of
galaxies in the cluster field, in accordance with naive ex-
pectation for the intrinsic scatter of the richness–mass re-
lation. If the reasoning were circular, the exercise would
conclude with this stage. In our simulations, however, we
use Poisson statistics to populate a 3 Mpc cluster field
with galaxies, we then randomly add background galax-
ies, and finally, we estimate the richness within a 1 Mpc
aperture. This whole procedure must necessarily intro-
duce some amount of measurement error (for instance,
λ is not an integer), but it is readily apparent from our
results that this extra noise is negligible relative to the
expected intrinsic scatter. Thus, the scatter we recover
is Poisson both because the intrinsic scatter is Poisson,
and because the measurement error associated with esti-
mating richness is negligible, as we had anticipated from
equation 3.
The bottom panel in Figure 1 explores the extent to

which our conclusions depend on the richness of the clus-
ter under consideration. The figure shows the bias in the
mean (diamonds) as well as the deviation from the Pois-
son expectation for the standard deviation (points with
error bars) as a function of the input richness λ̄in. As
we can see, our above conclusions are valid at richnesses
λ & 15, though measurement error does become more
important with decreasing cluster richness. The bias at
low richness is due to the fact that we demand a central
galaxy to always be present.

4.2. Halo Triaxiality

10 To estimate σlnλ for a Poisson distribution, we use 105 Pois-
son realizations and numerically estimate σlnλ. As with the real
data, if a realization results in no galaxies, we set λout = 1 instead.
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Fig. 1.— Top panel: The distribution of the estimated richness
λout for 104 independent realizations of a single cluster with λ̄in =
50. The distribution has a slight (1%) bias in the mean, and the
scatter is very well approximated by Poisson. Note that since the
richness–mass relation needs to be empirically calibrated, a bias
in the mean is not of importance to us. Bottom panel: The first
two moments of the λout − λ̄in relation as a function of richness.
Diamonds show the bias of our richness estimator 〈λout〉 /λ̄in − 1,
while the points with error bars show the deviation ∆σlnλout

of
the observed scatter in lnλout from the Poisson expectation. For
λ̄in ≥ 20, our richness estimates are slightly biased, and the scatter
can be approximated as Poisson.

Halos are known to be triaxial, with halo triaxiality de-
pending on both halo mass and redshift (e.g. Bett et al.
2007; Kasun & Evrard 2005; Knebe & Wießner 2006;
Shaw et al. 2006; Allgood et al. 2006; Jing & Suto 2002).
This has two important consequences: first, the pro-
jected galaxy density of a halo is not circularly symmet-
ric, and second, the amplitude of the density field is itself
modulated by the line of sight projection. We explore
both effects, beginning with the impact of non-circular
symmetry. We modify our simulations as follows: first,
we select the minimum projected axis ratio qmin that
an elliptical cluster can have in our realizations. The
projected axis ratio q of each realization is drawn uni-
formly from the range [qmin, 1]. While not realistic, this
certainly suffices for the purposes of determining whether
scatter in the projected ellipticity of a halo can introduce
significant scatter in the richness–mass relation. For each
mock realization, we draw a different axis ratio q, and
randomly place galaxies according to the corresponding
elliptical halo profile u(ρ) where ρ is now an elliptical

Fig. 2.— Bias and deviation from the Poisson expectation of
the scatter of the richness–mass relation as a function of ∆N , the
standard deviation of the surface density amplitude for triaxial
halos. The vertical dotted line marks a rough estimate for the
expected value for ∆N for triaxial halos. We find halo-triaxiality
can increase the scatter of the richness–mass relation by ∆σlnλ =
0.04, which is border-line important. For clarity, we only show
error bars for the λ̄in = 20 case, but the errors are comparable for
the different λ̄in values.

coordinate, ρ2 = x2 + q2y2. All other aspects of our
simulation remain unchanged.
We find that cluster ellipticity impacts the richness–

mass relation only at the . 2% level in the mean, and
that the scatter can be described as Poisson at compa-
rable accuracy for qmin ≥ 0.5. Consequently, variance
in the ellipticity of the galaxy distribution does not sig-
nificantly impact the richness–mass relation of galaxy
clusters. This result emphasizes an important distinc-
tion that often gets overlooked: using radial filters is not
equivalent to assuming spherical symmetry. For instance,
lining up galaxies while preserving their radial distribu-
tion has no impact on a cluster’s richness as defined in
section 2. Thus, it is not surprising that the projected el-
lipticity of the galaxy distribution of halo has little effect
on the richness–mass relation.
We now turn to the line of sight modulation of the

amplitude of the galaxy density field. We adopt a simple
model of the form

Σg,cluster(R) = Nλ̄inu(R) (15)

where u(R) is the cluster profile normalized to unity,
and N is a normalization constant that depends on the
axis ratios q1 and q2 of the triaxial halo and on the
line of sight n̂ along which the halo is projected. Given
the statistical properties of the triaxial halo population,
one can compute the corresponding probability density
P (N). However, because our goal is only to determine
whether halo triaxiality can significantly impact the scat-
ter of the richness–mass relation, we consider instead a
simple Gaussian distribution for N , and explore how the
richness–mass relation depends on the standard devia-
tion of N , which we denote ∆N . To estimate a typi-
cal value for ∆N , we rely on the results of Rozo et al.
(2007a), who computed N(q1, q2, n̂) for the case of a tri-
axial singular isothermal ellipsoid. Assuming the axis q1
and q2 are drawn from a uniform distribution q1 ∈ [0.5, 1]
and q2 ∈ [q1, 1.0], and that the halo orientation n̂ is ran-
dom, we find ∆N = 0.085.
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Figure 2 shows the difference between the observed
scatter and the Poisson expectation as a function of ∆N
for three different richness clusters as labelled. The bias
in the mean is very nearly zero, and is therefore not
shown. Evidently, large ∆N values can contribute signif-
icantly to the observed scatter. For the expected level of
halo-triaxiality (vertical dotted line), the impact of this
effect on the richness–mass relation is border-line signif-
icant.

4.3. Cluster-to-Cluster Variance of Ridgeline Properties

In a recent work, Hao et al. (2009) found cluster-to-
cluster variations of order 0.05 magnitudes in the mean
color of ridgeline cluster galaxies at fixed redshift. Un-
fortunately, they did not determine whether such fluc-
tuations were intrinsic, or simply reflected measurement
error. If the former dominates, one needs to consider
whether such intrinsic fluctuations could impact the
richness–mass relation of galaxy clusters.
In our original simulations, the color of cluster galaxies

is randomly drawn from a Gaussian distribution of mean
c̄ and standard deviation σc = 0.05. We include varia-
tions in the properties of ridgeline galaxies by setting the
mean color of cluster galaxies to c̄ = c̄0 +∆c where c̄0 is
the mean color of cluster galaxies over all clusters, and
∆c is a random Gaussian color offset of zero mean and
standard deviation σc̄.
We find that the scatter in ridgeline properties has no

impact on the mean or scatter of the richness–mass re-
lation at the 1% level. This robustness reflects the fact
that λ is not particularly sensitive to the precise loca-
tion of the central peak in the color filter (see papers I
and III for an extended discussion), so that small dif-
ferences between the color distribution used to generate
cluster galaxies and the actual filter employed in estimat-
ing cluster richness have only a modest impact on the
final cluster richness estimate. This is also good news
for the purposes of extending this work to higher red-
shifts, since any intrinsic cluster-to-cluster variation in
the properties of ridgeline galaxies would likely increase
with increasing redshift. In paper III, we explicitly con-
sider the sensitivity of λ to the details of the red-sequence
model. More specifically, we demonstrate that λ is ro-
bust to whether we employ our red-sequence model, or
whether we empirically fit for the red-sequence parame-
ters on a cluster-by-cluster basis. This is consistent with
the analysis presented here that cluster-to-cluster vari-
ance in ridgeline properties is not an important source of
scatter in the richness–mass relation.

4.4. Photometric Errors

Photometric errors impact a cluster’s richness estimate
in two ways: they can scatter galaxies across the luminos-
ity cut used to count galaxies, and they can scatter the
location of a galaxy in color space. We test the impact
of each of these effects in turn.
To include photometric errors in our simulations, we

compute the median error σi(i) and σg−r(i) on i and
g − r as a function of i in the SDSS. For each galaxy
in our simulation, we then set iobs = itrue + ∆i where
∆i is a random Gaussian offset of zero mean and stan-
dard deviation σi(itrue). Finally, the galaxy is assigned
a photometric error σi(iobs). A similar operation can be

performed with g − r. In order to disentangle the im-
pact of photometric errors in i with those in g − r, we
consider simulations in which i band magnitudes are sub-
ject to photometric errors, but g− r is not, as well as the
converse case.
We parameterize the photometric error function σi(i)

and σg−r(i) as

σi(i)=σi,20 exp (0.56(i− 20)) (16)

σg−r(i)=σg−r,20 exp (0.70(i− 20)) . (17)

The pivot point i = 20 is chosen simply as a conve-
nient reference magnitude for galaxies at redshift z ≈
0.25 brighter than 0.2L∗. These parameterization pro-
vide reasonable fits to the SDSS data. In our simula-
tions, we vary the amplitude parameters in the range
σi,20 ∈ [0, 0.2] and σg−r,20 ∈ [0, 0.4]. The amplitudes in
the SDSS are σi,20 = 0.04 and σg−r,20 = 0.11. We find
that over the ranges probed — which extend significantly
beyond the precision of SDSS photometry — photomet-
ric errors do not affect the scatter in richness–mass rela-
tion of galaxy clusters in a significant way. Not surpris-
ingly, sufficiently large photometric errors can impact the
mean cluster richness, but doing so requires a photomet-
ric uncertainty σi,20 & 0.1, significantly larger than the
0.04 error from SDSS. Thus, the photometric calibration
in SDSS has a negligible impact on the richness–mass
relation of galaxy clusters. This conclusion will only be
strengthen in future surveys, where photometric uncer-
tainties will be further reduced. This is also consistent
with the tests we perform in paper III, where we demon-
strate that λ is only modestly affected by errors of up to
0.05 magnitudes in the magnitude cut corresponding to
our luminosity threshold.

4.5. Photometric Redshift Errors

Our richness estimate λ is the number of red-sequence
galaxies brighter than a given luminosity cut and within
a specified radial cut. However, the physical radial off-
set and luminosity of a galaxy depends on the cluster’s
redshift, as does the color of the red-sequence. Conse-
quently, scatter in a cluster’s redshift can produce scat-
ter in the richness–mass relation. To test whether this is
significant, we perform Monte Carlo realizations as de-
scribed in section 3. We then assume that the cluster is
assigned an observed redshift zobs = ztrue+∆z, where ∆z
is a random Gaussian offset of zero mean and standard
deviation σz . The assigned luminosity of every galaxy
is then rescaled by the square of the luminosity distance
ratio between the true and observed redshift. The radial
locations of the galaxies are also scaled by the angular
diameter distance ratio. The cluster richness is then es-
timated as usual.
Figure 3 shows how the mean and scatter of the

richness–mass relation depends on the standard devia-
tion of the photometric redshift errors σz. What is re-
markable about this figure is how fast redshift errors go
from irrelevant to significant. Below σz ≈ 0.02, photo-
metric redshift errors are not very important, but their
contribution to the total scatter rapidly increases with
σz beyond this point. Thus, accurate photometric red-
shift estimates are necessary in order to avoid signifi-
cantly increasing the scatter of the richness–mass rela-
tion. For reference, the photometric redshift accuracy of
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Fig. 3.— Mean and scatter of the richness–mass relation as
a function of photometric redshift errors. Photometric redshift
errors need to be controlled at the ∆z . 0.02 level for them to
have a negligible impact on the richness–mass relation. This value
is comfortably above the estimated photometric redshift error of
maxBCG clusters (vertical dotted line).

SDSS maxBCG clusters is σz ≈ 0.008, so cluster photo-
metric redshift errors are not a significant systematic in
this case.
We can easily understand why photometric redshift er-

rors can become so important so quickly. If one takes a
galaxy at the median redshift of the cluster sample, and
displaces it in redshift by ∆z, the corresponding magni-
tude change is roughly ∆m = 10∆z, so a redshift error of
0.02 changes the apparent luminosity of a cluster galaxy
by 0.2 magnitudes, a relatively large amount. Moreover,
unlike photometric errors, all galaxies step in unison, and
the effect of this scatter is not down-weighted by root-N
statistics.
The results of this section can also speak to the im-

portance of uniform photometric calibration when char-
acterizing the scatter in the richness–mass relation. As
discussed above, a photometric redshift error of 0.02 cor-
responds to a photometric shift of 0.2 magnitudes; at this
point, photometric redshift errors become important.
Consequently, in order for the scatter of the richness–
mass relation to remain unaffected by variations in the
photometric calibration of a survey, the latter needs to
be controlled at the level of 0.2 magnitudes.

4.6. Cluster Miscentering

We consider the impact that cluster miscentering —
i.e. the possibility that the cluster center chosen by an
observer may be offset from the true cluster center —
can have on the richness–mass relation. We adopt the
mis-centering parameterization used in Johnston et al.
(2007) to characterize the centering properties of the
maxBCG cluster-finding algorithm and explore how our
richness measure depends on these quantities. The two
parameters of interest are the probability p that a clus-
ter be correctly centered, and the standard deviation σR

characterizing the distribution of random offsets for mis-
centered clusters (see below).
We incorporate mis-centering in our simulations as fol-

lows: for each cluster realization, we randomly determine
whether the cluster is mis-centered or not based on its
centering probability. If the cluster is mis-centered, we

Fig. 4.— Mean and scatter of the richness–mass relation as
a function of mis-centering parameters. Isolated symbols always
track the scatter data, while the curves trace the mean data. The
parameter σR is the standard deviation of the random displace-
ment vector applied when clusters are mis-centered. Not surpris-
ingly, mis-centering can severely impact both the mean and the
scatter of the richness–mass relation if mis-centering offsets are
comparable to the aperture used for estimating richness (1 Mpc in
our simulations).

draw a random offset vector by randomly selecting a po-
sition angle, and then randomly sampling the offset along
the corresponding axis from a Gaussian of zero mean and
standard deviation σR. We then measure the richness λ
about this new cluster center. Note that we are not en-
forcing the cluster center to fall on a cluster galaxy. This
procedure allows us to vary the mis-centering parameters
in a smooth fashion in order to explore the sensitivity of
our results to the input parameters.
Figure 4 shows how the mean (curves) and scat-

ter (symbols) of the richness–mass relation depends on
the mis-centering parameters for a variety of σR val-
ues: σR = 0.1 Mpc (solid, diamonds), σR = 0.3 Mpc
(dashed, triangles), and σR = 0.5 Mpc (dotted, squares).
The horizontal axis is the probability p that a cluster
be correctly centered. Not surprisingly, when the mis-
centering offset parameter σR is comparable to the λ-
aperture (σR & Rλ/2), richnesses are systematically un-
derestimated and the scatter of the richness–mass rela-
tion is dramatically increased. Importantly, however, no-
tice that miscentering “turns-o” remarkably fast. For
p ≈ 0.85 and σR/R . 0.4, miscentering does not appear
to be an important systematic, but setting p ≈ 0.75 and
σR/R = 0.5 significantly increases the scatter. This is
an important feature that we will return to in Appendix
B of paper III.
What does this imply for the scatter in richness

at fixed mass for maxBCG clusters. At N200 ≈
25 (50), the miscentering parameter p ≈ 0.7(0.8) and
σR ≈ 0.4 h−1Mpc ≈ 0.57 Mpc (Johnston et al. 2007;
Hilbert & White 2010). The richness N200 = 25(50)
corresponds roughly to λ = 30(60). Using our opti-
mal richness estimator, the corresponding apertures are
Rc = 1.1 (1.3) Mpc, and therefore the ratio σR/Rc ≈
0.5 (0.4). Assuming intrinsic Poisson scatter, and using
Figure 4, we expect the total scatter in richness to be
σlnλ|M = 0.48(0.23) for λ = 30(60). The corresponding
scatter in mass at fixed richness is obtained by multiply-
ing the the slope of the mass–richness relation, which we
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estimate in paper III as α = 1.07. Our final estimate
for the scatter in mass at fixed richness for λ = 30 (60)
is therefore σlnM|λ ≈ 0.5 (0.25). The scatter at λ = 60
matches very well with out estimated scatter in mass
from Figure B10 in paper III, while the value obtained
here for λ = 30 is somewhat higher than that in Figure
B10. Importantly, for λ & 60, the centering probability
p increases relative to λ = 60, while σR/Rc decreases.
Putting everything together, this suggests that miscen-
tering of maxBCG clusters is important for clusters with
λ & 60, at which point miscentering “turns on”, and
leads to an increased scatter as a function of richness as
one moves down in λ. This feature is indeed observed
in Figure B10. Note, however, that our estimate for the
scatter in mass at λ = 30 is somewhat higher than that
of Figure B10, which suggests our miscentering model
has too many miscentered clusters at λ = 30, and/or the
miscentering kernel is too large for these systems.

5. THE IMPACT OF PROJECTION EFFECTS ON THE
RICHNESS–MASS RELATION

5.1. Projection Effects in High Density Regions

In section 4, the galaxy density of non-cluster galaxies
was modeled as a uniform density field where the mean
density was set to the mean galaxy density over the entire
sky. In practice, however, clusters reside in high-density
regions, so the mean local galaxy density of non-cluster
galaxies blocal(i, g − r) is enhanced relative to global av-
erage.
Figure 5 shows the ratio of the local galaxy density

blocal(i, g− r) to the global mean b̄(i, g− r) as a function
of magnitude for red-sequence (diamonds) and non-red
sequence (triangles) galaxies. The solid line is a fit to
the red-sequence boost over the region 0.1L∗ ≤ L ≤ L∗.
The local galaxy density is estimated by selecting the
2000 richest maxBCG clusters (as determined using the
richness estimator of Rozo et al. 2009), and then stack-
ing them in narrow redshift bins of width z = z0 ± 0.01.
Within each stack, we compute the mean galaxy density
in an annulus of inner radius Rin = 1 h−1Mpc and outer
radius Rmax = 2 h−1Mpc. It is this galaxy density that
we report as the local galaxy density blocal(i, g− r). Our
choice of annulus is meant to purposely overestimate the
mean galaxy density of non-cluster galaxies, so that we
may place a robust upper limit on the impact that this
galaxy density boost can have on the richness–mass re-
lation.
We use the best-fit model from Figure 5 as a new back-

ground model for our Monte Carlo simulations. The ex-
act model is

bmodel(i, g − r) = (1 + 〈B|i〉)b̄(i, g − r) (18)

where
〈B|i〉 = 〈B20〉 exp(−0.95(i− 20)) (19)

and 〈B20〉 = 0.28. Note that this model is fit over the lu-
minosity range [0.1L∗, L∗], but grows exponentially fast
with i− 20. In practice, the maximum boost we observe
is ≈ 3, so we impose a ceiling at 〈B|i〉 = 3 at very bright
magnitudes. The value of the ceiling has little impact on
our results.
We find that the impact of this galaxy density boost

to the richness–mass relation is unimportant. The rich-
ness of galaxy clusters is boosted by an average of 1.5

Fig. 5.— Ratio of the mean galaxy density in annuli around
maxBCG clusters in the redshift range z = [0.24, 0.26] to the mean
galaxy density of the universe. We have split the galaxy sample
into red-sequence and non red-sequence galaxies since the two pop-
ulations show very different enhancements. The fact that the ratio
is always larger than one illustrates that clusters reside in high
density regions.

Fig. 6.— RMS fluctuations in the local background of red se-
quence galaxies (diamonds) as a function of i-band magnitude for
the redshift bin z = [0.24, 0.26]. The expected rms fluctuations
from a Poisson model in which every cluster explores the same
boosted background density field is shown with triangles, while the
fluctuations of the local density about random points are shown as
squares. The rms fluctuation in the local background is signifi-
cantly larger than Poisson, signaling that cluster-to-cluster vari-
ations in the density of non-cluster galaxies is highly significant.
Note, however, that these local fluctuations are only slightly larger
than those about random points, implying that correlated struc-
tures around galaxy clusters do not dominate the variance in the
local cluster background. The vertical dotted line corresponds to
0.2L∗ at redshift z = 0.25.

galaxies, corresponding to a 3% bias for λ = 50 clus-
ters. The scatter remains very nearly Poisson, with
∆σλout

/ 〈λout〉 ≈ 1.3%. These results are very sensible:
the number of red-sequence galaxies within our chosen
aperture around a random piece of sky is one to a few.
Boosting this mean expectation by 30% can add one or
two more non-cluster galaxies to the richness estimate,
but not much more than that. Thus, the fact that the
mean galaxy density near galaxy clusters is higher than
the global average does not impact the richness–mass re-
lation at a significant level.
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Note, however, that a clustered background implies
not only that the mean galaxy density around clusters
is larger than the global average, but also that there
can be cluster-to-cluster fluctuations in the background
galaxy density. Figure 6 shows the rms fluctuations of
the local background boost B of red-sequence galaxies
(diamonds) along with a best-fit model (solid line). The
rms fluctuations for blue galaxies are always smaller (not
shown for clarity). In all cases, we estimate the rms fluc-
tuation of the galaxy density field by estimating B as
in the previous section using 100 bootstrap resamplings
of the cluster catalog. Also shown for reference is the
rms fluctuation of red-sequence galaxies about random
points (squares), computed in the same way. Because
the number of random points is significantly larger than
the number of clusters available to us, one may worry
that the additional variance we observe is simply due to
measurement error rather than clustering. To test this
hypothesis, we have measured the background fluctua-
tions in Monte Carlo realizations from a model with a
uniform boosted galaxy density, which are significantly
smaller than those for the observed cluster population.
Thus, we confirm that the galaxy density around galaxy
clusters exhibits large cluster-to-cluster fluctuations.
We incorporate these cluster-to-cluster fluctuations in

our background model by setting

bmodel(i, g − r) = (1 +B(i))b̄(i, g − r) (20)

where B is now a random function. As in the previ-
ous section, we have ignored the color dependence of B,
and we treat non red-sequence galaxies as red-sequence
galaxies, which can only increase the impact of the vari-
ance of the density field. For simplicity, we also assume
that the random fluctuations in B at different magni-
tudes are perfectly correlated, so that large overdensities
of galaxies in one magnitude imply a large overdensity
of galaxies at all magnitudes. Not only do we expect
this to be physically reasonable, it should also maximize
the relative importance of projection effects as opposite
fluctuations at different magnitudes cannot cancel each
other out. Our model for the function B(i) is therefore

B(i) = 〈B|i〉+ ∆B(i)

∆B20
(B20 − 〈B20〉) (21)

where 〈B|i〉 and ∆B(i) are fits to the mean and stan-
dard deviation of the boost B(i) of red-sequence galax-
ies observed in the data, and B20 is a random variable
that determines the density boost of i = 20 red-sequence
galaxies. The function 〈B|i〉 is again given by equation
19, while for the standard deviation we adopt

∆B(i) = ∆B20 exp [−0.52(i− 20)] , (22)

with ∆B20 = 0.60 as in the data. The variable B20 in
equation 21 is modeled as a log-normal random variable
of the appropriate mean and standard deviation.
The solid histogram in Figure 7 shows the λout dis-

tribution of 104 realizations of a cluster with λ̄in = 50
with our lognormal local background model. The distri-
bution is clearly peaked near the input value λ̄in, but is
slightly biased, and exhibits a tail that extends to large
λ values, which arise whenever the random background
has an unusually large fluctuation due to random projec-
tion effects. Also shown as a solid curve is the best-fit
Gaussian, where the fit is only performed over the region

Fig. 7.— Richness distribution of a cluster of input richness
λ̄in = 50 in the presence of local background fluctuations. The
level of the local background fluctuations (both its mean and vari-
ance) has been set to the values measured in the SDSS data (see
text for details). The dashed curve is a Gaussian fit to the region

λout ≤ λ̄in + 2λ̄
1/3
in , which has a normalization constant c = 0.99,

implying 99% of the cluster realizations have a scatter that is con-
sistent with Poisson. The non-gaussian tails reflect rare occur-
rences where the background is boosted to very high levels due to
random projection effects.

TABLE 1
Properties of Gaussian Fit to P (λout|λ̄in)

λ̄in 10 20 50 100

1− 〈λout〉 /λ̄in 13.0% 6.8% 3.2% 1.9%
〈λout〉 − λ̄in 1.3 1.4 1.6 1.9

(σλout
− σPoisson)/ 〈λout〉 2.8% 2.2% 1.0% 0.5%

c 95.2% 97.6% 98.9% 99.3%

aHere, σλ is the standard deviation of λ, as opposed to the
standard deviation of lnλ, which we use throughout most of
our work. The difference is simply to allow us to be formally
correct when we quote the relative the difference in terms of
percentages in the table. The difference with respect to quoting
∆σlnλ is insignificant.

λout ≤ λ̄in+2λ̄
1/2
in in order to prevent the tails of the dis-

tribution from affecting the fit. The best-fit parameters
of the Gaussian are 〈λout〉 = 51.53 ± 0.08 and σλout

=
7.92 ± 0.06. Once again, we find a ≈ 3% bias on the
mean, while the width of the best-fit Gaussian remains
close to the Poisson expectation (∆σln λout

= 1.4%). Im-
portantly, however, the integral of the best-fit Gaussian
is not unity. Defining c as the integral of the best-fit
Gaussian, we find c = 0.99, implying that the tail of the
distribution is formed by 1% of the clusters.
The results described above for a λ̄in = 50 clusters

are generic. We have repeated this experiment using
clusters with λ̄in = 10, 20, and 100, and in all cases,
P (λout|λ̄in) exhibited the same features: a main Gaus-
sian peak whose mean is biased high, a width that is
very close to the Poisson expectation, and a normaliza-
tion constant c slightly less than unity. As one might
expect, the impact of a stochastic background is smaller
in richer systems. Table 1 summarizes those results.

5.2. Cosmological Interpretation

Our results paint a very clear picture of how projection
effects operate in the real universe: for the vast major-
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ity of halos — & 99% at high mass and & 95% at low
mass (see table 1) — the density of non-cluster galaxies
within the cluster field has a negligible impact on the
richness estimate for the halo. In roughly 1%− 5% of all
cases, however, the halo resides within a galaxy density
field that is much denser than average, which results in a
large contribution of non-halo galaxies to the richness es-
timate. That is, . 5% of all halos suffer from projection
effects.
Interestingly, this is exactly the kind of picture that

one should expect from CDM cosmologies. To see this,
in the top and middle panels of Figure 8 we show the pro-
jected matter density in spheres of radius R = 170 Mpc
around a random 1014 M⊙ (strictly speaking M =
1.57 × 1014 M⊙) halo in the Millenium Gas Simulation
at z=0 – a GADGET-2-driven replica of the Millennium
Simulation (Springel et al. 2005), where half of the one
billion particles are treated as gas particles subject to hy-
drodynamics; for a further details see (Gazzola & Pearce
2006; Hartley et al. 2007; Stanek et al. 2010). The idea
for these plots comes from the work of Colberg et al.
(1999), who used these type of plots to to understand the
large scale structure about galaxy clusters (Colberg et al.
1999). The 170 Mpc radius is a very conservative esti-
mate for the distance along the line of sight correspond-
ing to the width of the red-sequence, and the gray scale is
chosen so that darker regions correspond to higher densi-
ties, with the top panel being log-scale while the middle
panel is linear. These maps do not look qualitatively
different when we use halos of higher and/or lower mass,
nor when we vary Rmax in the range 100 Mpc−200 Mpc.
Now, consider how an observer would see a cluster.

The line of sight from the observer to the cluster pierces
the density map at exactly one point. Because projection
effects are linear in the density field, the middle panel in
Figure 9 can be thought of as a map of the importance
of projection effects. The fact that this middle panel is
essentially empty reflects the fact that for a uniform line
of sight sampling, most observers will see a cluster with
no projections. Only a small subset of observers will
severely overestimate the richness, as we argued based
on empirical evidence.
This is best illustrated by the lower panel in Figure

8, which was constructed as follows. Starting from the
projected density field, for any given pixel with density
Σpix, we compute the fractional area of the sphere where
Σ ≥ Σpix. Thus, strong overdensities have f . 1, while
strong underdensities have f ≈ 1. In this way, we can
remap the density field from the top and middle panels
into a map of fractional area coverage. We see that the
tight density knots from the top and middle panels cover
only ≈ 1% of the sphere, with filaments cover ≈ 10% of
the area, which is consistent with our empirical estimates
of the fraction of galaxy clusters that suffer from severe
projection effects.
One question that remains to be addressed is whether

or not projection effects are dominated by local struc-
tures or uncorrelated structures. To address this ques-
tion, we compare the variance of the local density field
around galaxy clusters (Figure 6, diamonds) to the
variance around random points in the sky (Figure 6,
squares). If correlated structures dominate the variance
of the density field, then the former will be significantly
larger than the latter. However, this is not what we ob-

Fig. 8.— The projected surface matter density around a random
z = 0, M = 1.57× 1014 M⊙ halo in the Millenium simulation with
gas (Springel et al. 2005; Gazzola & Pearce 2006). Only matter
within a radius R = 170 Mpc of the halo is projected, correspond-
ing to the 2σ interval spanned by the width of the red-sequence.
The density scale is such that darker regions correspond to higher
density, and is logarithmic in the top panel but linear in the middle
panel. Projection effects are linear in the density field, and there-
fore the middle panel can be thought of as a map of how important
local projection effects to that cluster are as a function of line of
sight. Note most lines-of-sight fall in a white, empty space, for
which projection effects are negligible. To better illustrate this, in
the bottom panel we should the same density field, but now color
coded according to the fractional area f , so that a pixel of density
Σpix is assigned a value f that is the fraction of the sphere covered
by pixels with Σ ≥ Σpix. We see that all the dense knots from
the top and middle panels cover only ≈ 1% of the sphere, while
the filamentary structure covers ≈ 10%. This illustrates that CDM
cosmologies predict that most halos do not suffer from projection
effects.

served, so we can conclude that while correlated struc-
tures certainly enhance projection effects, they are not
overwhelmingly dominant.
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It is difficult to say whether this last conclusion — that
correlated structures do not necessarily dominate over-
all projection effects — generalizes to high redshift. On
the one hand, it is expected that the width of the red-
sequence will correspond to increasingly larger distances
along the line of sight, which would tend to make uncor-
related structures more important. On the other hand,
at fixed halo mass, higher redshift halos are rarer peaks,
which would increase the relative importance of corre-
lated structures. Given the relatively modest impact
that correlated structures have at low redshift, however,
we would be surprised if projection effects from uncorre-
lated structure ever becomes negligible.

5.3. Projection Effects, and Their Implication for
Completeness and Purity

When interpreting our results, it is also important to
distinguish the fraction of halos that suffer from projec-
tions effects, from the fraction of optically selected clus-
ters that suffer from projection effects. Specifically, due
to the steepness of the halo mass function, the frequency
of optically selected clusters that suffer from projection
effects will be higher, as at any richness there are al-
ways more low mass halos scattering in and than out.
To estimate this effect, we proceed as follows. First, we
measure the richness λ of every cluster in the maxBCG
cluster catalog (Koester et al. 2007), and fit the corre-
sponding abundance function as a power-law, restricting
ourselves to the richness range 30 ≤ λ ≤ 60.11 We then
select a fraction 1 − c(λ) of the clusters (as measured
from our simulations), boost their richness as described
below, and recompute the richness function. The differ-
ence between the original and boosted abundances gives
the fraction of clusters that suffer from projection effects.
We denote this fraction p(λ), and refer to it as the purity.
For c(λ), we fit the data in table 1 to find

c(λ) = 1− 0.014(λ/40)−0.84. (23)

We consider three distinct methods for boosting the
abundance of galaxy clusters, corresponding to an op-
timistic, a pessimistic scenario, and a super-pessimistic
scenario. In the pessimistic scenario, we assume a halo
of richness λ is projected onto another halo of richness λ,
so the boosted richness becomes 2λ. This is pessimistic
in that for unequal richness projections, the richer of the
two objects can always be considered the main halo. The
super-pessimistic scenario is as the pessimistic scenario,
but we double the number of halos that suffer from pro-
jection effects. In the optimistic case, we simply demand
that the projection effects be larger than Poisson fluctu-
ations, so we set the boosted richness to λ + 2λ1/2. i.e.
projection effects only increase the richness by twice the
standard deviation from Poisson statistics. The motiva-
tion for relying on these simple models rather than our
Monte Carlo simulations is that our simulations are al-
most certainly not correct in detail, but these analytic
arguments should bracket the correct answer.
Figure 9 shows the purity function for our three mod-

els. At high richness (λ & 40), the purity remains high

11 Here, λ is measured as detailed in paper III, rather than using
the simpler filters employed in this work. Over the range of richness
we consider, however, the two agree well. We are not concerned
about the detailed differences since our goal here is only to provide
a rough estimate of projection effects.

Fig. 9.— The predicted purity of the optically selected cluster
as a function of the richness λ. By purity, we mean the fraction
of clusters of richness λ that do not suffer from projection effects.
This quantity is computed using two simple models for projection
effects, an optimistic model (dashed) and a pessimistic one (solid).
The true impact of projection effects is likely to fall somewhere in
between the two lines, and probably closer to our optimistic model.
Thus, a reasonably value for the fraction of clusters that do not
suffer from projection effects for λ ≈ 30 is p = 90%.

(p & 0.9), but quickly decreases with decreasing richness.
Note that by ignoring the curvature of the richness func-
tion, we are somewhat over-estimating the purity in the
high richness range, and under-estimating the purity in
the low richness range. In light of these considerations
and the simple analytic nature of our model, a reason-
able value for the purity function is p ≈ 90%(95%) at
λ = 30 (100).

5.4. Discussion

Our results in this section are most directly compara-
ble to the work of Cohn et al. (2007) (though see also
Cohn & White 2009; Noh & Cohn 2011) who relied on
N-body simulations to explore the impact of local struc-
tures on richness estimates. Their work is highly com-
plementary to ours: N-body simulations provide a very
realistic treatment of correlated structures, whereas rely-
ing on Monte Carlo realizations of simple analytic models
allows us to generate many thousands of cluster realiza-
tions with varying sources of error, a flexibility that was
a necessary component of the study we undertook. It
should also be noted that the work of Cohn et al. (2007)
differs from ours in that they employed a different rich-
ness estimator that is specifically tuned to their simu-
lation, and, as noted earlier, such details will have a
quantitative impact on our results. Despite all these dif-
ferences, the two results reach similar conclusions, with
Cohn et al. (2007) estimating that local projection ef-
fects are important for . 10% of all optically selected
clusters.
It is not too surprising that this is the case. To see

this, we note that that the density boost due to cluster
enviroment satisfies ∆B > 〈B〉 ≈ 0. The only way that
this condition can be satisfied given the constraint B > 0
is if the probability distribution ρ(B) is sharply peaked
near B ≈ 0, but has tails extending to large values of
B. As long as the tail is pronounced, differences in how
one estimates the fraction of objects in the tail will have
little impact on the results.
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Finally, we discuss the consequences of this work for
the classic purity and completeness tests that are of-
ten applied to evaluate optical cluster finding algorithms.
The basic idea in these tests is this: to test completeness
and purity, one takes the survey area, and randomizes
the position and/or color of every galaxy in the survey.
By embedding galaxy clusters at known positions and
redshifts within the shuffled sky map, one can estimate
both purity and completeness.
There are multiple problems with the test we just

described. First, randomizing galaxy positions (e.g.
Postman et al. 1996; Kepner et al. 1999) is equivalent
to setting the background galaxy density to a uni-
form density field, which results in effectively no pro-
jection effects. An alternative possibility is to random-
ize galaxy colors while holding galaxy positions fixed or
minimally displaced (e.g. Goto et al. 2002; Koester et al.
2007; Bellagamba et al. 2010), but we have seen that blue
galaxies are significantly less structured than red galax-
ies, so once again this is not adequate.
The insight developed in this paper allows one to eas-

ily modify these tests to avoid such difficulties. In par-
ticular, given that projection effects by non-correlated
structures appear to be at least comparable to projec-
tion effects from correlated structures, we expect that
simply placing clusters in random points of the sky with-
out galaxy position and color randomization should be
a significantly more realistic test of cluster completeness
and the impact of projection effects (this is similar to the
approach adopted in Wen et al. 2009b). That said, such
a test would still ignore the slight boost to the mean
and variance of the density field near clusters. To fix
this, one could simply displace every cluster by two or
three cluster radii, and re-estimate its richness. Based
on our results, we expect this to be a significantly bet-
ter test for evaluating the performance of cluster-finding
algorithms. Note that when performing such a test, one
will occasionally displace one cluster on top of another.
That is precisely the point: this type of overlap occurs
in reality, so enforcing that clusters not be displaced on
top of one another, as is sometimes done, would lead to
an under-estimate of projection effects.
Of course, one might wonder whether such tests are

even necessary in the advent of large N-body simu-
lations that can be populated with galaxies in ways
that accurately reflect the known universe (see eg.
Miller et al. 2005; Rozo et al. 2007b; Dong et al. 2008;
Milkeraitis et al. 2010, for works that have relied on nu-
merical simulations to calibrate cluster selection). While
such simulations are invaluable, and have, in fact, led to
many improvements in our understanding of optical clus-
ter selection, the development of tests that can be applied
on both on real and simulated data sets have the poten-
tial of being of critical importance. Specifically, if various
systematics can be calibrated directly from the data us-
ing these empirically driven tests, then one can use sim-
ulations to test the efficacy of these methods rather than
having to rely on simulations for calibration purposes,
which can introduce additional systematic uncertainties
that are difficult to quantify.

6. SUMMARY

We have used Monte Carlo simulations to explore var-
ious possible sources of extrinsic scatter of the richness–

mass relation in order to identify which, if any, are non-
negligible. By “negligible”, we mean that the source of
noise under consideration does not increase the scatter of
the richness–mass relation by more than 5% relative to
the Poisson expectation. This criterion is motivated by
the precision required to robustly estimate cosmological
parameters in a DES-like survey (see Appendix A).
We find that cluster-to-cluster variance in the proper-

ties of ridgeline galaxies, photometric errors, and photo-
metric redshift errors are all negligible. Cluster triaxi-
ality is border-line significant, increasing the scatter of
the richness–mass relation by ∼ 5% in the richest sys-
tems. The most significant source of extrinsic scatter by
far is cluster miscentering, though the details of the ef-
fect depends on the model parameters assumed. Using
the Johnston et al. (2007) miscentering model, which is
consistent with weak lensing observations (Oguri et al.
2010), we find that miscentering is likely to be signifi-
cant for λ . 60, but less so above this limit. The to-
tal scatter from Poisson noise plus miscentering is close
to the empirically estimated scatter in Appendix B of
paper III at λ ≈ 60, but appears to over-estimate the
scatter by λ ≈ 30, suggests that the miscentering model
we considered over-estimates the importance of cluster
miscentering at low richness. It is clear, however, that
miscentering is likely to play an important role in the
richness–mass relation, particularly at low masses.
Finally, we considered the impact of projection effects

on the richness–mass relation for a variety of assump-
tions about the environment of galaxy clusters. As one
might expect, we find that clustering of the background
density field plays an important role on projection ef-
fects. Less obvious however is that the boost to the
mean galaxy density around a cluster is unimportant.
Rather, projection effects are sourced by large cluster-
to-cluster fluctuations in the background galaxy density.
Having estimated the variance of the background den-
sity field directly from SDSS data, we demonstrated that
a small fraction of halos (≈ 1% − 5%) are expected to
suffer from severe projection effects. Due to the steep-
ness of the mass function, the relative fraction of opti-
cally selected clusters that suffer from projection effects
is higher, roughly i.e., ∼ 5% − 15%. We emphasize that
all these results are obtained using empirically motivated
assumptions. We also demonstrated that these results
arise naturally in CDM cosmologies, and, indeed, our re-
sults are consistent with those Cohn et al. (2007), who
relied on N-body simulations to answer similar questions.
Our results have important consequences for the clas-

sical purity and completeness tests used to test optical
cluster-finders. Specifically, we demonstrated that sim-
ply randomizing the positions of galaxies in the sky and
then inserting galaxy clusters will grossly underestimate
the importance of projection effects. A much better test
is simply to place the clusters at random points in the sky
without galaxy randomization, or, even better, to simply
displace clusters by two to three cluster radii and then to
re-estimate their richness. Most importantly, if such dis-
placements lead to overlapping clusters, one should keep
those realizations, as such alignments naturally occur in
the data set.
Overall, we believe the results from this work are very

encouraging. Between papers I and III, we believe we
have considered all major modifications that could be
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made to our richness estimator. Consequently, we are
confident our final estimator is very close to optimal.
In addition, paper III also demonstrates that our esti-
mator is extremely robust. With this work, we have
developed a thorough qualitative understanding of the
sources of noise that can significantly impact the scatter
of the richness–mass relation, and we have also been able
to identify the most important observational systematic,
namely miscentering. Importantly, miscentering is not a
problem of the richness estimator, but rather one having
to do with cluster finding: i.e. one needs to know how
to adequately center clusters, a question that we have
not addressed in this work. Finally, we believe we have
provided solid empirical evidence in favor of projection
effects in galaxy clusters being a relatively mild effect,
and what’s more, an effect that can be empirically cal-
ibrated. We intend to return to the question of how to
model all these effects quantitatively in a future paper.

All in all, we think these results justify being hopeful
about our ability to optimize cluster richness estimation
for upcoming photometric cluster surveys, such as DES
and LSST.
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APPENDIX

HOW PRECISELY MUST THE SCATTER BE KNOWN IN A CLUSTER COUNTING EXPERIMENT?

We wish to quantitatively define when a source of scatter is observationally relevant. To do so, let us assume that
the total scatter in the richness–mass relation of galaxy clusters is σtot, and that one performs a cosmological analysis
of cluster abundance data in which the model scatter σmodel 6= σtot. Such an analysis will recover biased cosmological
parameters, with the bias depending on the difference between σtot and σmodel. Of course, if these biases are small
relative to the statistical uncertainties in the experiment, then they are not observationally relevant. Here, we consider
deviations of the total scatter σtot from the model scatter σmodel where the model scatter is Poisson, and the total
scatter includes extrinsic sources of scatter such as those considered in the main body of this work.
We address this problem within the context of a DES-like cluster cosmology experiment. For our fiducial survey,

we assume a survey area of 5000 deg2, split into cells of 10 deg2 area each, and a cluster selection threshold Mobs ≥
7 × 1013 M⊙ over a redshift range 0 ≤ z ≤ 1. We further assume the cluster sample is binned in mass bins of width
±∆ log10 Mobs = 0.1, corresponding to 5 bins per decade in mass, and we adopt a log-normal model for Mobs–Mtrue

relation, with

〈lnMobs|Mtrue〉=a+ b lnMtrue + c ln(1 + z) (A1)

σlnMobs|Mtrue
=constant = σtrue. (A2)

We assume both Mtrue and Mobs are measured in units of 7× 1013 M⊙, and set as our fiducial parameters a = c = 0
and b = 1.
Using the Fisher matrix technique described in detail in Wu et al. (2008), we then estimate what the cosmological

constraints derived from our fiducial cluster sample would look like, assuming that the data is analyzed using the
standard self-calibration technique, and that the scatter is fixed a priori to a known value σmodel. We do not, however,
enforce that σmodel be identical to σtrue. Indeed, for any cosmological parameter p, the two most important numbers
that come out of the Wu et al. (2008) Fisher matrix analysis are: a) the offset ∆p = pobs−ptrue between the recovered
value of the cosmological parameter p and its true value, and b) the estimated statistical uncertainty σ(p). Thus,
given any combination of σtrue and σmodel, we can estimate the ratio ∆p/σ(p), and determine whether the difference
between σtrue and σmodel is observationally relevant or not.
Figure A1 shows contours of the ratio ∆p/σ(p) for the dark energy parameters w0 and wa as a function of the scatter

σtrue, and the a priori scatter value σmodel employed in the cosmological analysis. As is to be expected, the ratio
∆p/σ(p) goes to zero as σmodel → σtrue, and increases as the difference between these two quantities increases. The
two diagonal dash lines mark the equalities σmodel = σtrue ± 0.05. As we can see, as long as σmodel is within about
0.05 of the the true scatter σtrue, then the ratio ∆p/σ(p) . 0.5 for both w0 and wa. In light of these considerations,
we define an extrinsic source of noise as observationally relevant as one for which σtrue − σmodel ≥ 0.05.
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Fig. A1.— Systematic errors in the inference of dark energy parameters w0 and wa due to errors in modeling the scatter. The contours
and numbers show the systematic errors ∆w0 (∆wa) compared with statistical errors σ(w0) (σ(wa)). The y-axis σmodel indicates the
scatter value we use in the analysis, while the x-axis σtrue indicates the underlying true scatter. As can be seen, if σtrue − σmodel ≥ 0.05,
the recovered dark energy parameters will be significantly biased.


