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The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holog-

raphy provides a remarkably accurate first approximation for the spectra and wavefunc-

tions of meson and baryon light-quark bound states. The resulting bound-state Hamilto-
nian equation of motion in QCD leads to relativistic light-front wave equations in terms

of an invariant impact variable ζ which measures the separation of the quark and gluonic

constituents within the hadron at equal light-front time. These equations of motion in
physical space-time are equivalent to the equations of motion which describe the propa-

gation of spin-J modes in anti–de Sitter (AdS) space. The eigenvalues give the hadronic

spectrum, and the eigenmodes represent the probability distributions of the hadronic
constituents at a given scale. A positive-sign confining dilaton background modifying
AdS space gives a very good account of meson and baryon spectroscopy and form fac-
tors. The light-front holographic mapping of this model also leads to a non-perturbative
effective coupling αAdSs (Q2) which agrees with the effective charge defined by the Bjorken
sum rule and lattice simulations. It displays a transition from perturbative to nonper-
turbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function

appears to capture the essential characteristics of the full β-function of QCD, thus giving
further support to the application of the gauge/gravity duality to the confining dynamics
of strongly coupled QCD.
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1. Introduction

The AdS/CFT correspondence1 between a gravity or string theory on a higher
dimensional Anti–de Sitter (AdS) space-time with conformal gauge field theories

 SLAC National Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA  94309

SLAC-PUB-13998



February 23, 2010 17:47 WSPC - Proceedings Trim Size: 9.75in x 6.5in ”SJB SCGT-h”

2

(CFT) in physical space-time has brought a new set of tools for studying the dy-
namics of strongly coupled quantum field theories, and it has led to new analytical
insights into the confining dynamics of QCD. The AdS/CFT duality provides a
gravity description in a (d + 1)-dimensional AdS space-time in terms of a flat d-
dimensional conformally-invariant quantum field theory defined at the AdS asymp-
totic boundary.2 Thus, in principle, one can compute physical observables in a
strongly coupled gauge theory in terms of a classical gravity theory. Since the quan-
tum field theory dual to AdS5 space in the original correspondence1 is conformal, the
strong coupling of the dual gauge theory is constant, and its β-function is zero. Thus
one must consider a deformed AdS space in order to simulate color confinement and
have a running coupling αAdSs (Q2) for the gauge theory side of the correspondence.
As we shall review here, a positive-sign confining dilaton background modifying
AdS space gives a very good account of meson and baryon spectroscopy and their
elastic form factors. The light-front holographic mapping of this model also leads
to a non-perturbative effective coupling αAdSs (Q2) which agrees with the effective
charge defined by the Bjorken sum rule and lattice simulations.3

In the standard applications of AdS/CFT methods, one begins with Malda-
cena’s duality between the conformal supersymmetric SO(4, 2) gauge theory and a
semiclassical supergravity string theory defined in a 10 dimension AdS5×S5 space-
time.1 The essential mathematical tool underlying Maldacena’s observation is the
fact that the effects of scale transformations in a conformal theory can be mapped
to the z dependence of amplitudes in AdS5 space. QCD is not conformal but there is
in fact much empirical evidence from lattice, Dyson Schwinger theory and effective
charges that the QCD β function vanishes in the infrared.4 The QCD infrared fixed
point arises since the propagators of the confined quarks and gluons in the loop in-
tegrals contributing to the β function have a maximal wavelength.5 The decoupling
of quantum loops in the infrared is analogous to QED where vacuum polarization
corrections to the photon propagator decouple at Q2 → 0.

We thus begin with a conformal approximation to QCD to model an effective
dual gravity description in AdS space. One uses the five-dimensional AdS5 geometri-
cal representation of the conformal group to represent scale transformations within
the conformal window. Confinement can be introduced with a sharp cut-off in the in-
frared region of AdS space, as in the “hard-wall” model,6 or, more successfully, using
a dilaton background in the fifth dimension to produce a smooth cutoff at large dis-
tances as in the “soft-wall” model.7 The soft-wall AdS/CFT model with a positive-
sign dilaton-modified AdS space leads to the potential U(z) = κ4z2+2κ2(L+S−1),8

in the fifth dimension coordinate z. We assume a dilaton profile exp(+κ2z2),8–11

with opposite sign to that of Ref. 7. The resulting spectrum reproduces linear Regge
trajectories, whereM2(S,L, n) is proportional to the internal spin, orbital angular
momentum L and the principal quantum number n.

The modified metric induced by the dilaton can be interpreted in AdS space as
a gravitational potential for an object of mass m in the fifth dimension: V (z) =
mc2
√
g00 = mc2Re±κ

2z2/2/z. In the case of the negative solution, the potential
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decreases monotonically, and thus an object in AdS will fall to infinitely large values
of z. For the positive solution, the potential is non-monotonic and has an absolute
minimum at z0 = 1/κ. Furthermore, for large values of z the gravitational potential
increases exponentially, confining any object to distances 〈z〉 ∼ 1/κ.8 We thus will
choose the positive sign dilaton solution. This additional warp factor leads to a
well-defined scale-dependent effective coupling. Introducing a positive-sign dilaton
background is also relevant for describing chiral symmetry breaking,10 since the
expectation value of the scalar field associated with the quark mass and condensate
does not blow-up in the far infrared region of AdS, in contrast with the original
model.7

Glazek and Schaden12 have shown that a harmonic oscillator confining poten-
tial naturally arises as an effective potential between heavy quark states when one
stochastically eliminates higher gluonic Fock states. Also, Hoyer13 has argued that
the Coulomb and a linear potentials are uniquely allowed in the Dirac equation at
the classical level. The linear potential becomes a harmonic oscillator potential in
the corresponding Klein-Gordon equation.

Light-front (LF) quantization is the ideal framework for describing the structure
of hadrons in terms of their quark and gluon degrees of freedom. The light-front
wavefunctions (LFWFs) of bound states in QCD are relativistic generalizations of
the Schrödinger wavefunctions, but they are determined at fixed light-front time
τ = x+ = x0 + x3, the time marked by the front of a light wave,14 rather than at
fixed ordinary time t. They play the same role in hadron physics that Schrödinger
wavefunctions play in atomic physics.15 The simple structure of the LF vacuum
provides an unambiguous definition of the partonic content of a hadron in QCD.

Light-front holography8,16–20 connects the equations of motion in AdS space and
the Hamiltonian formulation of QCD in physical space-time quantized on the light
front at fixed LF time. This correspondence provides a direct connection between
the hadronic amplitudes Φ(z) in AdS space with LF wavefunctions φ(ζ) describing
the quark and gluon constituent structure of hadrons in physical space-time. In

the case of a meson, ζ =
√
x(1− x)b2

⊥ is a Lorentz invariant coordinate which
measures the distance between the quark and antiquark; it is analogous to the
radial coordinate r in the Schrödinger equation. In effect ζ represents the off-light-
front energy shell or invariant mass dependence of the bound state; it allows the
separation of the dynamics of quark and gluon binding from the kinematics of
constituent spin and internal orbital angular momentum.19 Light-front holography
thus provides a connection between the description of hadronic modes in AdS space
and the Hamiltonian formulation of QCD in physical space-time quantized on the
light-front at fixed LF time τ.

The mapping between the LF invariant variable ζ and the fifth-dimension AdS
coordinate z was originally obtained by matching the expression for electromag-
netic current matrix elements in AdS space21 with the corresponding expression for
the current matrix element, using LF theory in physical space time.16 It has also
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been shown that one obtains the identical holographic mapping using the matrix
elements of the energy-momentum tensor,18,22 thus verifying the consistency of the
holographic mapping from AdS to physical observables defined on the light front.

The resulting equation for the mesonic qq̄ bound states at fixed light-front time
has the form of a single-variable relativistic Lorentz invariant Schrödinger equation(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ), (1)

where the confining potential is U(ζ) = κ4ζ2 +2κ2(L+S−1) in the soft-wall model.
Its eigenvalues determine the hadronic spectra and its eigenfunctions are related
to the light-front wavefunctions of hadrons for general spin and orbital angular
momentum. This LF wave equation serves as a semiclassical first approximation to
QCD, and it is equivalent to the equations of motion which describe the propagation
of spin-J modes in AdS space. The resulting light-front wavefunctions provide a
fundamental description of the structure and internal dynamics of hadronic states
in terms of their constituent quark and gluons. There is only one parameter, the
mass scale κ ∼ 1/2 GeV, which enters the confinement potential. In the case of
mesons S = 0, 1 is the combined spin of the q and q̄, L is their relative orbital
angular momentum as determined by the hadronic light-front wavefunctions.

The concept of a running coupling αs(Q2) in QCD is usually restricted to the
perturbative domain. However, as in QED, it is useful to define the coupling as an
analytic function valid over the full space-like and time-like domains. The study of
the non-Abelian QCD coupling at small momentum transfer is a complex problem
because of gluonic self-coupling and color confinement. We will show that the light-
front holographic mapping of classical gravity in AdS space, modified by a positive-
sign dilaton background, leads to a non-perturbative effective coupling αAdSs (Q2)
which is in agreement with hadron physics data extracted from different observables,
as well as with the predictions of models with built-in confinement and lattice
simulations.

2. The Hadron Spectrum and Form Factors in Light-Front
AdS/QCD

The meson spectrum predicted by Eq. 1 has a string-theory Regge form M2 =
4κ2(n + L + S/2); i.e., the square of the eigenmasses are linear in both L and n,
where n counts the number of nodes of the wavefunction in the radial variable ζ.
This is illustrated for the pseudoscalar and vector meson spectra in Fig. 1, where
the data are from Ref. 23. The pion (S = 0, n = 0, L = 0) is massless for zero quark
mass, consistent with the chiral invariance of massless QCD. Thus one can compute
the hadron spectrum by simply adding 4κ2 for a unit change in the radial quantum
number, 4κ2 for a change in one unit in the orbital quantum number L and 2κ2

for a change of one unit of spin S. Remarkably, the same rule holds for three-quark
baryons as we shall show below.
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In the light-front formalism, one sets boundary conditions at fixed τ and then
evolves the system using the light-front (LF) Hamiltonian P−=P 0 − P 3 = id/dτ .
The invariant Hamiltonian HLF = P+P−− P 2

⊥ then has eigenvalues M2 where
M is the physical mass. Its eigenfunctions are the light-front eigenstates whose
Fock state projections define the frame-independent light-front wavefunctions. The
eigensolutions of Eq. 1 provide the light-front wavefunctions of the valence Fock
state of the hadrons ψ(x,b⊥) as illustrated for the pion in Fig. 2 for the soft (a)
and hard wall (b) models. The resulting distribution amplitude has a broad form
φπ(x) ∼

√
x(1− x) which is compatible with moments determined from lattice

gauge theory. One can then immediately compute observables such as hadronic
form factors (overlaps of LFWFs), structure functions (squares of LFWFs), as well
as the generalized parton distributions and distribution amplitudes which underly
hard exclusive reactions. For example, hadronic form factors can be predicted from
the overlap of LFWFs in the Drell-Yan West formula. The prediction for the space-
like pion form factor is shown in Fig. 2(c). The pion form factor and the vector meson
poles residing in the dressed current in the soft wall model require choosing a value
of κ smaller by a factor of 1/

√
2 than the canonical value of κ which determines the

mass scale of the hadronic spectra. This shift is apparently due to the fact that the
transverse current in e+e− → qq̄ creates a quark pair with Lz = ±1 instead of the
Lz = 0 qq̄ composition of the vector mesons in the spectrum.

Individual hadrons in AdS/QCD are identified by matching the power behavior
of the hadronic amplitude at the AdS boundary at small z to the twist τ of its
interpolating operator at short distances x2 → 0, as required by the AdS/CFT
dictionary. The twist also equals the dimension of fields appearing in chiral super-
multiplets;24 thus the twist of a hadron equals the number of constituents plus the
relative orbital angular momentum. One then can apply light-front holography to
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Fig. 1. Parent and daughter Regge trajectories for (a) the π-meson family with κ = 0.6 GeV;

and (b) the I=1 ρ-meson and I=0 ω-meson families with κ = 0.54 GeV
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relate the amplitude eigensolutions in the fifth dimension coordinate z to the LF
wavefunctions in the physical space-time variable ζ.

Equation (1) was derived by taking the LF bound-state Hamiltonian equation
of motion as the starting point.19 The term L2/ζ2 in the LF equation of motion (1)
is derived from the reduction of the LF kinetic energy when one transforms to two-
dimensional cylindrical coordinates (ζ, ϕ), in analogy to the `(` + 1)/r2 Casimir
term in Schrödinger theory. One thus establishes the interpretation of L in the
AdS equations of motion. The interaction terms build confinement corresponding
to the dilaton modification of AdS space.19 The duality between these two methods
provides a direct connection between the description of hadronic modes in AdS
space and the Hamiltonian formulation of QCD in physical space-time quantized
on the light-front at fixed LF time τ.

The identification of orbital angular momentum of the constituents is a key
element in the description of the internal structure of hadrons using holographic
principles. In our approach quark and gluon degrees of freedom are explicitly intro-
duced in the gauge/gravity correspondence,25 in contrast with the usual AdS/QCD
framework26,27 where axial and vector currents become the primary entities as in
effective chiral theory. Unlike the top-down string theory approach, one is not lim-
ited to hadrons of maximum spin J ≤ 2, and one can study baryons with finite
color NC = 3. Higher spin modes follow from shifting dimensions in the AdS wave
equations. In the soft-wall model the usual Regge behavior is found M2 ∼ n + L,
predicting the same multiplicity of states for mesons and baryons as observed ex-
perimentally.28 It is possible to extend the model to hadrons with heavy quark
constituents by introducing nonzero quark masses and short-range Coulomb correc-
tions. For other recent calculations of the hadronic spectrum based on AdS/QCD,
see Refs. 29–40. Other recent computations of the pion form factor are given in
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Fig. 2. Pion LF wavefunction ψπ(x,b⊥) for the AdS/QCD (a) hard-wall (ΛQCD = 0.32 GeV)
and (b) soft-wall (κ = 0.375 GeV) models. (c) Space-like scaling behavior for Q2Fπ(Q2). The

continuous line is the prediction of the soft-wall model for κ = 0.375 GeV. The dashed line is the

prediction of the hard-wall model for ΛQCD = 0.22 GeV. The triangles are the data compilation
of Baldini.
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Refs. 41,42.
For baryons, the light-front wave equation is a linear equation determined by

the LF transformation properties of spin 1/2 states. A linear confining potential
U(ζ) ∼ κ2ζ in the LF Dirac equation leads to linear Regge trajectories.43 For
fermionic modes the light-front matrix Hamiltonian eigenvalue equation DLF |ψ〉 =
M|ψ〉, HLF = D2

LF , in a 2×2 spinor component representation is equivalent to the
system of coupled linear equations

− d

dζ
ψ− −

ν + 1
2

ζ
ψ− − κ2ζψ− =Mψ+,

d

dζ
ψ+ −

ν + 1
2

ζ
ψ+ − κ2ζψ+ =Mψ−, (2)

with eigenfunctions

ψ+(ζ) ∼ z
1
2+νe−κ

2ζ2/2Lνn(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ

2ζ2/2Lν+1
n (κ2ζ2), (3)

and eigenvalues M2 = 4κ2(n+ ν + 1).
The baryon interpolating operator O3+L = ψD{`1 . . . D`qψD`q+1 . . . D`m}ψ, L =∑m
i=1 `i, is a twist 3, dimension 9/2 + L with scaling behavior given by its twist-

dimension 3 + L. We thus require ν = L + 1 to match the short distance scaling
behavior. Higher spin modes are obtained by shifting dimensions for the fields.
Thus, as in the meson sector, the increase in the mass squared for higher baryonic
state is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state,
the proton. Since our starting point to find the bound state equation of motion
for baryons is the light-front, we fix the overall energy scale identical for mesons
and baryons by imposing chiral symmetry to the pion20 in the LF Hamiltonian

0

2

4

(a) (b)
6

0 1 2 3 4
9-2009
8796A3

M2

L

0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)

N(2200)

N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)

Δ(1920)

Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Fig. 3. 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV.
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equations. By contrast, if we start with a five-dimensional action for a scalar field
in presence of a positive sign dilaton, the pion is automatically massless.

The predictions for the 56-plet of light baryons under the SU(6) flavor group
are shown in Fig. 3. As for the predictions for mesons in Fig. 1, only confirmed
PDG23 states are shown. The Roper state N(1440) and the N(1710) are well
accounted for in this model as the first and second radial states. Likewise the
∆(1660) corresponds to the first radial state of the ∆ family. The model is suc-
cessful in explaining the important parity degeneracy observed in the light baryon
spectrum, such as the L = 2, N(1680)−N(1720) degenerate pair and the L = 2,
∆(1905),∆(1910),∆(1920),∆(1950) states which are degenerate within error bars.
Parity degeneracy of baryons is also a property of the hard wall model, but radial
states are not well described in this model.44

As an example of the scaling behavior of a twist τ = 3 hadron, we compute the
spin non-flip nucleon form factor in the soft wall model.43 The proton and neutron
Dirac form factors are given by

F p1 (Q2) =
∫
dζ J(Q, ζ) |ψ+(ζ)|2, (4)

Fn1 (Q2) = −1
3

∫
dζ J(Q, ζ)

[
|ψ+(ζ)|2 − |ψ−(ζ)|2

]
, (5)

where F p1 (0) = 1, Fn1 (0) = 0. The non-normalizable mode J(Q, z) is the solution
of the AdS wave equation for the external electromagnetic current in presence of
a dilaton background exp(±κ2z2).17,45 Plus and minus components of the twist 3
nucleon LFWF are

ψ+(ζ)=
√

2κ2 ζ3/2e−κ
2ζ2/2, Ψ−(ζ)=κ3 ζ5/2e−κ

2ζ2/2. (6)

The results for Q4F p1 (Q2) and Q4Fn1 (Q2) and are shown in Fig. 4.46
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3. Nonperturbative Running Coupling from Light-Front
Holography

The definition of the running coupling in perturbative quantum field theory is
scheme-dependent. As discussed by Grunberg,47 an effective coupling or charge
can be defined directly from physical observables. Effective charges defined from
different observables can be related to each other in the leading-twist domain us-
ing commensurate scale relations (CSR).48 The potential between infinitely heavy
quarks can be defined analytically in momentum transfer space as the product of the
running coupling times the Born gluon propagator: V (q) = −4πCFαV (q)/q2. This
effective charge defines a renormalization scheme – the αV scheme of Appelquist,
Dine, and Muzinich.49 In fact, the holographic coupling αAdSs (Q2) can be consid-
ered to be the nonperturbative extension of the αV effective charge defined in Ref.
49. We can also make use of the g1 scheme, where the strong coupling αg1(Q2) is
determined from the Bjorken sum rule.50 The coupling αg1(Q2) has the advantage
that it is the best-measured effective charge, and it can be used to extrapolate the
definition of the effective coupling to large distances.51 Since αg1 has been measured
at intermediate energies, it is particularly useful for studying the transition from
small to large distances.

We will show3 how the LF holographic mapping of effective classical gravity in
AdS space, modified by a positive-sign dilaton background, can be used to identify
an analytically simple color-confining non-perturbative effective coupling αAdSs (Q2)
as a function of the space-like momentum transfer Q2 = −q2. This coupling incor-
porates confinement and agrees well with effective charge observables and lattice
simulations. It also exhibits an infrared fixed point at small Q2 and asymptotic
freedom at large Q2. However, the fall-off of αAdSs (Q2) at large Q2 is exponen-
tial: αAdSs (Q2) ∼ e−Q

2/κ2
, rather than the perturbative QCD (pQCD) logarithmic

fall-off. We also show in Ref. 3 that a phenomenological extended coupling can be
defined which implements the pQCD behavior.

As will be discussed below, the β-function derived from light-front holography
becomes significantly negative in the non-perturbative regime Q2 ∼ κ2, where it
reaches a minimum, signaling the transition region from the infrared (IR) confor-
mal region, characterized by hadronic degrees of freedom, to a pQCD conformal
ultraviolet (UV) regime where the relevant degrees of freedom are the quark and
gluon constituents. The β-function is always negative: it vanishes at large Q2 con-
sistent with asymptotic freedom, and it vanishes at small Q2 consistent with an
infrared fixed point.5,52

Let us consider a five-dimensional gauge field G propagating in AdS5 space in
presence of a dilaton background ϕ(z) which introduces the energy scale κ in the
five-dimensional action. At quadratic order in the field strength the action is

S = −1
4

∫
d5x
√
g eϕ(z) 1

g2
5

G2, (7)

where the metric determinant of AdS5 is
√
g = (R/z)5, ϕ = κ2z2 and the square of
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the coupling g5 has dimensions of length. We can identify the prefactor

g−2
5 (z) = eϕ(z)g−2

5 , (8)

in the AdS action (7) as the effective coupling of the theory at the length scale z. The
coupling g5(z) then incorporates the non-conformal dynamics of confinement. The
five-dimensional coupling g5(z) is mapped, modulo a constant, into the Yang-Mills
(YM) coupling gYM of the confining theory in physical space-time using light-front
holography. One identifies z with the invariant impact separation variable ζ which
appears in the LF Hamiltonian: g5(z)→ gYM (ζ). Thus

αAdSs (ζ) = g2
YM (ζ)/4π ∝ e−κ

2ζ2 . (9)

In contrast with the 3-dimensional radial coordinates of the non-relativistic
Schrödinger theory, the natural light-front variables are the two-dimensional cylin-
drical coordinates (ζ, φ) and the light-cone fraction x. The physical coupling mea-
sured at the scale Q is the two-dimensional Fourier transform of the LF transverse
coupling αAdSs (ζ) (9). Integration over the azimuthal angle φ gives the Bessel trans-
form

αAdSs (Q2) ∼
∫ ∞

0

ζdζ J0(ζQ)αAdSs (ζ), (10)

in the q+ = 0 light-front frame where Q2 = −q2 = −q2
⊥ > 0 is the square of

the space-like four-momentum transferred to the hadronic bound state. Using this
ansatz we then have from Eq. (10)

αAdSs (Q2) = αAdSs (0) e−Q
2/4κ2

. (11)

In contrast, the negative dilaton solution ϕ = −κ2z2 leads to an integral which
diverges at large ζ. We identify αAdSs (Q2) with the physical QCD running coupling
in its nonperturbative domain.

The flow equation (8) from the scale dependent measure for the gauge fields
can be understood as a consequence of field-strength renormalization. In physical
QCD we can rescale the non-Abelian gluon field Aµ → λAµ and field strength
Gµν → λGµν in the QCD Lagrangian density LQCD by a compensating rescal-
ing of the coupling strength g → λ−1g. The renormalization of the coupling
gphys = Z

1/2
3 g0, where g0 is the bare coupling in the Lagrangian in the UV-regulated

theory, is thus equivalent to the renormalization of the vector potential and field
strength: Aµren = Z

−1/2
3 Aµ0 , Gµνren = Z

−1/2
3 Gµν0 with a rescaled Lagrangian density

LrenQCD = Z−1
3 L0

QCD = (gphys/g0)−2L0. In lattice gauge theory, the lattice spacing a
serves as the UV regulator, and the renormalized QCD coupling is determined from
the normalization of the gluon field strength as it appears in the gluon propagator.
The inverse of the lattice size L sets the mass scale of the resulting running cou-
pling. As is the case in lattice gauge theory, color confinement in AdS/QCD reflects
nonperturbative dynamics at large distances. The QCD couplings defined from lat-
tice gauge theory and the soft wall holographic model are thus similar in concept,
and both schemes are expected to have similar properties in the nonperturbative
domain, up to a rescaling of their respective momentum scales.
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4. Comparison of the Holographic Coupling with Other Effective
Charges

The effective coupling αAdS(Q2) (solid line) is compared in Fig. 5 with experimental
and lattice data. For this comparison to be meaningful, we have to impose the same
normalization on the AdS coupling as the g1 coupling. This defines αAdSs normalized
to the g1 scheme: αAdSg1

(
Q2 = 0

)
= π. Details on the comparison with other effective

charges are given in Ref. 53.
The couplings in Fig. 5 (a) agree well in the strong coupling regime up to Q∼1

GeV. The value κ = 0.54 GeV is determined from the vector meson Regge trajec-
tory.8 The lattice results shown in Fig. 5 from Ref. 54 have been scaled to match the
perturbative UV domain. The effective charge αg1 has been determined in Ref. 53
from several experiments. Fig. 5 also displays other couplings from different observ-
ables as well as αg1 which is computed from the Bjorken sum rule50 over a large
range of momentum transfer (cyan band). At Q2 =0 one has the constraint on the
slope of αg1 from the Gerasimov-Drell-Hearn (GDH) sum rule55 which is also shown
in the figure. The results show no sign of a phase transition, cusp, or other non-
analytical behavior, a fact which allows us to extend the functional dependence of
the coupling to large distances. As discussed below, the smooth behavior of the AdS
strong coupling also allows us to extrapolate its form to the perturbative domain.

The hadronic model obtained from the dilaton-modified AdS space provides a
semi-classical first approximation to QCD. Color confinement is introduced by the
harmonic oscillator potential, but effects from gluon creation and absorption are
not included in this effective theory. The nonperturbative confining effects vanish
exponentially at large momentum transfer (Eq. (11)), and thus the logarithmic
fall-off from pQCD quantum loops will dominate in this regime.
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Fig. 5. (a) Effective coupling from LF holography for κ = 0.54 GeV compared with effective QCD

couplings extracted from different observables and lattice results. (b) Prediction for the β function

compared to lattice simulations, JLab and CCFR results for the Bjorken sum rule effective charge.
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The running coupling αAdSs given by Eq. (11) is obtained from a color-confining
potential. Since the strong coupling is an analytical function of the momentum
transfer at all scales, we can extend the range of applicability of αAdSs by match-
ing to a perturbative coupling at the transition scale, Q ∼ 1 GeV, where pQCD
contributions become important. In order to have a fully analytical model, we write

αAdSModified,g1(Q2) = αAdSg1 (Q2)g+(Q2) + αfitg1 (Q2)g−(Q2), (12)

where g±(Q2) = 1/(1 + e±(Q2−Q2
0)/τ2

) are smeared step functions which match the
two regimes. The parameter τ represents the width of the transition region. Here
αAdSg1 is given by Eq. (11) with the normalization αAdSg1 (0) = π – the plain black
line in Fig. 5 – and αfitg1 in Eq. (12) is the analytical fit to the measured coupling
αg1 .53 The couplings are chosen to have the same normalization at Q2 = 0. The
smoothly extrapolated result (dot-dashed line) for αs is also shown on Fig. 5. We
use the parameters Q2

0 = 0.8 GeV2 and τ2 = 0.3 GeV2.
The β-function for the nonperturbative effective coupling obtained from the LF

holographic mapping in a positive dilaton modified AdS background is

βAdS(Q2) =
d

d logQ2
αAdS(Q2) =

πQ2

4κ2
e−Q

2/(4κ2). (13)

The solid line in Fig. 5 (b) corresponds to the light-front holographic result Eq.
(13). Near Q0 ' 2κ ' 1 GeV, we can interpret the results as a transition from
the nonperturbative IR domain to the quark and gluon degrees of freedom in the
perturbative UV regime. The transition momentum scale Q0 is compatible with the
momentum transfer for the onset of scaling behavior in exclusive reactions where
quark counting rules are observed.56 For example, in deuteron photo-disintegration
the onset of scaling corresponds to momentum transfer of 1.0 GeV to the nucleon
involved.57 Dimensional counting is built into the AdS/QCD soft and hard wall
models since the AdS amplitudes Φ(z) are governed by their twist scaling behavior
zτ at short distances, z → 0.6

Also shown on Fig. 5 (b) are the β-functions obtained from phenomenology and
lattice calculations. For clarity, we present only the LF holographic predictions,
the lattice results from,54 and the experimental data supplemented by the relevant
sum rules. The width of the aqua band is computed from the uncertainty of αg1 in
the perturbative regime. The dot-dashed curve corresponds to the extrapolated ap-
proximation given by Eq. (12). Only the point-to-point uncorrelated uncertainties
of the JLab data are used to estimate the uncertainties, since a systematic shift can-
cels in the derivative. Nevertheless, the uncertainties are still large. The β-function
extracted from LF holography, as well as the forms obtained from the works of
Cornwall,52 Bloch, Fisher et al.,58 Burkert and Ioffe59 and Furui and Nakajima,54

are seen to have a similar shape and magnitude.
Judging from these results, we infer that the actual β-function of QCD will

extrapolate between the non-perturbative results for Q < 1 GeV and the pQCD
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results for Q > 1 GeV. We also observe that the general conditions

β(Q→ 0) = β(Q→∞) = 0, (14)

β(Q) < 0, for Q > 0, (15)
dβ
dQ

∣∣
Q=Q0

= 0, (16)
dβ
dQ < 0, for Q < Q0,

dβ
dQ > 0, for Q > Q0. (17)

are satisfied by our model β-function obtained from LF holography.
Eq. (14) expresses the fact that QCD approaches a conformal theory in both the

far ultraviolet and deep infrared regions. In the semiclassical approximation to QCD
without particle creation or absorption, the β-function is zero and the approximate
theory is scale invariant in the limit of massless quarks.60 When quantum correc-
tions are included, the conformal behavior is preserved at very large Q because of
asymptotic freedom and near Q→ 0 because the theory develops a fixed point. An
infrared fixed point is in fact a natural consequence of color confinement:52 since
the propagators of the colored fields have a maximum wavelength, all loop integrals
in the computation of the gluon self-energy decouple at Q2 → 0.5 Condition (15)
for Q2 large, expresses the basic anti-screening behavior of QCD where the strong
coupling vanishes. The β-function in QCD is essentially negative, thus the coupling
increases monotonically from the UV to the IR where it reaches its maximum value:
it has a finite value for a theory with a mass gap. Equation (16) defines the tran-
sition region at Q0 where the beta function has a minimum. Since there is only
one hadronic-partonic transition, the minimum is an absolute minimum; thus the
additional conditions expressed in Eq (17) follow immediately from Eqs. (14-16).
The conditions given by Eqs. (14-17) describe the essential behavior of the full β-
function for an effective QCD coupling whose scheme/definition is similar to that
of the V -scheme.

5. Conclusions

As we have shown, the combination of Anti-de Sitter space (AdS) methods with
light-front (LF) holography provides a remarkably accurate first approximation for
the spectra and wavefunctions of meson and baryon light-quark bound states. We
obtain a connection between a semiclassical first approximation to QCD, quantized
on the light-front, with hadronic modes propagating on a fixed AdS background.
The resulting bound-state Hamiltonian equation of motion in QCD leads to rel-
ativistic light-front wave equations in the invariant impact variable ζ which mea-
sures the separation of the quark and gluonic constituents within the hadron at
equal light-front time. This corresponds to the effective single-variable relativistic
Schrödinger-like equation in the AdS fifth dimension coordinate z, Eq. (1). The
eigenvalues give the hadronic spectrum, and the eigenmodes represent the proba-
bility distributions of the hadronic constituents at a given scale. As we have shown,
the light-front holographic mapping of effective classical gravity in AdS space, mod-
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ified by a positive-sign dilaton background, provides a very good description of the
spectrum and form factors of light mesons and baryons.

There are many phenomenological applications where detailed knowledge of the
QCD coupling and the renormalized gluon propagator at relatively soft momentum
transfer are essential. This includes the rescattering (final-state and initial-state
interactions) which create the leading-twist Sivers single-spin correlations in semi-
inclusive deep inelastic scattering,61,62 the Boer-Mulders functions which lead to
anomalous cos 2φ contributions to the lepton pair angular distribution in the un-
polarized Drell-Yan reaction,63 and the Sommerfeld-Sakharov-Schwinger correction
to heavy quark production at threshold.64 The confining AdS/QCD coupling from
light-front holography can lead to a quantitative understanding of this factorization-
breaking physics.65

We have also shown that the light-front holographic mapping of effective classical
gravity in AdS space, modified by the same positive-sign dilaton background pre-
dicts the form of a non-perturbative effective coupling αAdSs (Q) and its β-function.
The AdS/QCD running coupling is in very good agreement with the effective cou-
pling αg1 extracted from the Bjorken sum rule. Surprisingly, the Furui and Naka-
jima lattice results54 also agree better overall with the g1 scheme rather than the
V scheme. Our analysis indicates that light-front holography captures the essential
dynamics of confinement. The holographic β-function displays a transition from
nonperturbative to perturbative regimes at a momentum scale Q ∼ 1 GeV. It ap-
pears to captures the essential characteristics of the full β-function of QCD, thus
giving further support to the application of the gauge/gravity duality to the con-
fining dynamics of strongly coupled QCD.
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