
SLAC-PUB-14509

Composite Octet Searches with Jet Substructure

Yang Baia and Jessie Sheltonb

aSLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

bDepartment of Physics, Sloane Laboratory, Yale University, New Haven, CT, 06520, USA

Abstract

Many new physics models with strongly interacting sectors predict a mass hierarchy between
the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet sub-
structure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet
mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We
develop both a simple dijet search using only the jet mass and a more sophisticated jet substruc-
ture analysis, both of which can discover the composite octets in a dijet-like signature. The reach
depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for
the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis
provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophis-
ticated jet substructure analysis has the best discovery potential; for a ratio above approximately
0.3, the standard four-jet analysis is more suitable.
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1 Introduction

With the advent of the LHC, the electroweak scale is being probed at last. However, the startlingly

good agreement of the standard model (SM) with precision flavor and electroweak measurements begs

the question: does TeV-scale physics substantially modify the SM story of electroweak symmetry

breaking (EWSB)? Hints from low-energy data suggest that physics Beyond the Standard Model

(BSM), if it has to do with flavor, EWSB, or leptons, may be heavy, while new physics at the TeV

scale may more comfortably be hadrophilic, and not obviously related to the mysteries of EWSB.

Such a situation poses theoretical puzzles. However, the possibility is one which should be seriously

considered: Nature has a track record of handing us particles for which we have no obvious need. There

are many open possibilities for interesting BSM physics at the TeV scale, many of which present large

signals for the early LHC.

One such possibility is a new non-Abelian gauge interaction G which confines at scales ΛG >∼ TeV.

To access this sector, some new particles must couple to both the G sector and the SM; the simplest

possibility is a fermion species Ψ which transforms under both G and the SM gauge groups. If Ψ

is in a vector representation (ΨL and ΨR have the same quantum numbers) of the SM gauge group

and does not have large mixings with SM fermions, SM precision observables are unaffected. For Ψ

charged under QCD, after the group G confines, the spectrum of G-hadrons will include several new

colored states [1, 2, 3].

This simple scenario naturally gives rise to signals which are particularly well-suited to study at

the LHC: new colored states with masses at the TeV scale or below. In particular, the G sector will

typically contain a relatively light color-octet vector meson ρaG with mρG ∼ ΛG >∼ TeV, and colored

pseudo-Nambu-Goldstone bosons (pNGB’s) πaG with masses mπG parametrically lighter than ΛG.

These states are particularly important for the LHC phenomenology of a new confining interaction,

as the ρaG can be resonantly produced through its mixing with the gluon, while the G-pions πaG, as the

lightest colored particles in the G sector, have the largest production cross sections.1

While the production cross sections for these light composite states are large, the dominant decays

of the πaG and the ρaG yield all-hadronic final states, and large QCD backgrounds can make discovery

challenging [5]. This is especially true of the vector resonance, ρaG, which naturally has large branching

fractions to other new states, rather than back to dijets, thus leading to multijet final states which can

be challenging to separate from QCD backgrounds. Recent advances in jet substructure have extended

1Here we take the bare masses of the new fermion species to be negligible in comparison with the confinement scale,
mΨ ≪ ΛG. One can introduce a Peccei-Quinn symmetry to forbid the bare fermion masses [3]. The opposite situation,
ΛG ≪ mΨ, leads to quirks, with very different phenomenologies [4].
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LHC sensitivity to both SM [6, 7, 8] and BSM [9, 10] signals in otherwise challenging multi-jet final

states. Here, we will demonstrate the power of simple jet substructure techniques to improve LHC

discovery sensitivity to colored resonances. The hierarchy of mass scales mπG/mρG means that the G-

pions produced in the decay of a ρaG are boosted. The subsequent decay πG → gg, bb̄ can be extracted

from the large QCD background using a simple and flexible G-pion tagger, which distinguishes the

perturbative G-pion decay from the shower structure of a QCD jet. Our main motivation is a confining

gauge group, as this scenario naturally generates the hierarchy of mass scales which necessitates a

substructure analysis, but the techniques presented here are useful for any theory with a colored

vector resonance (“coloron” [11, 12, 13]) or colored axial vector resonance (“axigluon” [14, 15, 16])

with new colored daughters.

The organization of this paper is as follows. In Section 2 we introduce a simplified model capturing

the dynamics of interest and discuss the parameter space of the theory. In Section 3 we introduce two

simple jet substructure searches and show the discovery reach of the 7 TeV LHC for both. Section 4

contains our conclusions, and in Appendix A we provide a more extended discussion of how our

simplified model fits into the Lagrangian of a generic confining sector.

2 A simple model for spin-1 and spin-0 composite octets

One generic possibility for physics above the electroweak scale is a new gauge interaction G which

confines at a scale ΛG above the electroweak scale. New fermion species Ψ which transform under

G then are not observed in isolation at colliders, but rather in bound states which are singlets of G,

which we call G-hadrons. This idea is hardly new: technicolor is one example of such a model. Unlike

technicolor, however, we do not necessarily imagine here that the chiral condensation of G-fermions is

responsible for electroweak symmetry breaking.

In general the new confining gauge group will result in a rich spectrum of G-hadrons with a range

of SM quantum numbers. In the spirit of Simplified Models [17], we introduce a simplified model

which succinctly captures the most relevant dynamics for discovery at hadron colliders, especially in

dijet or multi-jet final states. A discussion of how this simplified model maps onto such well-motivated

extensions of the standard model as a new confining interaction is provided in Appendix A.

The most relevant degrees of freedom for hadron colliders are first, the lightest colored particles,

which will enjoy the largest production cross sections, and second, vector octets, which can be reso-

nantly produced through mixing with the gluon. Matter which is charged under both QCD and the

new confining group G will typically lead to a multiplet of colored pNGB’s which will be among the

lightest G-hadrons. We will study here a pseudo-scalar octet of G-pions, πaG, which we will take to
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be electroweak singlets. Pseudo-scalar octets will always have a minimal pair-production cross-section

at hadron colliders through their QCD interactions. However, if a heavier spin-one G-hadron like a

G-vector meson ρaG is also present, the πaG pair-production cross section can easily be enhanced by the

potentially large resonant production of the ρaG together with a large coupling between ρaG and πaG.

We introduce here a phenomenological Lagrangian capturing the dynamics of the pseudo-scalars

πaG together with an octet vector ρaG. We will work with the effective Lagrangian

− L = −1

2
Dµπ

a
GDµπaG +

m2
πG

2
πaGπ

a
G − 1

4
ρa µνG ρaGµν +

m2
ρG

2
ρaGµρ

aµ
G

+
tan θ

2
ρaµνG Ga

µν + gρf
abcρaµG πbGDµπ

c
G , (1)

together with two dimension-five operators allowing the πaG to decay, which will be discussed later.

This Lagrangian consists of mass and kinetic terms for the ρaG and πaG, kinetic mixing between the ρaG

and QCD gluons Ga, and a ρaG-π
a
G-π

a
G vertex analogous to the familiar ρ-π-π vertex in QCD. Here the

ρaG kinetic term is written in terms of

ρaµνG ≡ Dµρa νG −DνρaµG , (2)

with the covariant derivative Dµρa νG ≡ ∂µρa νG + igsf
abcGb µρc νG . After making the field redefinition

Ga
µ → Ga

µ+gs tan θρ
a
Gµ, the kinetic mixing between the ρG and the gluon is removed, while introducing

a coupling of the ρa to quarks,

− LρGqq̄ = igs tan θ ρ
a
Gµ q̄ t

aγµq. (3)

Here ta denotes the QCD generators. It is the coupling of Eq. (3) to quarks which leads to resonant

production of the ρG at hadron colliders.2

The theory described by Eq. (1) depends on four parameters: the masses mρG and mπG , the

ρaG − Ga mixing tan θ, and the ρaG − πaG coupling gρ. The coupling tan θ governs the resonant ρaG

production cross section, while gρ controls the relative branching fraction of the ρG into G-pions or

back into qq̄. Although gρ and tan θ are independent parameters, for simplicity we take them to be

related according to

gρ =
gs

tan 2θ
. (4)

This choice of relationship between gρ and tan θ is convenient for comparison to a weakly coupled

renormalizable coloron model [13], which realizes similar phenomenology. For strong interaction mod-

els, one can estimate gρ ∼
√
4π, which corresponds to a small value of θ ≈ 0.14. We will concen-

trate on this portion of parameter space, where the dominant decay of the ρG is to G-pion pairs.

2The field redefinition of the gluon also shifts the value of gρ; we absorb this shift into the definition of gρ.
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3 Once we have chosen a relationship between tan θ and gρ, the production times branching ratio

σ(qq̄ → ρG)×Br(ρG → qq̄) is fixed for a given mρ and tan θ. Results for other choices of gρ at a given

tan θ can be obtained by scaling the branching ratio as desired, provided the total ρG width remains

narrow.

The mass ratiomπG/mρG is important for determining the model’s signatures at the LHC. Previous

LHC studies [1, 2, 5, 18, 19] have focused on the region of parameter space where the a priori unknown

ratio mπG/mρG is chosen by scaling from QCD, yielding [1]

m2
πG

m2
ρG

= 3
(αs
α

) δm2
π

∣

∣

EM

m2
ρ

, (5)

where the observed electromagnetic contribution to the pion mass splitting is δm2
π

∣

∣

EM
≃ 3α

4π 2 ln 2m2
ρ

[20]. This model for the unknown G dynamics yields mπG ≃ 0.3mρG . However, this scaling relies

critically on specific features of the QCD spectral functions, whose genericity is unclear. On general

grounds, and avoiding the usual QCD-like Nc scaling, we may expect the G-pion mass to scale like

m2

πG ∼ g2s
(4π)2

Λ2

G, (6)

where ΛG is the scale where the G interactions become strong. For ρG with mass of order the cutoff,

we can estimate
mπG

mρG

∼ 0.1. (7)

Our main interest will be to establish the discovery reach in the region of parameter space wheremπG is

sufficiently small compared tomρG that a flexible treatment of jets allows for better separation of signal

from background. As we will see in Section 3, our range of interest is therefore from mπG/mρG ≈ 0.1

up to the QCD-like value mπG/mρG ≈ 0.3, while for larger mass ratios traditional multi-jet searches

become more efficient.

Gauge invariance allows for additional renormalizable interactions beyond those in the simplified

model of Eq. (1) which we will neglect, and which are further discussed in the Appendix A. Note

that the leading interactions of the new colored degrees of freedom with the SM proceed only through

QCD gauge interactions. This ensures agreement with precision electroweak and flavor constraints.

The renormalizable interactions of Eq. (1) have a Z2 symmetry πaG → −πaG and do not yet allow

the πaG to decay. At dimension five, we can write down interactions which allow either πaG → gg or

3For θ ≈ 0.14, the relation Eq. (4) yields a smaller value for ρG −G mixing than would be obtained from scaling the
observed ρ− γ mixing in QCD [1]. The only importance of this for our present purposes is in reducing the resonant ρG
cross-section relative to the QCD-like expectation, and our analysis is in this sense conservative.
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πaG → qq̄. Pion decay to gluons is mediated by

Oπgg = − g2s
16π2fπG

Tr[tatbtc]πaG ǫµνρσG
b µνGc ρσ. (8)

Here fπG is the G-pion decay constant, 4πfπG ∼ ΛG. Using Tr[tatbtc] = 1

2
dabc + i

2
fabc, only the

dabc part has non-vanishing contributions. The operator Oπgg is analogous to the operator mediating

π0 → γγ in the SM, and is naturally generated in many theories through triangular anomaly diagrams,

as we discuss further in the Appendix A. In addition, depending on the details of the model, the pion

may also decay to quarks through the dimension-five operators

Oπqq̄ = i
cdij
M

πaGHQ̄i
Lt
aγ5djR + i

cuij
M

πaGH̃Q̄i
Lt
aγ5ujR + h.c. (9)

Here M is an ultraviolet mass scale. Assuming for simplicity that these interactions are proportional

to the SM Yukawa couplings, cu,dij ∝ Y u,d
ij , after electroweak symmetry breaking these operators allow

G-pion to decay through

Oπqq̄ = i
mq

M
πaG q̄ taγ5q , (10)

where any order one coefficients have been absorbed into the definition of M . These couplings will

favor πaG → bb̄.4 At dimension-five level operators coupling Dµπ
a
G to quarks also appear, O ∝

Dµπ
a
Gq̄L,Rt

aγµγ5qL,R. The derivative portion of these operators, upon use of the equations of mo-

tion, is equivalent to Eq. (10), while the non-derivative portion contributes only to 3-body G-pion

decays.

Since G-pion decay to both bb̄ and to gluons proceeds through higher dimension operators, details

of the model can dramatically affect the branching ratios of the πaG. We will study discovery prospects

for either πaG → gg or πaG → bb̄ as the dominant decay channel. Strikingly, we will find that simple jet

substructure tools can dramatically enhance the prospects for discovery even when the gluonic decays

dominate.

The decay widths of the πaG are given by

Γ(πG → gg) =
5α2

s

192π3f2
πG

m3

πG , (11)

through Eq. (8), and

Γ(πG → bb̄) =
mπG

16π

(mb

M

)2
√

1− 4m2

b/m
2
πG , (12)

4If the pion is sufficiently heavy that the decay to tops is open, mπG
> 2mt, then πa

G → tt̄ will dominate the quark
decay modes. The final state will be 4 t’s. We will largely be interested in πa

G below the tt̄ threshold, and will consequently
neglect the tt̄ decay mode.
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Figure 1: Left panel: the branching ratios of ρµG into different modes as a function of the mixing angle.
Right panel: the ρµG width over its mass as a function of tan θ. The daughter particle masses are
neglected.

through Eq. (10). The G-pions are narrow, and decay within the detector for parameter choices of

fπG and M in this paper.

The decay widths of the ρaG into two quarks and into two G-pions are given in terms of tan θ as

Γ(ρG → q q̄) =
αs
6

tan2θmρG

(

1 −
4m2

q

m2
ρG

)1/2

,

Γ(ρG → πG πG) =
αs

8 tan2 2θ
mρG

(

1 −
4m2

πG

m2
ρG

)3/2

, (13)

where the branching fraction into quarks is per flavor. For a heavy ρaG much above the πaG and the

top quark masses, we have the branching ratios and the width over mass ratio shown in Fig. 1.

Using the narrow width approximation to estimate the cross section for producing a ρaG in the

s-channel gives

σ(qq̄ → ρµG) ≈
8π2αs tan

2θ

9mρG

δ
(√

ŝ−mρG

)

. (14)

Convoluting this partonic cross section with the MSTW [21] PDFs yields the LHC production cross

sections shown in Fig. 2.

The parameter space of tan θ and mρG is subject to various constraints, most notably tt̄ and

dijet resonance searches. The latest tt̄ narrow resonance searches with 200 pb−1 at Atlas [22] do not

constrain our model parameter space, because of the suppressed branching ratio of ρG → tt̄ seen in

Fig. 1. However, the dijet resonance searches [23, 24, 25] do constrain our parameter space, and the
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Figure 2: Left panel: the production cross section of ρG at the LHC for tan θ = 0.15. The range of
cross section is for two different renormalization scales:

mρG

2
(upper) and 2mρG (lower). Right panel:

the production cross section of different decaying modes, where the renormalization scale is fixed to
be mρG .

limits are shown in Fig. 3. Applying the dijet limits to our model is not completely straightforward, as

there will be some nonzero efficiency for ρG → πGπG events to be reconstructed in the ρG → jj sample.

This efficiency depends on the mass ratio mπG/mρG and on the jet algorithm used by Atlas. In Fig. 3,

we show the constraints in the mρG − tan θ plane from the dijet resonance search for two fixed ratios

of mπG/mρG . The two boundaries in each plot correspond to (lower) 100% efficiency to detect πaG as

a single jet and (upper) 0% efficiency to detect πaG as a single jet, with the branching ratios as given

in Eq. (13). The limits are sensitive to the mass ratio only through the factor (1 − 4m2
πG

/m2
ρG

)3/2,

and thus the limits are broadly similar for mass ratios ≪ 1.

Finally, there are few meaningful limits on the G-pion masses. While light G-pions can be pair-

produced through gg → πGπG at the Tevatron, no multi-jet or multi-b searches have limited their

masses [1, 13]. Introducing operators beyond those in the simplified model Lagrangian of Eq. (1) can

potentially lead to indirect limits, as we discuss further in the Appendix A.

3 Discovery potential

In this section we will detail discovery prospects for πaG and ρaG. The process we will use for discovery

is πaG pair production from an initial ρaG resonance, qq̄ → ρG → πGπG, followed by πG → bb̄, gg.

This process, in contrast to non-resonant G-pion pair production, is particularly useful in theories

with hierarchical spectra, where the G-pions coming from the ρG are sufficiently boosted that their
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Figure 3: Dijet constraints on the model parameters at 95% C.L from Atlas dijet narrow resonance
searches with 163 pb−1 luminosity [25]. The shaded regions are excluded. The two boundary lines
are for (lower) 100% efficiency to detect πaG as a single jet and (upper) 0% efficiency to detect πaG as
a single jet. Branching ratios are given by Eq. (13). The left panel shows limits for mπG/mρG = 0.1
while the right panel shows limits for mπG/mρG = 0.3.

daughter partons have a reduced probability to be reconstructed as separate jets. In this regime,

the kinematics of the boosted πaG allow for easier separation of signal from background than do the

non-boosted πaG coming from nonresonant QCD pair production. Simple jet substructure analyses

then suffice to give excellent discovery reach over much of the simplified model parameter space.

The main task is to distinguish a collimated perturbative two-body decay πaG → jj from a QCD

jet. When the pions are sufficiently boosted that both their daughter jets have a moderate probability

to be contained in a standard (R ≥ 0.7 anti-kT [33]) jet, the jet mass alone can provide significant

improvements over a standard dijet search, as we will discuss below. For slightly less boosted G-pions,

a more involved analysis improves the prospects. We employ a fat jet analysis based on the mass drop

procedure pioneered by [6, 7]. Specifically, we cluster the events on a large angular scale (R = 1.2)

using the Cambridge/Aachen (C/A) algorithm and require two fat jets with pT > pT,cut. The fat jets

are then each iteratively decomposed by undoing the clustering sequence step by step in search of a

splitting which resembles a perturbative decay. At each splitting of a parent J to two daughters j1, j2

with mj1 > mj2 , we check whether the splitting

• shows a sudden drop in the jet mass, mj1 < µmJ ,

• and is relatively symmetric, min(p2T j1 , p
2

T j2
)∆R2

j1,j2
/m2

j > rxy.

Optimal values for the mass drop variable µ and the symmetric splitting cut rxy will be chosen below.

If both conditions are satisfied, one identifies J as the fat jet and j1,2 as the subjets and exits the loop.
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Otherwise, one replaces J by j1 and repeats the previous procedure. In addition to vetoing QCD, the

mass drop analysis [7] helps clean up the jets and improves mass resolution.5

Another observable which can distinguish a perturbative decay from a QCD branching is the jet

shape N -subjettiness [27]. Given a jet found with initial radius R and a set of N subjet centers jk

found (with some algorithm) inside the jet, the N -subjettiness of the jet is

τN =

∑

i pT,imin[∆Rik]
∑

i pT,iR
, (15)

where the sum runs over the particles in the jet, and ∆Rik is the distance between the ith particle and

the kth subjet axis. Jets with smaller (larger) values of τN have radiation more (less) concentrated

around the subjet axes, and are therefore more (less) amenable to a description in terms of N subjets.

Since the QCD background tends to have larger values of τ2/τ1 than the signal, the ratio τ2/τ1 can

be used as a good discriminant to reduce QCD backgrounds. We find that while N -subjettiness and

the mass drop procedure are clearly correlated, they are sufficiently distinct that incorporating a cut

on N -subjettiness marginally improves discovery sensitivity.

We incorporate both the mass drop procedure and N -subjettiness into a simple and flexible tagger

designed to discriminate a boosted G-pion from a QCD jet. The tagger constructs a fat C/A jet

with R = 1.2. From the constituents of this fat jet, we construct two exclusive subjets using the kT

algorithm, yielding the two subjet axes we use to evaluate τ2/τ1. We require that the fat jet passes

a cut on τ2/τ1 in addition to the mass drop criterion. Two (C/A) subjets j1 and j2 are identified

in the mass drop procedure, and the tagger incorporates cuts on both the sum of their transverse

momentum p1T + p2T as well as their invariant mass mj1j2 . The specific values used for the cuts will

be discussed further below. The jet mass alone is a useful jet substructure variable [9], and we will

also demonstrate the reach of a search which uses only the jet mass.

Before presenting results, we describe our simulation procedure. The production cross sections

from Fig. 2 vary from 100 fb to 400 fb at the 7 TeV LHC for the mixing angle 0.1 < tan θ < 0.4.

To be concrete, we choose tan θ = 0.15 or σ(uū → ρG → πG πG) ≈ 200 fb for mρG = 1.5 TeV

throughout this section. The backgrounds are dominated by QCD dijets. We use the leading order

cross-section as calculated in MadGraph [28], as comparison with measured dijet cross-sections [23]

indicates good agreement (i.e., K-factors near unity) in the high-pT , large invariant mass regime of

interest. Renormalization and factorization scales are set at µ = mρG . The subleading W+ jets and tt̄

backgrounds are negligible compared to the dijet background. Both signal and background events are

5We do not implement filtering [7] or other jet grooming tools [26], nor do we simulate pileup, though in a full analysis
both pileup and jet grooming will be necessary.
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generated with MadGraph [28] using CTEQ6L PDFs [29] and showered in Pythia 6.4.24 [30]. We then

bin visible particles with |η| < 2.5 into massless 0.1× 0.1 calorimeter cells and pass to FastJet [31, 32]

for clustering and subsequent jet analysis.

Recent studies have demonstrated that Pythia and Herwig show reasonable agreement both with

each other and with the data for jet masses in the range of interest. At high masses, Pythia and Herwig

give nearly indistinguishable predictions for large C/A jets put through the mass drop procedure.

Results for R = 1.0 anti-kT jets indicate that while overall agreement is good, Pythia tends to

underpredict QCD jet masses by 15-20% in the mass range 100 GeV < mj < 200 GeV [36]. We thus

conclude that the numbers we will obtain for the analysis built on the full tagger are representative,

while the alternate analysis using only anti-kT jet masses is likely to be slightly optimistic due to

the tendency of Pythia to underpredict background QCD jets in the mass range of interest. The

performance of the G-pion tagger on QCD dijets can be validated using dijet events where only one

jet has a mass within the G-pion mass range and the other is light (mj <∼ 50 GeV).

3.1 πG → gg

For the case where πG dominantly decays into two gluons, the signal is qq̄ → ρG → πG πG → 4 g’s.

We will first illustrate our reconstruction procedures at the specific point mρG = 1.5 TeV and mπG =

300 GeV, and then present the discovery potential for other combinations of mρG and mπG .

We find that the final discovery significance is relatively insensitive to varying R, the mass drop

µ, and the symmetricity cut rxy. We fix these parameters at R = 1.2, µ = 0.3 and rxy = 0.3 to

generate the left panel in Fig. 4. After implementing the substructure tagger, we require two tagged

G-pion candidates in the event with pT (ji) > 600 GeV. Note the pT cut is placed on the final G-pion

candidate rather than the initial fat jet. Taking into account the jet energy resolution [35] and jet mass

resolution [36], we further require additional mass window cuts |mJi −mπG | < 0.2mπG . We show the

histogram distributions of signal and background events in the left panel of Fig. 4. As demonstrated

in this figure, the tt̄ background only contributes a tiny fraction of the total background; W + j (not

shown) is below tt̄. Further imposing a mass window cut |mJ1J2 −mρG | < 0.2mρG , we find that the

discovery significance is S/
√
B ≈ 14 for the 7 TeV LHC with 5 fb−1 luminosity.

As a comparison, we also estimate the discovery significance obtained by using a simple extension

of the traditional dijet resonance searches, performed with anti-kT jets at a fixed R. On top of the

usual cuts, namely jet pT cuts and the dijet mass window cut, we also require both jet masses to be

within the πaG mass window. The efficacy of this search depends on the efficiency for a boosted G-pion

to be contained within a single jet. We show results for R = 0.7, which is the largest standard cone
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Figure 4: Left panel: the numbers of events of signal and backgrounds at the 7 TeV LHC after the
jet substructure analysis. Right panel: the same as the left panel but for the analysis without using
jet substructure.

size in use at the LHC. Choosing a smaller value of R will make this simple search worse, while a

value of R = 1.0 as studied in [34, 36] will improve the reach. We show the histograms of the signal

and background events in the right panel of Fig. 4. The discovery significance is around 2σ for this

parameter point, much poorer than the result obtained from the jet substructure analysis. Because

R = 0.7 < 2mπG/pT,cut, the jet clustering algorithm in the simple dijet search will typically not capture

all the signal decay products in a single jet and hence suffers a reduction in the discovery significance.

We have checked that for a different mass combination, mρG = 1.5 TeV and mπG = 150 GeV, the

dijet resonance search supplemented with jet mass can obtain a discovery sensitivity as good as the

jet substructure analysis.

For different mass combinations and especially when there are few signal and background events,

we use the Poisson distribution to quantify the discovery significance as

significance ≡
√

−2 ln [e−S−B(S +B)B/Γ(B + 1)] . (16)

For different ρaG masses and different values of the mass ratio mπG/mρG , we find the best discovery

significance for each mass point in the left panel 6 shown in Fig. 5 by scanning the cut on µ from 0.2

to 0.4 with a step of 0.05, the cut on pT from mρG/3 to mρG/3 + 300 GeV with a step of 50 GeV,

the cut on rxy from 0.2 to 0.4 with a step of 0.05, the cut on rxy from 0.2 to 0.9 with a step of 0.1.

We further require the mass window cuts |mJi −mπG | < 0.2mπG and |mJ1J2 −mρG | < 0.2mρG . To

obtain the left panel of Fig. 5, we have scanned 7 different ρG masses from 500 GeV to 2 TeV with

6Strictly, there is an additional trials factor associated with the substructure searches due to the unknown mπG
.
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Figure 5: Left panel: the discovery significance for different masses of ρG and πG for πG → gg. We
scanned four variables to find the optimized significance: the mass drop variable µ, the symmetric
splitting cut rxy, the pT cut of the fat jets, and the N -subjettiness variable τ2/τ1. The numbers besides
each contour line are the significance in σ. Right panel: the same as the left panel but instead of using
sophisticated jet substructure analysis, only the jet masses are used in this plot.

a 250 GeV interval and 7 different mass ratios from 0.1 to 0.4 with a 0.05 interval. As can be seen

from Fig. 5, the jet substructure analysis can discover the composite color octets for a wide range of

masses. For smaller mass ratios of mπG/mρG , the discovery significances are better. Generically for

mπG/mρG > 0.3, the jet substructure analysis loses its effectiveness and one should instead carry out

a more traditional multi-jet resonance analysis to cover this region [1, 12, 13, 38].

As a comparison, we show the discovery limit in the right panel of Fig. 5 by using the ordinary

dijet searches (with anti-kT and R = 0.7) and requiring the two jet masses satisfying the mass window

cuts |mJi −mπG | < 0.2mπG and |mJ1J2 −mρG | < 0.2mρG . From this plot, one can see that this very

simple analysis can discover the ρaG together with the πaG especially for mπG/mρG < 0.2. Comparing

it with the left panel of this figure, one can see that for the light ρaG mass region the traditional dijet

resonance searches with jet mass constraints are even better than the complicated jet-substructure

analysis.

Finally, we compare the sensitivities from the traditional dijet searches and from the jet substruc-

ture searches in Fig. 6. We take the current results from narrow resonance searches in dijets at Atlas

with 163 pb−1 [25], and plot the projected 95% C.L. exclusion limit on the production cross section
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ratio from different searches. The dotted black line is the projected Atlas exclusion limit at 5 fb−1

based on the current limit with 163 pb−1 luminosity [25]. The numbers in parentheses denote the
ratio mπG/mρG .

times dijet branching ratio at 5 fb−1 by assuming statistically dominated errors for the backgrounds.

We show results from the full jet substructure analysis as well as the simple jet mass analysis (with

R = 0.7 anti-kT ) at the 7 TeV LHC with 5 fb−1: here the vertical axis is cross-section times G-pion

branching ratio. As can be seen from Fig. 6, for a small mass ratio mπG/mρG = 0.1 the simple jet

mass analysis provides the best exclusion limit, while for a small ratio mπG/mρG = 0.2 the full jet

substructure analysis is the most sensitive one. To produce this plot, we have neglected the acceptance

of the traditional dijet analysis, which is large and close to 70% ∼ 80%.

3.2 πG → bb̄

For the case where the main decay channel of πG is two b-jets, we repeat the same analysis as the four

gluon case except that we now additionally demand two b tags in the final state. Although the signal

contains four b-quarks, we have found that requiring two b-tags for the four daughter jets is sufficient

to reject the backgrounds.

The backgrounds now come from both two light jets with a double b mistag, and two b-jets. After

taking into account the b-tagging efficiency, these two contributions to the background are comparable.

We assume a b-tagging efficiency of 60% and a mistagging efficiency of 2% for light jets (the c-jet has a

larger mistagging efficiency which we compensate for by choosing a larger value of mis-tagging efficiency
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Figure 7: The same as Fig. 5 for the discovery significance for different masses of ρG and πG but for
πG → bb̄.

for all light jets). Improved b-tagging efficiencies (70% efficiency without increasing mistagging rates)

may be possible [37], but as our final state contains more hadronic activity than the (0, 1, 2)ℓ + 1 fat

jet states where these studies were performed, we conservatively do not use these improved numbers.

We require each fat jet to contain at least one b-tagged subjet. Performing the same scan of mass

combinations as in the four gluon case, we find the discovery significance shown in Fig. 7.

4 Discussion and conclusions

We have demonstrated the excellent potential of the 7 TeV LHC to discover composite octets. The

typically large branching fractions of colored vector resonances to BSM daughters instead of to dijet

final states makes their discovery difficult: the clean dijet signature has a suppressed rate, while the

multijet signature arising from ρG → πGπG can be difficult to reconstruct. We have demonstrated how

jet substructure techniques improve the reconstruction of the ρG and extend the discovery reach of

the traditional dijet analysis for colored spin-1 resonances. The topology of the final state in resonant

ρG production depends strongly on the mass ratio mπG/mρG . For large hierarchies, mπG/mρG
<∼ 0.2,

a simple search augmenting the dijet resonance search with an additional cut on jet mass works very

well. For intermediate hierarchies, including the QCD-like region where mπG/mρG ≈ 0.3, a more

involved jet substructure analysis using a simple G-pion tagger gives the best sensitivity.
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The mass drop and N -subjettiness cuts used in the full G-pion tagger are very effective at sepa-

rating the perturbative decays from QCD background. On the other hand, they strongly shape the

angular distributions of the jets coming from πaG → jj, which makes probing the G-pion quantum

numbers more challenging. Requiring that the jets coming from πaG → jj be sufficiently hard and

symmetric to be distinguished from typical QCD branchings selects only the portion of the angular

distribution which is transverse to the axis of the G-pion boost. This surviving slice of the angular

distribution contains minimal information and renders determination of the G-pion spin difficult [39].

In this regard, the simple jet mass analysis offers some advantages, in the highly boosted region of

small mπG/mρG where the jet mass search is effective. In this portion of parameter space, where

hardness cuts on subjets are not critical for discovery, the subjets identified within the boosted G-

pion jet (for example, by simply resolving at a small angular scale R = 0.3 and selecting the hardest

subjet) preserve more of the underlying angular distribution and give good prospects for determining

the G-pion Lorentz quantum numbers.

We have focused on resonant ρG → πGπG production, neglecting the nonresonant QCD pair-

production of πG. For completeness, we show the production cross section of pp → πGπG in Fig. 8 for

the 7 TeV as well as 14 TeV LHC. Nonresonant pair production can allow octet G-pions to be discovered

at the LHC using mass window cuts [5, 12]. We want to emphasize that the studies performed in this

paper could simultaneously lead to the discovery of two composite color octet particles. Alternatively,

if the octet G-pion is first found in non-boosted multi-jet final states, its mass may be used as an input

to the G-pion tagger in a search for the ρG. The main advantage of the techniques presented here is

the improved sensitivity to the ρaG. Especially for theories with mπG/mρG
<∼ 0.2, the jet substructure
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analyses we propose could be the unique way to discover the ρaG, and to understand the detailed

properties of a new strong interaction.
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A Vector-like confinement

In this appendix we show how a well-motivated extension of the SM maps on to the simplified model

discussed in Section 2.

We suppose here that the new gauge sector includes a fermion species Ψ which transforms as a

fundamental under QCD and as Gψ under G,

ΨL = (Gψ, 3), ΨR = (Gψ, 3). (17)

The theory possesses a global Ψ flavor symmetry SU(3)L × SU(3)R other than the global baryon

symmetry in the G-sector. When the gauge group G confines at a scale ΛG, this chiral symmetry is

broken down to the weakly gauged diagonal SU(3)c, leaving an octet of pNGB’s which we denote πaG.

In the strong interacting G-sector, there could also exist vector mesons as well as axivector mesons.

As the lightest axivector meson is in principle heavier than the vector meson as is the case in QCD,

and has suppressed resonant cross sections, we only consider the vector meson in the following.

We reproduce here the minimal Lagrangian of Eq. (1),

− L = −1

2
Dµπ

a
GDµπaG +

m2
πG

2
πaGπ

a
G − 1

4
ρa µνG ρaGµν +

m2
ρG

2
ρaGµρ

aµ
G

+
tan θ

2
ρaµνG Ga

µν + gρf
abcρaµG πbGDµπ

c
G , (18)

and comment on additional possible terms and their consequences.

First, terms polynomial in πaG will generically be present, but suppressed due to the approximate

shift symmetry of the G-pions. The cubic interaction µdabcπaGπ
b
Gπ

c
G is notable as it breaks parity; we

set this term to zero. There is also a coupling between the G-pions and the SM Higgs, λπH (πaGπ
a
G)|H|2,
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which can lead to indirect limits on mπ through its effect on Higgs production through gluon fusion

[42]. In our scenario, the Higgs is not part of the confining gauge sector, and hence λπH is radiatively

generated. With λπH ≪ 1, the πaG may safely have masses in the 100 − 200 GeV range. The pion

number symmetry in the G-sector is broken by the anomalous coupling among πaG and two gluons in

Eq. (8) [43, 44]. Additional higher-dimensional operators can directly couple πG to SM quarks and

mediate πG decaying into quarks as shown in Eq. (9).

It is also possible to write additional interactions for the ρG. The renormalizable interaction

Oρρg = λρρgf
abcGa

µνρ
b µ
G ρc νG , (19)

contributes to ρG pair production. There are two more renomalizable operators containing only the

ρG field and we neglect them here. At dimension-6 level, we find the operator

Oρgg =
iλρgg
4πΛ2

G

fabcρaµGνG
bν
ρ Gcρ

µ , (20)

which could be the leading contribution to resonant gg → ρG production [40]. As the gluon-gluon

luminosity at the LHC is large, this operator can have a noticeable impact on the resonant ρG cross-

section despite its high dimension [5]. We conservatively do not include this process when we evaluate

σ(pp → ρG). Gauge invariance also allows a direct coupling of the ρG to the conserved QCD current,

of the form α ρaµJ
a
µ . Through the vector meson dominance calculation, one can absorb this interaction

into the kinetic mixing term ρaµνG Ga
µν in Eq. (18).

We now comment on the mass ratio mπG/mρG . The axial SU(3) subgroup of the global chiral

flavor symmetry is explicitly broken when the vector subgroup is identified with (gauged) QCD. This

ensures that even in the absence of bare masses for Ψ, QCD interactions will generate a mass mπG

for the πG octet. The size of the generated mπG relative to the cutoff, and in particular relative to

mρG , depends on the unknown strong dynamics of G. Previous studies have used QCD as a model to

calculate the mass ratio mπG/mρG , finding [1]

m2
πG

m2
ρG

= 3
(αs
α

) δm2
π

∣

∣

EM

m2
ρ

≃ 0.3, (21)

based on the observed electromagnetic contribution to the pion mass splitting δm2
π

∣

∣

EM
≃ 3α

4π 2 ln 2m2
ρ.

Again, this numerical result depends on detailed properties of the QCD spectral functions whose

genericity is unclear. A general estimate, not using the simple Nc counting in QCD, suggests the

pNGB mass to scale like

m2

πG
∼ g2s

(4π)2
Λ2

G, (22)
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where ΛG is the cutoff. For ρG with mass of order the cutoff, we can then estimate

mπG

mρG

∼ 0.1. (23)

The above estimation is based on naive dimensional analysis and some order unity numbers can easily

modify this relation, which depends on the underlying strong dynamics. Additional explicit sources

of chiral symmetry breaking would yield additional contributions to the G-pion mass. We focus our

attention on the regime where 0.1 <∼ mπG/mρG
<∼ 0.3, where the πG’s from ρG decay are sufficiently

boosted that searches will proceed more profitably with jet substructure techniques.
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