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We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide
superconductors. Using both large S and large N methods, we show that this model exhibits a
sequence of two phase transitions: from a high temperature symmetric phase to a narrow region
of intermediate “nematic” phase, and then to a low temperature spin ordered phase. Identifying
phases by their broken symmetries, these phases correspond precisely to the sequence of structural
(tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron
scattering studies of LaOFeAs. The structural transition can thus be identified with the existence
of incipient (“fluctuating”) magnetic order.

I. CONTEXT

Of course, the big issue of the day is whether the
physics of high temperature superconductivity1,2,3,4,5,6

in the rare-earth oxypnictides is related to that in the
cuprates. In favor of this association is the observa-
tion that both are “bad metals”7, and so presumably
not well described by Fermi liquid theory in their nor-
mal states. Preliminary evidence9,10 suggests that the
superconducting state in the oxypnictides, like that in
the cuprates, has gapless nodal quasiparticle excitations,
and hence, probably, an unconventional pairing symme-
try. Finally, there is tantalizing evidence that competing
ordered states, and possibly an associated quantum crit-
ical point, may play a role in both cases.5,11,13

In the case of the cuprates, superconductivity is pro-
duced by doping a commensurate spin-ordered, insu-
lating parent “Neel” state. Probably Neel order does
not coexist with superconductivity; however, other or-
dered states, including spin and charge stripe (unidirec-
tional density wave) ordered states,28,29 an Ising nematic
state29,30,31 (about which, more later) and a form of time
reversal symmetry breaking order26,27 (whose character
is still being debated) seem to coexist (in some cases, at
least) with superconductivity, and possibly to vanish at
quantum critical points somewhere under the supercon-
ducting dome.

The oxypnictides in question have chemical makeup
RO1−xFxFeAs, where R is a rare earth, and x is the
dopant concentration; the behavior (including the maxi-
mum superconducting Tc) depends systematically on the
particular choice of R. The situation with competing
orders in the oxypnictides is only beginning to be ex-
plored. Undoped ROFeAs is not cleanly insulating, but
its resistivity is strikingly large (e.g. ρ ∼ 7 mΩ-cm in
SmOFeAs at room temperature11,12) for a metal; it does,
however, exhibit (in neutron scattering experiments on
LaOFeAs13,14) commensurate spin order below TSDW =
135K. Moreover, a closely associated structural transi-
tion, which we wish to identify as the transition to an
“electron nematic phase”,33 occurs at the slightly higher

temperature, TN = 150K.13 The evolution of these or-
ders as a function of doping, x, has not yet been directly
probed with neutrons. However, the sharp onset of an
anomalous drop in the resistivity occurs at Tρ = TN in
the undoped x = 0 material. The onset temperature
for the resistance drop has been tracked in resistivity
measurements for different x, and found to extrapolate
to 0 at a critical value of x close to the point at which
the superconducting Tc first reaches its maximum value
max[Tc] = 55K in SmO1−xFxFeAs.11 Assuming that the
association between Tρ and TN persists, this means that
there is an electron nematic to isotropic quantum phase
transition in the superconducting dome in at least some
members of both families of high temperature supercon-
ductors, a suggestive evidence both of a common thread
in the behavior of both materials, and of the conjecture
that nematic order is, in some way, a crucial part of the
physics.

II. INTRODUCTION

The purpose of this paper is to propose a unified per-
spective on the occurrence of both the magnetic and the
structural phase transitions in undoped LaOFeAs. To
the extent that this proposal is correct, it justifies the
identification of the observed structural transition with
the occurrence of an “electron nematic phase.”

Following the lead of two insightful recent papers by
Yildirim15 and by Si and Abrahams16, we will treat un-
doped ROFeAs as if it were a magnetic (“Mott”) insu-
lator, and hence we consider a simple model of localized
spins on the iron sites interacting with neighboring spins
by an antiferromagnetic superexchange interaction medi-
ated through the intervening As atoms (Eq. 3.1, below).
Some microscopic justification for this approach is con-
tained in those two earlier papers. In addition, the fact
that the magnetic order13 in ROFeAs is commensurate
is, a priori, indicative of strong coupling physics. More-
over, although the bare susceptibility computed17,18,19

from the LDA band structure is peaked at the appro-
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priate ordering vector, Q, the Fermi surface is not well
nested and this peak is neither pronounced nor sharp.

However, it is important to acknowledge from the start
that a model of localized spins cannot be taken as a re-
alistic representation of the electronic structure of RO-
FeAs. The most obvious point is that ROFeAs is not
an insulator! At best, it is our hope that the magnetic
and structural properties of this material can be qual-
itatively understood on the basis of the present model.
Even there, we will show that the small magnitude of
the ordered moment, m = 0.35µB, at low temperature
is inconsistent with the predictions of the present model.
Indeed, as pointed out by Si and Abrahams, it is not
even clear whether we should be considering a spin S=2
or S=1 model, in this context. Still, the model is suffi-
ciently simple that its behavior can be cleanly derived.
As we shall see, it inevitably exhibits two ordered phases
(see Fig. 2) of precisely the character of those seen in
experiment. Moreover, numerous spectroscopic and a
few thermodynamic predictions can be made on the ba-
sis of this model which are sufficiently robust that we
may hope they transcend the deficiencies of the model.
For instance, we predict the following: applying external
pressure along the z axis reduces the difference between
the two transition temperatures TN and TSDW ; there are
sharp spin wave modes around Q′ = (0, π) (about which,
see Section IV) with large spectral weight, which could
be tested in future neutron scattering experiments.

III. THE MODEL

In the tetragonal phase, the iron sites form square
planar arrays, such that the sites of adjacent planes lie
above one another. Because the superexchange is medi-
ated through off-plane but plaquette-centered As atoms,
the first and second neighbor antiferromagnetic exchange
couplings, J1 and J2, are expected to be of roughly the
same magnitude. However, the coupling between spins
on neighboring planes, Jz, while still antiferromagnetic,
is expected to be much smaller than the in-plane cou-
plings. (See Fig.1) Estimates from previous work15,21,25

are J1 ≈ 0.5J2 ≈ 400−700K. Jz is several orders of mag-
nitude smaller than J2. The resulting minimal Hamilto-
nian is

H =
∑

n,R,δ1

[

J1
~SR,n · ~SR+δ1,n − K

(

~SR,n · ~SR+δ1,n

)2
]

+J2

∑

n,R,δ2

~SR,n · ~SR+δ2,n + Jz

∑

n,R

~SR,n · ~SR,n+1 (3.1)

where SR,n is a spin S operator on site R in plane n and
δ1 and δ2 are, respectively, the first and second nearest-
neighbor lattice vectors in square plane. We set the lat-
tice spacing between nearest neighboring iron sites to be
1. The biquadratic interaction term, K, is small for well
localized spins, but even if we were to omit this term
in the bare Hamiltonian, it would rise from quantum
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FIG. 1: Schematic graph for the proposed model with nearest-
neighbor coupling J1, next-nearest-neighbor coupling J2 and
interlayer coupling Jz. The orientation of the spins in the
low temperature phase are drawn according to Ref. 13. Note
that we use coordinate system with axis x, y z in the current
study, which is 45◦ rotated along the c = z direction from the
realistic crystal axis a, b and c.

or thermal fluctuation through the so called ‘order out
of disorder’ mechanism21,22,23,24 in the long wavelength
limit. Note that this Hamiltonian has the C4 lattice ro-
tational symmetry of the high temperature tetragonal
phase.

In the broken symmetry “nematic” phase, the spin ne-
matic order parameter

N ≡ 〈
∑

δ1

Fd(δ1)~SR,n · ~SR+δ1,n〉 (3.2)

is nonzero, where Fd is a “d-wave” form factor, Fd(±x̂) =
−Fd(±ŷ) = 1. Since a structural distortion of appro-
priate symmetry is linearly coupled to the spin nematic
order parameter, the magnitude of the structural distor-
tion u will be proportional to N in the presence of weak
electron-lattice coupling. It is a central conclusion of
our work that the structural distortion is a response to
a purely electronic pattern of symmetry breaking, so we
will typically take u = 0, although in some places, we
will consider the effects of a small perturbation

H ′ = JN

∑

n,R,δ1

[

Fd(δ1)~SR,n · ~SR+δ1,n

]

(3.3)

where JN ∝ u.
There is a subtlety of the crystal structure that is not

apparent in the model presented in Eq. 3.1: Because of
the presence of a glide plane, the spins on the Fe sites
are all equivalent, so in the model, there appears to be
only one atom per unit cell. Thus, the distortion which
produces a non-zero u looks to be an orthorhombic distor-
tion, in which the elementary square plaquette become
slightly rectangular. However, because of the three di-
mensional placement of the As atoms out of the Fe plane,
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there are actually two Fe sites per unit cell, and conse-
quently the correct classification of the low symmetry
phase is monoclinic. Because it simplifies the discussion,
we will henceforth ignore this subtlety, and phrase our
discussion on an idealized crystal structure with a single
Fe atom per unit cell, as is appropriate to the magnetic
Hamiltonian in Eq. 3.1.

We will consider this model in the limit J2 > J1/2 ≫
Jz, K > 0. We shall derive T = 0 properties of this
model to lowest order in a spin-wave (1/S) expansion. To
treat the finite temperature properties of the model, we

consider ~S to be an N dimensional unit vector (SO(N)
spin) and obtain a systematic solution to the problem in
the large N limit. It is generally found that the spin-wave
theory is accurate34 at T = 0, even in the limit S = 1/2,
so it should be quite reliable in the present case. Simi-
larly, the physical N = 3 typically is well approximated
by large N .

IV. ZERO TEMPERATURE (LARGE S)

We can compute the properties of the system described
in Eq. 3.1 using the standard (Holstein-Primakov) spin-
wave theory. We compute the classical expression and
the leading corrections to order 1/S.

Since at T = 0, the small interplane coupling Jz does
not qualitatively effect the magnetic properties of the
system, we will simplify expressions for various quan-
tities by evaluating them in the limit Jz → 0. For
J1 > 2J2 ≫ K > 0, the classical (S → ∞) ground state is
the Neel state with ordering wave-vector Q = (π, π). For
J2 > J1/2 ≫ K > 0, the regime of interest in the present
study, the classical ground state is the “striped” phase
with ordering vector Q = (π, 0), as shown in Fig. 1, or
(0, π). Note that, in addition to breaking spin-rotational
symmetry and time reversal symmetry, this state (even
in the absence of any spin-orbit coupling) spontaneously
breaks the lattice symmetry. Specifically, we compute
the antiferromagnetic and the nematic order parameters,

m = eiQ·R〈~SR,n〉 = S − α + . . . (4.1)

N = 〈
∑

δ1

Fd(δ1)~SR,n · ~S
R+δ̂1,n

〉 = −4[S2 − βS + . . .]

where α and β are dimensionless functions of J2/J1 that
we compute below. Here, we have taken the ordering
vector Q to be (π, 0) as in shown Fig. 1, which means
the nearest-neighbor bonds along the x direction are sat-
isfied, but the y-directed bonds are ferromagnetic, and
“frustrated.”

The spin wave spectrum to leading order in S is given
by

ω2
k = 4S2

[

(Jy cos ky + 2J2 + Jx − Jy)
2

− (Jx + 2J2 cos ky)2 cos2 kx

]

, (4.2)

where Jy ≡ J1+2JN −2KS2 and Jx ≡ J1−2JN +2KS2.
As expected, the spectrum is gapless at k = (0, 0) and
k = Q = (π, 0). These are the Goldstone modes, which
have an anisotropic linear dispersion,

ωk ≈ 2S
√

(2J2 + Jx)
[

(2J2 + Jx)q2
x + (2J2 − Jy)q2

y

]

,(4.3)

in which q is the small deviation from the gapless points.
The spectrum is also almost gapless at k = Q′ = (0, π)
and k = Q′′ = (π, π), where the gap,

∆ = 4S
√

(Jx − Jy)(2J2 − Jy) (4.4)

is determined by the small terms in the Hamiltonian. The
ordered state can be thought of as two inter-penetrating
Neel states, which at the classical level do not lock to
each other. It is the small terms, K and JN which lock
them together in a collinear state, and gap what would
otherwise be two independent sets of Goldstone modes.
Notice that this gap also vanishes at the critical coupling
J2 → J1/2. This is somewhat surprising, as the striped to
Neel transition might otherwise be expected to be first or-
der. (It is an open question, which we will not address at
present, whether there is an interesting, unconventional35

quantum critical point, here, or possibly some additional
intermediate zero temperature phases stabilized by quan-
tum fluctuations.)

At the same level of approximation, we can compute
the leading order quantum corrections to the sublattice
magnetization and nematic order parameters, α and β in
Eq. 4.1. To simplify matters, we compute both quantities
in the limit K and JN → 0, since these small couplings
make only negligible differences in the results. Then

α =
1

2

[

∫

d2k

(2π)2
2(J1 cos ky + 2J2)

ωk/S
− 1

]

, (4.5)

and

β = 2α −

∫

d2k

(2π)2
J1(cos2 kx + cos2 ky)

ωk/S

−

∫

d2k

(2π)2
2J2 cos ky(1 + cos2 kx)

ωk/S
. (4.6)

These integrals are readily evaluated numerically. For
instances, for J2/J1 = 2.0, α = 0.20, β = 0.30, and
for J2/J1 = 1.0, α = 0.22, β = 0.21. Both α and β
diverge as J2 → J1/2, but only logarithmically, α, β ∼
(2π)−1 ln[J1/(2J2 − J1)]. Thus, except extraordinarily
close to the quantum critical point, quantum fluctuations
do not significantly reduce the ordered moment.

The dynamic structure can also be readily computed.
The transverse piece has the form

S⊥(k, ω) = A(k)δ(ω − ωk), (4.7)

where A(k) = 4πS2
[

Jx(1 − cos kx − Jy(1 − cos ky) +

2J2(1 − cos kx cos ky)
]

/ωk. Note that interesting behav-
ior is observed near k = Q′ and k = Q′′: A(Q′) =



4

2πS
√

(2J2 − Jy)/(Jx − Jy), which is large; however,

A(Q′′) = 2πS
√

(Jx − Jy)/(2J2 − Jy), which is small.
The longitudinal structure factor has the form of a
two spin-wave continuum, and can also be computed
explicitly.36

V. FINITE T (LARGE N) SOLUTION

To study the phase diagram at finite temperature, and
in particular to gain insight into the regime of fluctuating
magnetic order above the spin ordering transition tem-
perature, it is sufficient to treat the problem classically, as
the effects of quantum fluctuations simply produce small
renormalizations of the effective parameters, as above.
Since we are interested in the region J2 > J1/2, we break
the system up into two interpenetrating square lattices
on which J2 is the nearest-neighbor coupling. On each

sublattice we define the staggered magnetization, ~φn,α for
plane n and sublattice α = 1 or 2. To make our calcula-
tions analytically tractable, we take the continuum limit
and for convenience we write the model with respect to
the real crystal axis, i.e. x, y are equivalent to a, b crystal
directions respectively in the following model. So

Hc =

∫

d2r
∑

n,α

[1

2
J̃2|∇~φn,α(r)|2 − J̃z

~φn,α(r) · ~φn+1,α(r)
]

−K̃
∑

n

[

~φn,1(r) · ~φn,2(r)
]2

+
J̃1

2

∑

n

~φn,1(r)∂x∂y
~φn,2(r), (5.1)

where we have used the same symbols with a tilde for
the couplings as in Eq. 3.1, although the present quan-
tities should include renormalizations due to both quan-
tum effects and high energy thermal fluctuations. J̃i ∼
JiS

2, (i = 1, 2) and J̃z ∼ Jz. Specially, as we pointed out

before, the K̃ term can be shown21 to rise through fluc-
tuations in the following form K̃ ∼ 0.13J̃2

1S2/J̃2, which

is about 0.01J̃2 with the estimates of J1 and J2 given in
Ref. 15.

We take the large N limit and solve the problem. The
self-consistency equations can be derived using the same
method employed in Ref. 20. Define the nematic or-

der σ = 2K̃〈~φn,1(r) · ~φn,2(r)〉 and λn,α(r), α = 1, 2 are

the Lagrangian multiplies for ~φn,α(r). The saddle point
of above Lagrangian is determined by the following self-
consistent equations where we take λn,α(r) = λ, α = 1, 2:

σ =
−2K̃

(2π)3
·

∫ Λ

−Λ

dkx

∫ Λ

−Λ

dky

∫ 2π

0

dkzG12(~k) (5.2)

1 =
2T

(2π)3
·

∫ Λ

−Λ

dkx

∫ Λ

−Λ

dky

∫ 2π

0

dkzG11(~k) (5.3)
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3

FIG. 2: TN and TSDW as the function of J̃z for J̃2 = 2J̃1 and
K̃ = 0.01J̃2. The realistic value of J̃z can be determined by
setting TN around 150K.

where Λ ∼ O(1) is momentum cutoff, and

G(~k)−1 =

(

A(~k) B(~k)

B(~k) A(~k)

)

, (5.4)

where A(~k) = J̃2k
2 + 2J̃z cos kz + 2λT , B(~k) = 2Tσ +

J̃1kxky with ~k = (k, kz) and k2 = k2
x + k2

y. From these
self-consistent equations, we can determine the transi-
tions temperatures. For K̃, J̃z ≪ J̃2, the nematic transi-
tion temperature TN is determined by the following equa-
tion

2πJ̃2

TN

= ln
J̃2/TN

√

( K̃

4πJ̃2

)2 + ( J̃z

TN
)2 + K̃

4πJ̃2

(5.5)

The spin density wave transition temperature TSDW

takes place when λ = σSDW + J̃z/T . It is determined by
the following equations

σSDW

2K̃
=

1

8πJ̃2

ln
2σSDW + J̃z

TSDW
+ 2

√

σ2
SDW + σSDW J̃z

TSDW

J̃z/TSDW

,

σSDW

2K̃
+

1

2TSDW

=
1

4πJ̃2

ln
J̃2

J̃z

. (5.6)

By solving these equations, we find that the above model
has two second order phase transitions. The nematic
transition temperature TN is always larger than the SDW
transition temperature TSDW . In Fig.2, we show the
transition temperatures TN and TSDW as the function
of J̃z for a fixed K̃ = 0.01J̃2. TN is largely insensi-
tive to J̃z so long as it is small. In Fig. 3, we plot
the difference (TN − TSDW )/TSDW as the function of

J̃z. If we compare the experimental result in LaOFeAs
where (TN − TSDW )/TSDW ∼ 11%, our results suggest

J̃z ∼ 10−4J̃2. In this parameter region, by increasing
J̃z, which can be achieved by applying external pressure
along z axis, the difference between TN and TSDW can
be reduced.
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FIG. 3: TN−TSDW

TSDW
as the function of J̃z for K̃ = 0.01J̃2 .

VI. FINAL REMARKS

The localized spin model we have solved produces re-
sults that have enough in common with the observed or-
dered phases of ROFeAs that, we believe, it is clear that
it captures some of the correct physics, as was first pro-
posed by Yildirim15 and Si and Abrahams.16 Both the
stripe-like pattern of magnetic order and the existence
of a monoclinic (nematic) lattice distortion are found to
be inevitable consequences of the magnetic interactions.
By analyzing the model carefully, we have reached some
additional conclusions.

1) Most importantly, we find that there is inevitably a
narrow range of temperatures above the magnetic order-
ing temperature, in which nematic order persists. The
tendency toward nematic order lifts the frustration and
permits coupling, even ignoring fluctuations, between the
staggered magnetic order on the two sublattices. Thus,
the magnetic order is certainly enhanced by a mono-
clinic lattice distortion, as emphasized by Yildirim. How-
ever, we have shown that the symmetry reduction can be
purely magnetic in origin (with a resulting lattice dis-
tortion occuring as a secondary consequence of this or-
dering), and that indeed the symmetry reduction occurs
when there is only intermediate scale magnetic order.24

In this sense, the nematic phase in RLnFeAs is a con-
sequence of fluctuating magnetic stripe order. This ob-
servation can be tested by studying the evolution of the
fluctuating magnetic order in the temperature interval
between TSDW and TN using inelastic neutron scatter-
ing.

2) In contrast to a speculation of Si and Abrahams, we
find that the frustration inherent in the model is not suf-
ficient to account for the experimentally observed small
magnitude of the ordered moment. Rather, this reflects
an intrinsic shortcoming of the strong-coupling model.
Presumably, as the electrons giving rise to the spin be-
come increasingly weakly localized, the maximum possi-
ble magnitude of the ordered moment decreases.

3) The validity of the strong coupling approach can be
directly tested by looking for additional collective modes
that the model predicts. In particular, in addition to the
Goldstone modes associated with the broken spin rota-
tionally symmetry (which are presumably weakly gapped
due to spin-orbit coupling), there should be additional al-
most Goldstone modes at wave-vectors Q′ and Q′′, whose
gap is a direct reflection22 of quantum fluctuations of the
spin through “order from disorder.”

Finally, we conclude with some more speculative re-
marks:

1) Many papers1,13,14,18 have observed a transition
temperature, Tρ, at which there is a relatively sharp fea-
ture in the resistivity. While this transition has been
widely identified as a spin-density wave transition, in
LaOFeAs, for which direct neutron scattering evidence is
available, it actually occurs at TN rather than at the 15K
lower TSDW . This suggests that Tρ = TN , more gener-
ally. With increasing doping, x, Tρ drops and so, presum-
ably does both TN and TSDW . Following the logic of the
present paper, it is probable that TSDW → 0 at a critical
doping concentration, xSDW which is less than the crit-
ical concentration, xN , at which TN → 0. If we accept
the identification between Tρ and TN , then extrapolat-
ing the results to where Tρ → 0, one would conclude
that xN is greater than the minimum xc for supercon-
ductivity, and indeed roughly coincides with the point at
which the superconducting Tc first reaches its maximum
value. However, contrary to the inference made in Ref.
11 in which this feature was observed, this does not nec-
essarily imply the coexistence of superconductivity and
magnetism; it is possible that xSDW ≤ xc < xN .

2) Si and Abrahams conjectured that the superconduc-
tivity in the oxypnictides may have d-wave symmetry.
While we are still uncertain as to how far the present
strong-coupling approach can be extended, it does seem
natural from the present perspective that the d-wave
character of the electron nematic order could carry over
to a d-wave character of the proximate superconducting
state.

3) The existence of a form of stripe order, and of
a nematic phase associated with fluctuating stripe or-
der, would constitute a striking piece of evidence of a
close relation between the physics of the cuprate and the
oxypnictide superconductors. Stripe order, albeit with a
longer period and a different character, has been observed
for many years in a variety of cuprate superconductors.29

Fluctuating stripe order has been detected in neutron
scattering studies of a much broader class of cuprates.
Moreover, recently, it has been confirmed in neutron scat-
tering studies31,32 of underdoped YBCO, that a nematic
phase associated with fluctuating stripe order occurs at
a temperature well above the superconducting Tc, which
presumably vanishes at a critical doping somewhere in-
side the superconducting dome.
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