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ABSTRACT

The magnetorotational instability (MRI) may dominate outward transport of angular momentum
in accretion disks, allowing material to fall onto the central object. Previous work has established
that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system.
Recently, however, simulations of the scaling of the angular momentum transport parameter αSS

with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport
astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations
including explicit physical viscosity and resistivity to show that when vertical stratification is included,
mean field dynamo action operates, driving the system to a configuration in which the magnetic field
is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity
conservation, allowing the generation of a mean field on timescales independent of the resistivity.
Our models demonstrate the existence of a critical magnetic Reynolds number Rmcrit, below which
transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and
Pm-independent. Prior simulations showing Pm-dependence had Rm < Rmcrit. We conjecture that
this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not
depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters
suggests that disks around both protostars and stellar mass black holes have Rm >> Rmcrit. Thus,
we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.
Subject headings: MHD: Instabilities

1. INTRODUCTION

Accretion disks form in a wide variety of astrophys-
ical objects, from active galactic nuclei to dwarf no-
vae and protostars. In the former two, disks are re-
sponsible for the tremendous luminosities, while in the
latter they are the site of planet formation. Under-
standing the structure and evolution of disks is there-
fore critical to understanding each of these objects. The
successful Shakura & Sunyaev (1973) model of accre-
tion disks relies on viscous transport of angular mo-
mentum outward through the disk, allowing mass to
spiral inwards. The amount of viscosity necessary to
explain observations requires turbulence, as molecular
viscosity is far too small. Shakura & Sunyaev (1973)
parametrized the turbulent stress providing this viscos-
ity by αSS = (〈ρuxuy〉 − 〈BxBy〉)/P0 where P0 is the
midplane pressure of the disk. The magnetorotational
instability (MRI) offers the most viable mechanism for
providing these enhanced levels of angular momentum
transport (Balbus & Hawley 1998). It is known to sat-
urate in a magnetohydrodynamic turbulent state that
transports angular momentum outward through the disk.
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Aside from its central role in accretion disk theory,
the MRI also provides an interesting system in which to
study mean field dynamo theory. Starting from a zero-
net flux magnetic field configuration, the MRI acts as a
mean field dynamo, generating strong, fluctuating fields
with order at wavelengths as large as the simulation box
(Brandenburg et al. 1995; Hawley et al. 1996). The sys-
tem, fed by the free energy from Keplerian shear, can
sustain angular momentum transport with only a weak
(sub-equipartition) field and the presence of a negative
radial gradient in angular velocity. Because the turbu-
lence is driven by the MRI itself, the Lorentz force is
essential to the operation of the dynamo, ensuring that
the system is never in a kinematic phase (Hawley et al.
1996).
In recent years, the MRI has become the target of

intense numerical investigation owing to recent studies
showing a decline of the angular momentum transport
rate with increasing resolution (Fromang & Papaloizou
2007; Pessah et al. 2007) in the simplest 3D systems
that demonstrate MRI turbulence: unstratified, peri-
odic, shearing boxes. Lesur & Longaretti (2007) and
Fromang et al. (2007) showed that this decline can be de-
scribed as a rather steep power-law dependence of trans-
port on the magnetic Prandtl number, Pm ≡ ν/η, the
ratio of viscous momentum diffusion to resistive magnetic
diffusion. Given that real astrophysical disks, especially
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protoplanetary disks, have extremely low Pm ∼ 10−8

(Balbus & Henri 2008), this would imply that the MRI
could not be responsible for angular momentum trans-
port in such systems.
Subsequently, several authors have attempted to ex-

plain these angular momentum scaling results, and in
doing so suggest why they may not be applicable to ac-
cretion disks. These include the idea that unstratified
shearing boxes lack a characteristic outer scale (Vishniac
2009); that the initial magnetic field strength in the
Fromang et al. (2007) simulations is too weak and they
are thus stable to non-axisymmetric MRI modes that are
essential to sustained transport (Kitchatinov & Rüdiger
2010); or that an unstratified shearing box with periodic
boundary conditions cannot sustain large scale dynamo
action, and small-scale dynamo action is known to be
Pm-dependent, thus rendering the magnetic field neces-
sary for the MRI susceptible to similar Pm-dependence
(Käpylä & Korpi 2010). A pair of recent papers has
demonstrated that even without explicit viscosity and
resistivity, stratified MRI simulations do converge to
a consistent value of αSS with increasing resolution
(Davis et al. 2010; Shi et al. 2010). This strongly sug-
gests that stratification plays a major role in the dynam-
ics and saturation of the MRI, and demands a thorough
investigation of how it does so, especially in the case of a
zero-net flux field, where dynamo action is inextricably
linked to continued accretion.
In the absence of an externally imposed mean field, the

shearing box system can completely destroy the initial
magnetic field. For sustained turbulence to be possible,
the MRI must create field by dynamo action. This field in
turn allows the continued excitation of new MRI modes.
Thus, the zero-net flux shearing box is a non-linear sys-
tem balancing fluctuating, dynamo-generated fields with
MRI generated turbulence. In order to understand the
angular momentum transport from MRI turbulence and
how it scales with the physical parameters of the system,
we need to understand the underlying dynamo operates.
In this paper, we focus our analysis on the question

of dynamo action in the MRI and attempt to under-
stand the connection between mean field dynamos and
the amount of angular momentum transport. We include
explicit viscosity and resistivity in order to consider the
role of the viscous and magnetic Reynolds numbers Re
and Rm in stratified disks. By considering a broader
range of Pm than previous studies, we find evidence for
the existence of a critical magnetic Reynolds number in
stratified disks. This Rmcrit may represent a boundary
for sustained dynamo activity, which in turn controls an-
gular momentum transport. We note two dynamo be-
haviors, one corresponding to a sustained, organized dy-
namo, and the other corresponding to a transient, chaotic
dynamo. These behaviors manifest above and near the
critical Rmcrit, respectively. We then attempt to con-
nect the properties of the stratified MRI to other, better
studied dynamo systems at high and low Pm. Specifi-
cally, we focus on the conservation of magnetic helicity,
and attempt to understand why the MRI is able to build
mean fields on a relatively rapid timescale compared with
other mean field dynamos. We find that the MRI gen-
erated dynamo fields are not significantly helical at any
time during their evolution, and this fact explains why
their growth is not limited by the resistive timescale as

might be expected for fully helical fields.
This study is most similar to the work of

Käpylä & Korpi (2010), in that we consider the effects
of boundary conditions on the transport of magnetic he-
licity and its relation to the generation of large-scale
magnetic fields. However, we consider the effect of vary-
ing Pm on stratified shearing boxes. Furthermore, we
attempt to understand why the stratified but periodic
simulations of Davis et al. (2010); Shi et al. (2010) show
convergence with resolution. Because of their periodic
boundary conditions, they cannot support the same type
of flux-transport dynamo action that renders angular mo-
mentum transport independent of Pm in the simulations
of Käpylä & Korpi (2010). It is our conclusion that, de-
spite the presence of a large scale dynamo, the large scale
field is not helicity limited, though the MRI does eject he-
licity through open boundaries if they are present. This
explains why the MRI dynamo can operate in periodic
boxes, and points toward a theoretical understanding of
the non-linear shearing box system. Additionally, the dy-
namo period does not show a discernible dependence on
Pm. Most importantly, we find that the angular momen-
tum transport coefficient appears independent of Pm as
long as the magnetic Reynolds number Rm remains above
a critical value, Rmcrit ∼ 3000 .
In § 2, we review our methods. We present the scaling

results in § 3, followed by a discussion of the importance
of magnetic helicity conservation for these results in § 4.
We conclude and note several avenues for future work in
§ 5.

2. METHODS

Using the shearing box formalism (Hawley et al. 1995;
Regev & Umurhan 2008), we study a stratified patch of
a Keplerian accretion disk threaded by an initial mag-
netic field of the form B0 = B0 sin(x)ez with maximum
midplane value of plasma β = 2c2s/v

2
A ≃ 89. We solve the

equations of isothermal, compressible magnetohydrody-
namics using the Pencil Code2 (Brandenburg & Dobler
2002; Johansen et al. 2009), a spatially sixth-order, tem-
porally third-order finite difference method. The con-
straint ∇ ·B = 0 is enforced by solving the evolution
equation for the magnetic vector potential,

∂A

∂t
+u0

y

∂A

∂y
= u×B+

3

2
ΩAyêx + η∇2A+ η3∇6A+∇φkep,

(1)
where η3∇6A is a hyperdiffusion operator to dissipate
excess energy at the grid scale, and the second terms on
each side are from the shearing box formalism. We use
similar hyperdiffusion terms on all dynamical equations
(see Johansen & Klahr 2005; Oishi et al. 2007). The
value of η3 given in Table 1 is chosen so that the hy-
perdiffusive Reynolds numbers are roughly unity at the
Nyquist scale, where ReNy = urms/η3k

5
ny. the magni-

tude of the hyperdiffusion operators is chosen for numer-
ical stability and speed, and has no significant effects on
our results. The hyperdiffusivity scales inversely with the
grid size dx, so the convergence seen in our high resolu-
tion runs suggests that Rmcrit is unlikely to be affected
by the value of the coefficient.

2 http://www.nordita.org/software/pencil-code/
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In order to study the effects of Pm on the saturated
MRI turbulence, we vary the viscosity ν and resistivity
η. We define Re ≡ SH2/ν and Rm ≡ SH2/η, where
S = Ωd logΩ/d log r = qΩ = −3/2Ω is the (Keple-
rian) shear rate in the box in units of rotation Ω and
H2 = c2s/Ω

2 is the scale height of the disk. Note that
our definition of S is opposite in sign with respect to
Lesur & Longaretti (2007); there is no consistent defi-
nition. We set cs = H = Ω = µ0 = 1, choosing our
units to minimize the number of values we need to re-
member. In these units, Re = 1.5/ν, Rm = 1.5/η, and
B0 = 0.15. The advantage of defining Re and Rm this
way is that they can be set a priori, though they do not
measure the relative effects of advection and dissipation
in the saturated state of the MRI. Because our Re and
Rm are a priori parameters, we have checked that they
correlate with the ratio of turbulent advection to dissipa-
tion, Re′ = urms/k1ν and Rm′ = urms/k1η, respectively.
Here, k1 = 2π/Lz is the smallest integer wavenumber in
the box. Note that k = k1/2 is consistent with the ver-
tical field boundary conditions, and large-scale fields of
this size can also fit within the box. This data is pre-
sented in Table 1. Indeed, in Figure 1 Rm is particularly
well correlated with Rm′.
Table 1 summarizes the parameters of our models. We

report resolution in terms of zones per scale height, with
a standard resolution of 64 zones/H, though we also ran
three simulations with 128 zones/H to confirm the con-
vergence of our results. All of our runs use cubic zones,
dx = dy = dz and were run for 100torb. Our standard
box size is 1H× 4H× 4H.
Our simulations are periodic in y (azimuthal), shear-

ing periodic in x (radial), and one of three differ-
ent choices for z (axial): periodic, perfect conductor,
or vertical field (hereafter VF). Among these choices,
the first does not allow a flux of magnetic helic-
ity out of the simulation domain, while the others
do. This has a significant effect on the resulting dy-
namo action and turbulence, though not nearly as dra-
matic as in the unstratified results of Käpylä & Korpi
(2010). Vertical field boundary conditions ensure Bx =
By = 0 on the upper and lower boundaries. They
have been used before in a number of accretion disk
(e.g. Brandenburg et al. 1995; Ziegler & Rüdiger 2001;
Käpylä & Korpi 2010; Gressel 2010) and magnetocon-
vection (Hurlburt & Toomre 1988) simulations as a sim-
plified version of the vacuum boundary conditions appro-
priate to the surface of a disk or star. The total magnetic
flux in this case is not conserved, but is free to grow or
decay in the Bx and By components, thus allowing a
mean field dynamo action within the domain in a com-
putationally convenient manner, though they provide a
somewhat artificial constraint on the field at the bound-
aries. They are known to produce spurious current den-
sity near the boundaries (Ziegler & Rüdiger 2001), but
this effect does not significantly affect bulk properties of
the flow, as we show below. The vertical field conditions
are implemented in our vector potential code by setting
∂zAx = ∂zAy = Az = 0 at the z boundaries.

3. RESULTS

Here, we present the main results from the suite of
simulations described in Table 1.

3.1. Scaling with Pm and Rm

Figure 2 shows that the dependence of αSS on Pm is
not well described by a single power-law at a given Re,
as had been previously claimed for unstratified shearing
boxes by Lesur & Longaretti (2007) and Fromang et al.
(2007). The points are the mean αSS for all times
t > 20torb, and the error bars represent the standard
deviation over that range. These runs all use the VF
boundary conditions. The figure shows evidence of a
cut-off that moves to higher Pm as Re decreases. This
is indicative of a critical Rm, most visible for Re = 3200
(center left) and Re = 9600 (lower left). Above Rmcrit,
it appears that αSS is consistent with a constant value.
These data show that the behavior of the stratified, zero
net flux MRI system has two distinct regimes, controlled
by Rmcrit. When Rm < Rmcrit, the transport is strongly
dependent on Pm; when Rm > Rmcrit, the transport is
independent of Pm. Given that astrophysical disks have
typical Re & 1016, this result means that the MRI is ca-
pable of robust angular momentum transport even at low
Pm, so long as Rm > Rmcrit. We discuss these estimates
in more detail in § 5 and suggest that this criterion is
easily met in most disks.
We recast these results in the (Rm,Re) plane in Fig-

ure 3. This figure makes clear the fact that along with a
reduced but still-present Pm-dependence, there is a fairly
clear critical Rm: transport is significantly reduced left
of the vertical line near Rm ∼ 3000. As the simulations
approach Rmcrit, the αSS variance increases significantly.

3.2. Two Dynamo Behaviors

Figure 4 shows that the MRI appears to operate in
two distinct dynamo states, one in which regular 〈By〉
cycles appear with a characteristic period of τB ∼ 10torb,
and one with irregular variations with timescales on the
order of ∼ 50torb. The key control parameter appears to
be Rm, as the second, third, and fourth panels from the
top show the regular behavior despite being at different
Pm. There is no discernible trend in cycle period with
Pm, though the top panel, with Rm = 12800,Pm = 2
seems to show an intermediate behavior. However, all
runs with Rm . 3200 conclusively show the irregular
behavior. There appears to be a secondary Pm effect
as well, since the two Rm = 3200 models show different
behavior depending on Pm (third and fifth panels from
the top).
These two drastically different behaviors complicate ef-

forts to ascertain scaling properties of the MRI as a func-
tion of dimensionless parameters. The range of available
Pm is limited by numerical resolution both from above
and below: large values of Pm imply a viscous scale much
larger than the resistive one, while small Pm implies the
opposite. Since both length scales must fit on (and be
resolved by) the grid, and indeed neither can be so large
as to stabilize the largest linear MRI modes that fit in
the simulation box, our parameter range is necessarily
limited. Furthermore, since low Rm runs transition to
a very different behavior with much larger cycle period
and very different turbulent properties in a discontinuous
fashion, our range of available Pm space for the regular
dynamo mode is further limited.
Thus, in what follows, we briefly describe the irregu-

lar dynamo before focusing on connecting the details of
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the MRI turbulence in the regular region of parameter
space to better-established results on small and large-
scale dynamo action. The MRI is known to produce
both small and large scale dynamo action, the latter
typically requiring stratification or open boundary con-
ditions (though Lesur & Ogilvie (2008) demonstrate a
large scale dynamo with neither). The small-scale dy-
namo for driven, isotropic, homogeneous, incompressible
turbulence has Rmcrit that increases with decreasing Pm
(Schekochihin et al. 2005), and thus it behooves us to un-
derstand how MRI turbulence fits into this picture.

3.3. Irregular Regime

When Rm drops below Rmcrit, the mean field dynamo
switches to a irregular regime, showing quasi-periodic
magnetic cycles, with longer cycle lengths (one hesitates
to call them periods) ∼ 40torb (see the lower two pan-
els of Figure 4). This is consistent with Figure 15 of
Davis et al. (2010), who also showed long cycle lengths
in highly resistive simulations. In this regime, the turbu-
lence often appears only in one half-plane, either z > 0
or z < 0, sometimes staying that way for nearly the du-
ration of the simulation. This kind of behavior at first
appears unphysical, as the stratified shearing box system,
while having odd parity about the midplane, should not
necessarily damp perturbations of one helicity more than
the other. Indeed, in all simulations, the kinetic helic-
ity shows erratic fluctuations of sign with respect to the
midplane.
However, this is explainable in a simple α − Ω treat-

ment. The only prerequisite for this explanation is
that the two half-planes be dynamically decoupled from
one another. For the case of VF boundary condi-
tions, By(z = ±Lz) 7→ 0. The largest wavenum-
ber modes compatible with this boundary condition are
By ∝ sin(2π/Lzz) and By ∝ sin(π/Lzz), corresponding
to k = 1 and 1/2, respectively. The α−Ω dynamo oper-
ates when the mean induction equation takes the form

∂t〈B〉 = α〈B〉 − qΩ〈Bx〉ŷ + η∇2〈B〉. (2)

If during a cycle period, the MRI turbulence shuts off,
the α effect that it produces will cease, leaving a mean
induction equation that looks like

∂t 〈Bx〉 = η∇2 〈Bx〉 (3)

for the x component and

∂t 〈By〉 = −qΩ 〈Bx〉+ η∇2 〈By〉 (4)

for the y component. Because the decay time for modes
is roughly tdecay ≃ 1/k2η, small scale structure will
undergo selective decay, leaving only the largest scale
modes, the decay time of which is ∼ 108torb for Rm =
1600. At this stage, 〈By〉 has about this much time to
grow linearly via stretching of any residual 〈Bx〉 to am-
plitudes at which non-axisymmetric MRI can reestablish
fluid turbulence and hence an α effect. If the two half-
planes are not strongly coupled, it is possible that the
turbulence will die out in one half of the box first, lead-
ing to an α effect only in the upper or lower midplane.
This scenario is essentially the same as the one demon-
strated in the midplane by Simon et al. (2011).

3.4. Dynamo coefficients

Understanding the origin of the scaling of angular
momentum transport with magnetic Prandtl number
requires understanding the underlying field generation
mechanism. Gressel (2010) has demonstrated that the
field patterns present in the MRI can be explained in
terms of a mean-field dynamo model that includes dy-
namical α-quenching, a mechanism that modulates α by
enforcing magnetic helicity conservation as the mean field
grows (see § 4.2 for more details). Here, we decompose
fields from the simulations into their mean and fluctu-
ating components, B = B̄+ b, where B̄ is a horizontal
(x− y) average and b is the fluctuating field. We denote
full box averages as 〈B〉. In the standard α−Ω dynamo
mechanism, the α effect of isotropic, helical turbulence
generates poloidal field from toroidal fields, which are in
turn sheared out by differential rotation Ω and regen-
erate toroidal field, thus leading to exponential amplifi-
cation. Based on the early work of Brandenburg et al.
(1995), the traditional α − Ω scenario can explain the
observed periodic dynamo generation and propagation
of B̄y away from the disk midplane if the α term has the
opposite sign of that expected from rotating, stratified
turbulence (the strong Keplerian shear has no problem
stretching poloidal field to generate toroidal field; the is-
sue at hand is generating the former). However, that
expected sign was derived from an analysis that only as-
sumed the presence of a kinetic αK effect from the helic-
ity of the fluid turbulence. Once the magnetic αM from
the Lorentz force is also included (Pouquet et al. 1976)
(see also § 4.2), the total α = αK + αM is dominated
by αM = 1/3τ〈∇ × va · va〉, where τ is a typical turbu-
lent correlation time and va = b/

√
4πρ. The total α has

the required sign (Gressel 2010). While we similarly find
that αM ≃ 10αK , our results for the z profile of αM (and
thus the total α) appear to contradict those of Gressel
(2010). Figure 5 shows the αM profile for three simula-
tions with Pm = 1, 4 and Re = 3200, 6400, 12800. There
is no monotonic trend with Pm, and there are some dif-
ferences in shape, but the overall profile is negative in the
upper plane (z > 0) and positive in the lower, opposite
to that found by Gressel (2010). However, it is worth
noting that both the Re = 12800 and the Re = 3200
runs show a reversal of the αM (z) profile near the mid-
plane, just as found by Gressel (2010), though with the
opposite sign.
The only significant differences between his study and

ours are the vertical boundary conditions on the fluid,
which are outflow in his case, and the fact that his
domain covers 6H , while our domains typically cover
4H . We have run one simulation, with Re = 6400 and
Pm = 4, with a vertical domain of 6H . Figure 6 shows
αM (z) for both the standard and extended domain for
this model. The figure suggests a possible explanation
for the discrepancy between our models and Gressel’s.
When we enlarge our domain, we see regions with |z| & 2
showing a positive αM effect, while the regions |z| . 2
are roughly the same between the 4H and 6H models,
outside of narrow boundary layers in both cases. Thus,
our models just appear to show a stronger reversal of
the sign of αM near the midplane than does Gressel
(2010). Given that buoyancy and Parker instabilities be-
come more prominent with height, it seems that the most
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likely explanation for the discrepancy between our results
and Gressel’s is a combination of a reduced domain for
our results and the outflow fluid boundary conditions in
Gressel’s work. The outflow boundary conditions allow
buoyant fluid to escape out of the top of the box, while
our closed, stress free lids force that flow to recirculate.
Thus, we do not consider out apparently discrepant re-
sults to actually be evidence against the standard α−Ω
mechanism acting to drive the observed dynamo phe-
nomenology.

4. DISCUSSION

4.1. Comparison with previous work

In order to place our results in the context of other
recent studies, we begin by comparing our results to
the unstratified results presented by Käpylä & Korpi
(2010). These authors performed two series of unstrat-
ified shearing-box simulations of the MRI, both initial-
ized with zero-net magnetic flux in the z-direction. One
set of simulations had periodic boundary conditions on
the magnetic field on the z boundary, the other had VF
boundary conditions. Käpylä & Korpi (2010) show that
in the latter case, the angular momentum transport co-
efficient αSS is independent of Pm, while with periodic
boundary conditions, αSS ∝ Pm2. We find that even
with periodic boundary conditions, a stratified disk with
high enough Rm has αSS basically independent of Pm.
We are not the first to suggest a critical Rm for

MRI turbulence. In the unstratified case, Fleming et al.
(2000) and Sano & Stone (2002) both noted the exis-
tence of a sharp cutoff in αSS when the resistivity ex-
ceeded a certain value. The latter study used the El-
sasser number, Λ = v2A0/ηΩ (though they refer to this
as Rm). However, aside from using Λ, their results also
measure the αSS cutoff as a function of the initial mag-
netic field strength, for both net flux and zero-net flux
initial fields. In our case, we do not make reference to the
initial field strength; instead, by using the instantaneous
value of Rm as our parameter, we measure the relative
action of shear against dissipation. This is the appropri-
ate measure for a non-linear, self-sustained system such
as the stratified, zero-net flux MRI that we study here,
because any dynamo-generated energy must ultimately
come from the free energy in the shear flow.
More recently, a controversy regarding the role of chan-

nel modes in saturating the unstratified MRI when a net
z field is present has led to similar results regarding the
Rmcrit for MRI-driven transport. Pessah (2010) demon-
strated the existence of a critical Λ below which the an-
gular momentum transport by the MRI dropped off dra-
matically. Numerical simulations of the same problem by
Longaretti & Lesur (2010), though seemingly disproving
the Pessah (2010) saturation mechanism, also suggests a
trend similar to the one we report, with two regimes sep-
arated by Pm ∼ 1. With Pm < 1, the transport scaling
is dominated by Rm, while above it the scaling is mostly
with Pm. Their primary aim was to elucidate the role
of axisymmetric channel modes in the saturation of MRI
turbulence in the presence of a net z field. In our study,
there are no channel modes, as there is no net z field,
and it is not too surprising that our results are slightly
different. Indeed, the physics our control parameter is
attempting to represent is not the growth rate and wave

number of a (quasi-)linear channel mode, but instead a
turbulent dynamo that tends to create a net toroidal field
(y-field in our simulations), on which any MRI growth
is non-axisymmetric and thus transient though with ex-
tremely high growth factors (Balbus & Hawley 1992).

4.2. Dynamo Action and Current Helicity

We interpret our results in light of the ability of the
system to build up a large scale magnetic flux. Our re-
sults suggest that, with stratification, the MRI can act
as a mean-field dynamo with any boundary conditions,
unlike the unstratified case. In order to clarify terms,
we will refer to a mean-field dynamo as any system ca-
pable of building magnetic fields at the lowest possible
wavenumber in the box, either k = 1 in the periodic case
or k = 0 (a true mean field) in the case including a VF
boundary condition.
In the modern picture of mean-field dynamo theory,

ensuring the conservation of magnetic helicity,

H ≡ 〈A · B〉 , (5)

provides an important constraint on the evolution of the
mean field. Magnetic helicity conservation provides both
a compelling physical mechanism for the existence of
mean field dynamos as well as quantitative predictions
for saturated field strengths and the timescales neces-
sary to reach those strengths. We briefly sketch out some
background related to magnetic helicity conservation and
then apply it to our MRI simulations.
The evolution equation for H can be written

dH

dt
= −2η 〈J ·B〉 − 2

∮
(A×E+ φB) · n̂dS, (6)

where Ohm’s law gives E = −U×B + ηJ and φ is an
arbitrary gauge term in the definition of the vector po-
tential (Brandenburg & Subramanian 2005). In our sim-
ulations we use the Kepler Gauge, φ = Ukep ·A; see § A
for more details as well as Brandenburg et al. (1995).
The first term is due to resistivity acting on the cur-
rent helicity C ≡ 〈J · B〉, while the second is a bound-
ary flux term that can entirely determine the behavior
of the MRI in unstratified simulations (Käpylä & Korpi
2010). In the stratified case, the vertical boundary condi-
tions are considerably less important. This is evident in
the periodic, stratified simulations of Davis et al. (2010),
who find sustained turbulence for lower Pm than similar
unstratified boxes. We note that our gauge choice elimi-
nates all possible horizontal magnetic helicity fluxes (see
Hubbard & Brandenburg 2011, for a detailed explana-
tion), leaving only the possibility of vertical fluxes, which
could be driven by a turbulent diffusivity or shear, as in
the case of Vishniac & Cho (2001).
By using an eddy-damped, quasi-normal, Markovian

closure scheme, Pouquet et al. (1976) demonstrated that
current helicity drives a magnetic αM effect, akin to
the fluid α effect of classical mean field dynamo theory.
This αM in turn leads to an inverse cascade of magnetic
energy, and thus the build up of large scale magnetic
field. That inverse cascade can be seen simply as a re-
sult of the conservation of magnetic helicity. We out-
line this process following Brandenburg & Subramanian
(2005). Consider a fully helical field, which has its scale-
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dependent relative helicity,

H(k) =
kH(k)

2M(k)
= 1. (7)

H(k) and M(k) are the Fourier transforms of magnetic
helicity and magnetic energy, respectively. H = 1 implies
kH(k) = 2M(k). The non-linear terms allow coupling
only among modes k and p satisfying p + q = k, where
q is an arbitrary mediating wavenumber in the three-
wave interaction, helicity is conserved for each mode, so
pH(p) = 2M(p) and qH(q) = 2M(q). Since energy is
conserved in the interaction, M(k) = M(p) +M(q), and
thus pH(p)+qH(q) = kH(k). Because helicity must also
be conserved, H(k) = H(p) +H(q), and

k =
pH(p) + qH(q)

H(p) +H(q)
. (8)

If k is the final wavenumber, one of p or q is the starting
wavenumber, and Equation 8 demands that k is less than
or equal to the maximum of p or q. Since k is smaller than
or equal to the parent wavenumber, this corresponds to
an inverse cascade of magnetic energy. Pouquet et al.
(1976) explicitly relate this to the current helicity, and
construct a magnetic αM term that back-reacts on the
flow as this cascade proceeds.
This formalism gives a heuristic explanation for the ex-

istence of a mean field dynamo driven by small-scale, he-
lical flows, and incorporating the magnetic helicity con-
straint into mean field dynamo models allows them to
correctly predict the saturation behavior of α2 dynamos
(Brandenburg 2001). Here, we want to understand the
MRI dynamo action in our simulations in light of the
constraints imposed by helicity conservation. We explore
both boundary terms and scale transfer of H .
We begin by testing the Pencil Code’s numerical con-

servation of magnetic helicity. For a system with peri-
odic boundary conditions, the second term in Equation 6
is zero, and the only contribution to changes in helicity
can come from resistively limited current helicity fluctua-
tions. Therefore, if our simulations numerically conserve
helicity, a run with periodic boundary conditions should
show helicity variations only on a resistive timescale. In
order to establish that helicity conservation is robust in
our simulations, we ran a simulation with Re = 3200 and
Pm = 2, with periodic boundary conditions, and tracked
the time evolution of magnetic and current helicities (up-
per panel of Figure 7). We used a simple forward Euler
scheme to integrate dH/dt = −2ηC with volume average
data from the simulations. The H(t) that results from
this integration is shown in Figure 7 as the green tri-
angles, while the H calculated directly during the run is
given by the blue solid line. The agreement is quite good,
considering the crudeness of the integration method and
the sparseness of the data (it is only sampled at intervals
of 100 timesteps). As a result, we are reasonably confi-
dent that our simulations conserve magnetic helicity.
Moving to the case with VF boundary conditions, the

lower panel of Figure 7 again shows the current helic-
ity and the now-gauge dependent quantity H = 〈A · B〉.
Because of the presence of the gauge in the second term
of Equation 6, this quantity is not physically meaning-
ful itself. However, it is well-defined and provides a clue
as to the behavior of the system. Once again, we inte-

grate −2ηC using C in the same way. We expect that
if magnetic helicity ejection occurs as a result of MRI
turbulence, the value of H resulting from this integra-
tion will not track the actual value from the simulation,
and indeed the lower panel of Figure 7 shows that it
does not. Because of our gauge choice, we know that
the flux of magnetic helicity flux density must be verti-
cal, and this figure confirms that significant amounts of
helicity escape. Furthermore, H fluctuates considerably
more frequently in the VF case than in the run with peri-
odic boundary conditions, showing that the timescale for
variation of the global magnetic helicity decreases con-
siderably when a helicity flux is allowed.
How does transport work in the periodic case, when

there is no boundary flux? The only way for net helicity
to change in this case is via resistive effects. Typically,
resistively limited systems lead to lead to catastrophic
quenching of the dynamo effect, where saturated mag-

netic energy is ∝ Rm−1/2 (Vainshtein & Cattaneo 1992).
We have shown that this is not the case in the strati-
fied MRI: boundary conditions do not make significant
differences in the transport (Figure 8) and for vertical
field boundaries, Figure 4 demonstrates that the satu-
rated large-scale field strength does not decline strongly
with increasing Rm. Vishniac & Cho (2001) suggested
a potential solution to this situation: helicity may not
need to be ejected entirely across a system boundary (as
in, say, a coronal mass ejection in the Solar dynamo).
It could instead be transported spectrally, transferring
from small scales to large. Indeed, Brandenburg (2001)
show that exactly this occurs for a helically driven turbu-
lence simulation with no shear or rotation–the prototypi-
cal α2 dynamo. However, in this case, while equipartition
fields are built even for periodic boundary conditions, the
timescale required to do so is tsat ∝ η−1: instead of catas-
trophic quenching for low resistivity, there is a catas-
trophic timescale problem instead (Brandenburg 2001).
While our data is not conclusive on the relationship be-
tween Rm, Pm, and the cycle period of large scale mag-
netic fields, it certainly does not suggest an inverse rela-
tionship between tsat and Rm.
The two runs in Figure 7, taken together, tell an in-

triguing tale: the stratified MRI can transport angular
momentum and build large scale magnetic energy even
without a global helicity flux, but if one is allowed, the
system does transport helicity across the domain bound-
ary. Ultimately, as any boundary condition is in some
sense an approximation of reality, we must understand
the details of the accretion disk dynamo independent of
the choice of such conditions.
The MRI is difficult to analyze in terms of a simple,

two-scale mean field model: it does not present a sin-
gle energy injection scale at which we could expect small
scale helicity to be generated (Davis et al. 2010). This
lack of clear scale separation makes the dynamo coeffi-
cients extracted via the test field method rather noisy
and somewhat difficult to interpret, though it has been
performed for the MRI by several groups (Brandenburg
2005; Gressel 2010). We forgo the test field method here,
since we should be able to see a crude difference between
the current helicity at the small and large scales if this
is in fact what allows dynamo action, and thus trans-
port. It is also clear comparing Figures 7 and 4 that the
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timescale for building mean fields for the vertical field
boundary condition case is not related in any obvious
way to the flux of magnetic helicity. Furthermore, we
do not see any significant changes in angular momentum
transport with differing boundary conditions that do and
do not allow a helicity flux. We address this in the next
section.

4.3. Helicity power spectra

We want to understand if scale transfer is responsible
for dynamo action in closed, stratified MRI simulations.
To do so, we compute the spectrum for the relative helic-
ity, H, on spherical shells in k-space, in runs with closed
boundary conditions (i.e., periodic or perfect conductor).
This ensures magnetic helicity is gauge independent by
removing the surface terms in Equation 6.
In Figure 9, we show the helicity spectrum for Re =

3200, Pm = 2. The field is not strongly helical at any
scale, reaching only H ∼ 0.2 at the smallest scales and
remaining much lower on the largest scales. By contrast,
the α2 dynamo driven by a fully helical fluid forcing
function has H ∼ 1 at all scales (Brandenburg 2001).
In that case, something similar to the classic inverse
cascade of magnetic energy due to helicity conservation
(Frisch et al. 1975; Pouquet et al. 1976, and § 4.2) oc-
curs. In our case, however, we do not see a significant dif-
ference in the properties of the dynamo when the bound-
ary conditions change between those that do not allow a
flux of magnetic helicity and those that do, despite the
fact that our results suggest that the MRI does in fact
eject helicity when given the chance (see Figure 7). This
resolves that observation: the MRI generated field is not
strongly helical, even when both kinetic and magnetic α
effects occur. Thus, the constraints placed on the field
by the conservation of magnetic helicity do not dominate
its formation.
Finally, the fact that the relative helicity is peaked at

small scales suggests that helicity constraints might be
more important in the unstratified MRI, as suggested
by Käpylä & Korpi (2010). In that case, the generation
of field is not affected by dynamo waves and magnetic
buoyancy, and so the helical turbulence might wind the
field into a helically limited state. The small scales in
Figure 9, where coherent dynamo waves and magnetic
buoyancy effects are less important, show a rise in helic-
ity, consistent with this idea.

4.4. Future Work and Some Speculations

There remains some incongruity between our results
for αM (z) and those of Gressel (2010). The only signif-
icant difference between his simulations and ours is his
use of outflow boundary conditions on the fluid (the mag-
netic field boundary conditions are identical) and his use
of a slightly larger domain. By running a model with
a larger vertical extent, we have shown that above the
±2H z-boundaries of our standard domain, the profile
reverses and matches Gressel’s. However, our results
show a much stronger reversal near the midplane than
his does, and this appears to be robust regardless of
the domain size. The MRI coupled with outflow fluid
boundary conditions leads to a magnetized wind, and
this, together with the increased efficiency of the Parker
instability with height, likely explains the remaining dis-
crepancy. The role of fluid boundary conditions (which

we have not varied here) should also be examined, in or-
der to better understand how winds interact with a disk
dynamo (e. g. Vishniac & Cho 2001).
The overall pattern of dynamo generated fields in the

z − t plane for the MRI is determined by the bound-
ary conditions (Brandenburg et al. 1995), and this can
be understood in terms of analytic mean-field theory
(Brandenburg & Subramanian 2005). Nonetheless, Fig-
ure 8 shows that these various dynamo modes do not
affect angular momentum transport. Thus, all of the
boundary conditions studied here for the stratified MRI
do an equally good job of generating magnetic flux for the
MRI to continue to grow on. We have identified the fact
that the magnetic fields are not fully helical at any scale
as a likely reason why the boundary conditions do not de-
termine the total angular momentum transport. Future
work should address this point in more detail. Measur-
ing the helicity spectrum in unstratified shearing boxes
would determine if the dramatic differences between pe-
riodic and VF boundary conditions in that case are in-
deed related to a helicity-limited field evolution. Further
theoretical work on the relationship between the mean
field dynamo mechanisms in unstratified domains (likely
the incoherent-α effect of Vishniac & Brandenburg 1997)
and stratified domains (the α − Ω effect) and their ex-
pected degree of helicity is also required in order to com-
plete this picture of dynamo-mediated MRI transport in
the zero-net flux case.
We have demonstrated that understanding angular

momentum transport via the MRI is strongly tied to
the details of MHD turbulence and dynamo action. It
is worth commenting briefly on some results for isotropic
(non-shearing), non-rotating MHD turbulence, a much
better studied system. Recently, several groups have
demonstrated that non-local interactions in k-space are
important at large scales in MHD turbulence, cross-
coupling large scale velocity fields with small scale mag-
netic fields (e.g. Mininni et al. 2005; Lessinnes et al.
2009; Cho 2010). If such an analysis holds for the strat-
ified MRI dynamo, it could explain the existence of a
critical magnetic Reynolds number Rmcrit: if the large
scale velocity fields are coupled to the magnetic dissi-
pation range, a much more efficient energy sink appears
than if they are coupled to a magnetic inertial range.
In the latter case, the large scale velocities could con-
tribute to small scale helicity production, continuing to
drive large scale dynamo action. This could be verified
by a shell-transfer analysis of the stratified MRI, which
we will pursue in a future publication.
It is possible that our hyperdiffusive terms might be

biasing our results. However, in a series of small-scale
dynamo simulations, groups led by Schekochihin and
Brandenburg have found no evidence that hyperviscosity
plays a significant role (Schekochihin et al. 2005, 2007).
There is a well-understood mechanism by which hyper-
resistivity causes an increase in saturated mean field
strengths for α2 dynamos (Brandenburg & Sarson 2002).
The main effect of hyperresistivity is simply to mod-
ify the timescales and length scales over which resis-
tive effects occur, leading to differences from the mag-
netic helicity theory developed for Laplacian resistivity
(Brandenburg 2001). Once the hyperresistive scales are
properly accounted for, magnetic helicity conservation
indeed correctly predicts the saturation field strength.
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Thus, our results are unlikely to be significantly affected
by this mechanism, as we do not offer a detailed theory
for the saturation amplitude for the MRI. Furthermore,
the Brandenburg & Sarson (2002) simulations did not in-
clude a standard, Laplacian resistivity term, while ours
do.
More directly, our resolution study also suggests that

hyperdiffusion is not a dominant effect: for integrated
quantities, our 64 zones/H and 128 zones/H runs are
converged (see Figure 2 and Table 1). Because the hy-
perdiffusive coefficients are smaller for larger resolution,
this suggests that the values of the coefficients make lit-
tle difference. Nevertheless, we cannot rule out any sys-
tematic hyperdiffusive influence on the dynamo behavior
without running simulations at high enough resolution to
simultaneously resolve the MRI and dissipate energy fast
enough at the grid scale using only regular Laplacian dif-
fusion operators at all times and through the entire spa-
tial domain. While this is practical for unstratified MRI
simulations, because the distribution of u is relatively
narrow, in stratified simulations where the distribution of
velocities is much broader, it is hard to maintain stability
without hyperdiffusivity. Direct numerical simulations of
stratified MRI thus require very high resolution and are
therefore extremely expensive and are not practical for
the parameter study considered here.

5. CONCLUSIONS

We have demonstrated that the strength of the an-
gular momentum transport parameter αSS in strati-
fied, MRI driven turbulence appears independent of the
magnetic Prandtl number Pm above some critical mag-
netic Reynolds number Rmcrit ∼ 3000. Our models
suggest that the value of Pm at which the flattening
of the Pm − αSS relation occurs is a function of Rm.
Käpylä & Korpi (2010) demonstrated that in the un-
stratified case, αSS is independent of Pm if boundary
conditions allow for the ejection of magnetic helicity. If
these conclusions are indicative of the asymptotic state
in real disks, then concerns about Pm-dependent scaling
of the MRI in real disks, which are certainly stratified,
would be entirely alleviated if the Rm is sufficiently high.
We find that although the stratified MRI does eject

magnetic helicity when boundary conditions allow, the
fields it generates are not significantly helical at any scale
or at any time during their evolution. We suggest that
this points toward a theoretical explanation for why pre-
vious stratified MRI simulations with periodic bound-
ary conditions in the vertical direction sustained dynamo
action while unstratifed simulations at similar Pm did
not: while the unstratified MRI dynamo can only grow
by ejecting helicity, the stratified MRI dynamo does not
wind itself into a fully helical state and is thus not limited
by the transport of magnetic helicity across boundaries.
This is only a preliminary result; future work should fol-
low in more detail evolution of magnetic helicity in both

unstratified and stratified MRI simulations. The scaling
results presented in this paper appear to be the result of
mean field dynamo action: when Rm > Rmcrit, the dy-
namo is ordered and angular momentum transport does
not depend on Pm; when Rm < Rmcrit, the dynamo is
disordered and angular momentum transport is strongly
dependent on Pm. This underlines the importance of
understanding the MRI dynamo system in order to un-
derstand the details of angular momentum transport in
accretion disks, as pointed out by Blackman (2010) and
Gressel (2010). In order to make more concrete predic-
tions about the structure and evolution of disks, we will
need to turn to global simulations. Given that global sim-
ulations inevitably involve much lower resolution than lo-
cal simulations, they should involve some kind of sub-grid
model in order to properly capture small-scale dynamics.
This work here provides a preliminary step toward such
a model.
Astrophysical disks have tremendous values of Re and

Rm, so even with a Pm ∼ 10−8, Rm >> Rmcrit if
Re ∼ 1012. In order to make this concrete, we use the
Balbus & Henri (2008) estimates for the viscosity and
resistivity to estimate the Reynolds number for a typi-
cal protoplanetary disk active region. Using a fiducial
midplane density ρ ≃ 10−10g cm−3, scale height H ≃
0.05AU, and temperature T ∼ 500K (Ilgner & Nelson
2006), we arrive at Re ≃ 4 × 1016. The same estimates
give Pm ≃ 1 × 10−8, easily fulfilling Rm >> Rmcrit and
so we expect the transport to be independent of Pm in
the active regions of such disks.
A major caveat to this, of course, is that the ionization

state of such disks is not well established. Our results do
not bear on the question of dead zones, which are regions
of high resistivity resulting from poor ionization rather
than low temperatures. Nevertheless, our point here is
to establish the dynamo state of the active region, not
to compute detailed predictions for αSS in such systems.
Finally, black hole accretion systems should also have
Rm >> Rmcrit: the same computation yields Re ≃ 6 ×
1012 and Pm ≃ 0.1 at roughly 100 Schwarzschild radii
from a 10M⊙ black hole (Balbus & Henri 2008).
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APPENDIX

THE KEPLER GAUGE

We here derive the Kepler gauge used in our definition of the magnetic vector potential. Beginning from the induction
equation for the vector potential,

∂A

∂t
= v ×B− ηµ0J (A1)
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Figure 1. (left) Reynolds number parameter Re versus the ratio of advection to viscous dissipation in the simulations. (right) Magnetic
Reynolds number parameter Rm versus the ratio of advection to resistive dissipation in the simulations.

where J = ∇×B, we expand the velocity v = u+Ukep, where Ukep = qΩ0xŷ is the linearized Keplerian shear
velocity. Making this substitution, we have

∂A

∂t
= u×B+ [Ukep ×B]− ηµ0J (A2)

Expanding the second term on the right hand side,

Ukep ×B = Ukep × (∇×A) = ∇(Ukep ·A)−A× (∇×Ukep)−Ukep · ∇A−A · ∇Ukep. (A3)

The first term on the right hand side is the gradient of a scalar function φkep = Ukep ·A, which we term the Kepler
gauge. The remainder of the terms represent shear and advection, and correspond to the second terms on either side of
Equation 1. We refer the reader to Hubbard & Brandenburg (2011) for a generalization of this gauge to any advective
velocity.
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Käpylä, P. J., & Korpi, M. J. 2010, ArXiv e-prints
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suggesting a constant threshold at some critical magnetic Reynolds number Rmcrit. The superposed points in the Re = 6400, Re = 9600
(not visible), and Re = 12800 series represent resolution studies with one point representing a model with 128 zones/H, double the standard
resolution.
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Ziegler, U., & Rüdiger, G. 2001, A&A, 378, 668



12

Rm = 12800, Pm = 2.00

Rm = 9600, Pm = 1.00

Rm = 6400, Pm = 4.00

Rm = 3200, Pm = 4.00

Rm = 3200, Pm = 1.00

Rm = 2400, Pm = 0.25

0 20 40 60 80 100

�/����
�0.20
�0.15
�0.10
�0.05

0.00
0.05
0.10
0.15
0.20

<�

>

Rm = 1600, Pm = 0.25

� <!" >
<!# >

Figure 4. Mean fields, 〈Bx〉 and 〈By〉, as a function of time for seven simulations with 〈Bx〉 multiplied by a factor of 10 for clarity. In
all cases, the x and y components are out of phase, but there are two distinct dynamo modes, exemplified by the Rm = 2400,Pm = 0.25
and Rm = 3200,Pm = 4 cases. All vertical axes for 〈B〉 are on the same scale given in the bottom panel.
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reversal seen above |z| ∼ 2 may explain the apparent discrepancy between our results and those of Gressel (2010).
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Figure 7. Magnetic helicity H = 〈A ·B〉 (blue solid line) and current helicity C = 〈J ·B〉 (red dashed line), as a function of time for
two runs with Re = 3200 and Pm = 2, one with periodic boundary conditions (upper panel; ensuring that H is gauge independent and
thus physically meaningful) and one with VF boundary conditions. The green triangles are a simple time integration of −2ηC, plotted
every 100 timesteps. Horizontal lines mark the zero points for each axis. For periodic boundary conditions, the integration nearly overlies
H, demonstrating that magnetic helicity is indeed constrained by resistive action on current helicity. For VF boundary conditions, the
integration (green triangles) does not track the helicity at all, because the flux terms in Equation 6 are not zero in this case.
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Figure 8. Volume averaged 〈α〉 for a Pm = 2, Re = 3200 model with vertical field, periodic, and perfect conductor boundary conditions.
The transport is comparable regardless of boundary conditions.
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Figure 9. Relative magnetic helicity H = kH/2M as a function of scale for a run with Re = 3200, Pm = 2 and periodic boundary
conditions, averaged over a 10torb period in saturation. Light lines show individual timesteps, the dark line is the average. The value
remains well below unity at all scales, showing that the field is not significantly helical at any scale.
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Table 1

Run Re Rm Pm Lz (H) ν3, η3, D3 zones/H Re′ Rm′ urms B2/2

A 12800 6400 0.5 4 3.0(−13) 128 226.58 113.29 0.17 0.03
B 12800 6400 0.5 4 9.6(−12) 64 239.96 119.98 0.18 0.03
C 12800 12800 1 4 9.6(−12) 64 255.15 255.15 0.19 0.04
D 12800 25600 2 4 9.6(−12) 64 357.16 714.32 0.26 0.05
E 12800 51200 4 4 9.6(−12) 64 290.71 1162.86 0.21 0.06
F 9600 19200 2 4 3.0(−13) 128 207.70 415.40 0.20 0.05
G 9600 9600 1 4 9.6(−12) 64 233.36 233.36 0.23 0.07
H 9600 4800 0.5 4 9.6(−12) 64 156.13 78.06 0.15 0.02
I 9600 2400 0.25 4 9.6(−12) 64 99.29 24.82 0.10 0.01
J 6400 12800 2 4 9.6(−12) 64 132.10 264.18 0.19 0.05
K 6400 6400 1 4 9.6(−12) 64 103.18 103.18 0.15 0.02
L 6400 25600 4 4 9.6(−12) 64 180.42 721.68 0.27 0.13
Ll 6400 25600 4 6 9.6(−12) 64 193.20 772.81 0.28 0.06
M 6400 25600 4 4 3.0(−13) 128 179.70 718.79 0.26 0.10
N 6400 1600 0.25 4 9.6(−12) 64 55.96 13.99 0.08 0.01
O 3200 12800 4 4 9.6(−12) 64 74.08 296.31 0.22 0.06
P 3200 6400 2 4 9.6(−12) 64 68.31 136.62 0.20 0.05
Q 3200 3200 1 4 9.6(−12) 64 41.77 41.77 0.12 0.02
R 3200 1600 0.5 4 9.6(−12) 64 11.24 5.62 0.03 0.01
S 1600 6400 4 4 9.6(−12) 64 38.27 153.07 0.23 0.08
T 1600 3200 2 4 9.6(−12) 64 18.22 36.43 0.11 0.02
U 1600 1600 1 4 9.6(−12) 64 10.96 10.96 0.06 0.02
V 800 3200 4 4 9.6(−12) 64 16.56 66.24 0.20 0.09
W 800 1600 2 4 9.6(−12) 64 0.11 0.23 0.00 0.00

Note. — Basic run parameters. Re′ = urms/νk1 and Rm′ = urms/ηk1, where k1 = 2π/4H
is is the smallest integer wavenumber in the box, measure the ratio of turbulent advection to vis-
cous and magnetic diffusion, respectively. η3, ν3, and D3 are the hyperresistive, hyperviscous, and
hyperdiffusive coefficients.


