
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

Strong energy-momentum dispersion of

phonon-dressed carriers in the lightly doped band

insulator SrTiO3

W. Meevasana1,2, X. J. Zhou3, B. Moritz2, C-C. Chen1,2, R.H.

He1,2, S.-I. Fujimori4, D.H. Lu2, S.-K. Mo1,5, R.G. Moore2, F.

Baumberger6, T.P. Devereaux2, D. van der Marel7, N.

Nagaosa8,9, J. Zaanen10, Z.-X. Shen1,2

1Departments of Physics and Applied Physics, Stanford University, CA 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator
Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4Synchrotron Radiation Research Unit, Japan Atomic Energy Agency, Mikazuki,
Hyogo 679-5148, Japan
5Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
6School of Physics and Astronomy, University of St Andrews, North Haugh, St.
Andrews, Fife KY16 9SS, UK
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Abstract. Much progress has been made recently in the study of the effects
of electron-phonon (el-ph) coupling in doped insulators using angle resolved
photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions
in underdoped cuprates. As these studies have been limited to doped Mott insulators,
the important question arises how this compares with doped band insulators where
similar el-ph couplings should be at work. The archetypical case is the perovskite
SrTiO3 (STO), well known for its giant dielectric constant of 10000 at low temperature,
exceeding that of La2CuO4 by a factor of 500. Based on this fact, it has been suggested
that doped STO should be the archetypical bipolaron superconductor. Here we report
an ARPES study from high-quality surfaces of lightly doped SrTiO3. Comparing to
lightly doped Mott insulators, we find the signatures of only moderate electron-phonon
coupling: a dispersion anomaly associated with the low frequency optical phonon with
a λ′ ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ′ ∼ 0.7
coming from the higher frequency phonons. Further, we find no clear signatures of
the large pseudogap or small polaron phenomena. These findings demonstrate that a
large dielectric constant itself is not a good indicator of el-ph coupling and highlight
the unusually strong effects of the el-ph coupling in doped Mott insulators.
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1. Introduction

The notion that carriers doped into insulators get dressed by lattice deformations has

been around for a long time[1, 2]. A recent development is that this polaron formation

can be studied experimentally using ARPES yielding more direct information on the

physics than classical transport and optical spectroscopic methods. Especially when the

carrier density is small but finite, where a controlled theoretical framework is lacking,

ARPES has been quite revealing. The case has been made that lightly doped cuprates

fall victim to small polaron formation (strong interacting case) that is vulnerable to

self trapping by impurities [3, 4]: in undoped cuprates the spectral functions reveal

Frank-Condon type broad humps caused by the coupling to multiple phonons, and only

when doping is increased, a well-defined quasi-particle (QP) peak starts to emerge [3, 4].

Another recent ARPES revelation is found in the context of highly doped manganites

in the colossal magneto resistance regime. At high temperatures ARPES reveals the

Frank-Condon humps signaling small polarons, while upon lowering temperature small

pole-strength quasiparticle peaks appear in addition, indicating that a coherent Fermi-

liquid is formed from the microscopic polarons[5].

Both manganites and cuprates are doped Mott-insulators and no modern ARPES

information is available on polaron physics in the simpler doped band insulators. We

therefore decided to focus on the classic SrTiO3 doped band insulator. SrTiO3 is known

to have an exceptionally high static dielectric constant on the order of 104 at low

temperature [6]. Superconductivity can be induced by electron doping with either O,

Nb, or La[7, 8] over a narrow range of low carrier concentrations between ∼ 1019 to

∼ 1020 cm−3. The optimal Tc is typically 0.2-0.3 K but can reach up to 1.2 K[9] which

is surprisingly high for such low carrier concentrations. It has been speculated that this

is due to the formation of bipolarons[10]. However, whether small polarons actually

exist in SrTiO3 depends on the relevant length scale for the electron-phonon couplings.

The case was made in a recent optical study by van Mechelen et al. that the

electron-phonon coupling is actually not that strong at all[11]. ARPES is however more

direct in revealing the strength of the coupling to specific phonons. With this technique

we arrive at the verdict that doped STO has no dealings with small polarons and that

the electron-phonon coupling acts in a perturbative way.

2. Methods and Materials

The samples investigated here are LaxSr1−xTiO3+δ (Crystal Base Co., Japan) at nominal

dopings of x = 0.01 (Tc ∼ 0.2 K) and x = 0.05 (non superconducting) [8] while the

actual doping levels at the surface are slightly different due to oxygen vacancies. We

obtain high-quality surfaces by cleaving along guiding lines at T = 10 K and measure at

the same temperature. This new technique results in significantly flatter surfaces than

fracturing or scraping of SrTiO3. This was found to substantially improve the quality of

ARPES data and enable us to see a clear quasi-particle band dispersion and dispersion
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Figure 1. ARPES data of x = 0.01 sample at T = 10K. (a) Angle-integrated
photoemission spectrum up to 9 eV in binding energy, together with optical absorption
data of an undoped sample from Ref. [15]. The inset shows angle-resolved data of the
in-gap state around 1.3 eV. (b) Quasi-particle band dispersion in the (010) plane near
EF (see cut b in Fig. 2(f) ) with corresponding energy distribution curves in (c).

anomaly which have not been seen in previous measurements[12, 13, 14]

ARPES data were collected on a Scienta-4000 analyzer at the Stanford Synchrotron

Radiation Laboratory (SSRL), Beamline 5-4, and the Advanced Light Source (ALS),

Beamline 10.0.1, with photon energies between 18-90 eV and a base pressure of

< 4×10−11 torr. Samples were cleaved in situ along the (001) plane at the measurement

temperature, T = 10 K. A sharp (1× 1) low-energy-electron-diffraction pattern indicates

a well-ordered surface devoid of any reconstructions. The energy resolution was set to 9-

11 meV and 15-20 meV for 18-35 eV and 35-90 eV photon energies respectively and the

angular resolution was 0.35◦. Additionally, a LSCO sample with x=0.01 was measured

at ALS with photon energy = 55eV and T = 20K.
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Figure 2. Fermi surface topography of SrTiO3. (a) - (d) Band dispersion in the (010)
plane for photon energies of 19, 24, 27 and 29 eV, respectively. Doped SrTiO3 has a
cubic unit cell and a three-dimensional Fermi surface, consisting of three ellipsoid-like
surfaces along each axis (see more detail in Ref. [14]); when including the spin orbit
coupling term in calculation [11], a shift in the Fermi surface occurs as shown in Fig.
3(e). (e) Fermi surface map near the Brillouin zone mid-plane (hν =27eV). The solid
green lines are guides to the eye. Estimated kz positions for (a)-(d) are indicated by
the orange lines in the schematic Fermi surface (f), where half of the whole Fermi
surface is plotted; green (blue) indicates bulk (surface) band. Note that in x = 0.01
samples a second bulk band is expected with a Fermi crossing near the surface band.
However, this band appears to be overshadowed by the more intense surface related
band and further suppressed by the matrix element near Γ point.

3. Results

In Fig. 1, we present ARPES data taken at a photon energy of 27 eV. The dominant

features in the angle integrated spectrum are the valence band between 3.3 eV and 9

eV, an in-gap state near 1.3 eV and the QP peak at the Fermi level. The energy gap

between the onset of the oxygen valence bands to the QP band bottom is around 3.3

eV consistent with optical measurements[15] while local-density-approximation (LDA)

band structure calculations predict a gap of ∼ 2 eV[14, 16]. The presence of a non-

dispersive and broad in-gap state around 1.3 eV has been discussed in the literature

(Ref. [13] and refs. therein) as caused by a local screening effect, chemical disorder or



Strong energy-momentum dispersion in the lightly doped SrTiO3 6

donor levels.

Having established the basic spectral features, we now focus on the Fermi surface

topography of SrTiO3. Fig. 2(a)-2(d) show ARPES data taken at various photon

energies (changing kz) together with a Fermi surface map at 27 eV, projected on the

kx-ky plane (Fig. 2(e)). The flatter band with a ∼60 meV band bottom (i.e. in

Fig. 2(a)-2(c)) corresponds to a bulk state since the kF crossing changes with different

photon energy (changing kz), in agreement with LDA calculations by I.I. Mazin where

the computational details are the same as in Ref. [11]. The steeper band with a bottom

∼200 meV (e.g. in Fig. 2(d)) can be attributed to the surface of cleaved SrTiO3

because the data do not show noticeable dispersion along kz and they are absent in

LDA calculations (indicated by blue line and surface in Fig. 2(e) and 2(f)). In the

following, we will use the schematic contours of the kF positions, indicated by green

surfaces in Fig. 2(f), to describe the bulk Fermi surface.

Fig. 3(a) and 3(b) show the occupied bands, along the ΓX direction in the vicinity

of the Γ point of the x = 0.01 and 0.05 samples. By aligning the kF ’s of the ARPES

data with those of the LDA dispersions[11], we estimate the dopings of the x = 0.01 and

x = 0.05 samples to be slightly higher than the nominal dopings (1.5±0.2% and 5.6±0.5

%, respectively: Fig. 3(e)), likely due to a small oxygen deficiency at the surface.

Having isolated the occupied part of the conduction bands (Fig. 3(a)-3(d)), let us

now turn to the interpretation of the data. In the data one can discern a weak kink

in the dispersion at approximately 20 meV binding energy (blue arrows, Fig. 3(a) and

3(b)). This is more clear in the x = 0.01 sample, since in the x=0.05 sample it resides

in a region where the dispersion has a strong curvature (Fig. 3(e)). Such a weak kink

structure in the dispersion indicates a perturbative coupling with a bosonic mode at this

energy. This interpretation is supported by the observation that the intensity rapidly

increases below the kink energy; above the kink energy, an extra decay channel opens

up that will smear the QP peak. To quantify the coupling to this boson, we extracted

the band velocities for the x = 0.01 case at binding energies below (vlo) and above

(vhi) the kink energy (see Fig. 3(f)) to be ∼0.16 eVÅ and 0.21 eVÅ, respectively. The

mass renormalization is therefore vhi/vlo = m∗/m ∼1.3, indicating a coupling to this

particular boson λ′ ≡ m∗/m− 1 = 0.3.

Given that the signals are rather smeared at higher energies we cannot exclude the

presence of other kinks associated with higher energy modes. However, the data permit

us to track the overall width of the occupied parts of the conduction bands. For the

x = 0.01 sample we find the band bottom at ∼58 meV whereas the LDA calculation

indicates it to be at ∼97 meV [11] (Fig. 3(e)). It follows that the overall width of

the occupied band is renormalized by a factor of ∼1.7 (WLDA/Wexp). The total mass

renormalization is the product of the bandwidth and kink renormalization factors and

we find this to be 1.7 × 1.3 ' 2.2 in the x = 0.01 sample, close to the estimate 2-3

deduced from the optical measurements[11].

To compare with STO data, Fig. 4 shows ARPES data of La1−xSrxCuO4 with

x=0.01, as a lightly doped Mott insulator. The momentum is along the (0,0) to (π, π)
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Figure 3. ((a), (b) Quasi-particle band dispersions of x=0.01 and 0.05 samples. Cross
symbols indicate peaks from energy distribution curves (EDC) and dashed lines are
extrapolated to get the band bottom. The most prominent kink energy is indicated
by arrows around ∼ 20meV for both doped samples. Possibly, there is a second kink
in the x=0.05 sample between 40-60 meV but the complication from the side band
makes it less clear. Note that kz varies slightly along the k-axis of (a) and (b) (see
Fig. 2). However, this change has only a minute influence on the measured group
velocities and will be neglected for the discussion of the mass renormalization. (c)
and (d) show EDCs of ARPES data shown in (a) and (b) respectively where the EDC
peak positions are marked by triangle symbols and the dash lines are extrapolations.
(e) LDA band dispersion of undoped SrTiO3 along ΓX[11]. Fermi levels positions for
dopings = 1.3-1.7% and 5.1-6.1% are indicated by shaded areas. (f) Schematic plot of
renormalized band dispersion in the forms of “kink” and reduced bandwidth caused
by phonons whose mode energies are lower and higher than the electron bandwidth,
respectively.

direction. We note that the data in Fig. 4 is already subtracted by the non-dispersive

background of oxygen valance band. In contrast to STO, the spectrum (see red line in

Fig. 4(b)) shows a small quasi-particle peak with large Frank-Condon type broad hump

around 400 meV - a signature of small polaron formation. LSCO data also shows a clear

kink in the dispersion, indicating a strong electron-phonon coupling at around 70 meV

(see arrow in Fig. 4(a)); to quantify this coupling, we extracted the band velocities at

binding energies below (vlo) and above (vhi) the kink energy to be ∼1.66 eVÅ and 6.14

eVÅ, respectively. Therefore, the mass renormalization factor from this kink feature

is vhi/vlo = m∗/m ∼3.7. A use of λ′ ≡ m∗/m − 1 would give λ′ of 2.7, giving a clear
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contrast to the extracted value of ∼0.3 from the kink feature of the x=0.01 STO sample.
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Figure 4. ARPES data of La1−xSrxCuO4 with x=0.01. (a) shows the raw ARPES
data and blue line indicates the peak position in momentum distribution curves (MDC)
where the big arrow indicates the kink in dispersion at binding energy ∼70meV. (b)
shows the corresponding energy distribution curves. (c) Comparison of ARPES spectra
at kF of 1) x=0.01 STO sample along Γ−X direction and 2) 1% doping La2−xSrxCuO4

along (0,0) to (π, π) direction.

4. Discussion and Conclusion

How to interpret these findings from STO data? The 20 meV kink is certainly related

to a phonon. A-priori one can be less certain about the cause of overall bandwidth

renormalization because an electronic origin cannot be excluded. However, although

LDA is well known to underestimate band gaps in band-insulators, it does not usually

underestimate the bandwidths and our extracted renormalization factor may be regarded
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as an upper value. At the same time, the phonon dispersions of STO have been measured

by infrared and Raman spectroscopy[15] and neutron scattering[17, 18, 19, 20] in great

detail; the phonon modes are in the range of 0-100 meV where much of the phonon

spectrum extends to energies that are larger than the Fermi energy of at least the

x = 0.01 system. Under such an anti-adiabatic condition, one expects the electron-

phonon coupling to give rise to an overall bandwidth renormalization that can be

estimated from the mass-renormalization formulae for the isolated polaron [1]. Since

the focus here is on the surprisingly moderate el-ph coupling, we attribute all the

renormalization to el-ph interaction which sets the upper bound for the value of λ ∼ 1.

An overall coupling λ ∼ 1 can mean both that small, self-trapped polarons are formed

but also that the system stays itinerant. What decides the nomenclature is the length

scale of the relevant electron-phonon couplings.

When the el-ph coupling is short ranged, small polarons are expected. One can

take the cuprates as an example where an effective λ ' 1 corrected for electronic band

narrowing effects [21] that enhance the impact of el-ph interaction is believed to be

responsible for the multi-phonon Franck-Condon peak indicated in Fig. 4(c). Here we

should note that m* is no longer linear with λ and increases rapidly near the small-to-

large polaron crossover around λ ' 1. For λ ' 1 in cuprates (e.g. in the case of LSCO

shown in Fig. 4), the actual face value of mass renormalization could be as large as 3.7;

hence, λ′ defined by m∗/m− 1 would be 2.7.

The most striking aspect of the STO data is that such effects due to small-polaron

formation are entirely absent in STO, where instead the electrons remain strongly

coherent as manifested by the strong energy-momentum dispersion and the rather sharp

QP peaks with large pole strengths even for 1% doped sample (Fig. 4(c)). This

can be reconciled with the relatively large λ assuming that the dominating electron-

phonon couplings are of the long ranged, polar kind [22]. This claim can in fact be

further substantiated by the finding that our data are in semi-quantitative agreement

with ‘naive’ continuum limit estimations of the polar el-ph interactions[23, 10]. In

this way only the long ranged electrostatic interactions are taken into account with

the longitudinal optical (LO) phonons, omitting completely short range interactions

involving the transversal optical (TO) phonons that are in reality always present.

Starting from this perspective, let us first discuss why the large bulk dielectric

constant is actually of little relevance to the issue of polaron formation. The dielectric

constants at zero frequency (ε0) and at frequencies large compared to the phonon energy

(ε∞) are related to the frequencies of LO and TO phonons as ε0/ε∞ = Πa(ωaLO/ωaTO)2

where a specifies the phonon branch. A large ε0 signals a softening of the TO

phonon that eventually can condense in a ferroelectric state. The Fröhlich polar el-ph

interactions involve the LO phonons and these are therefore not communicating with

the large ε0. Another issue is that the short-range coupling to this TO phonon could

be enhanced due to the softening of the frequency ωTO. However, since the softening

occurs only in a narrow region in momentum space characterized by the scale a/ξ ∼= 0.1

(ξ: correlation length) [18, 19], the increase in the coupling constant ∆λ of the order of
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∆λ ∼= λ(ω0
TO/ωTO)2(a/ξ)3 is small.

Table 1. Comparison of features between SrTiO3 and cuprates - perovskite band and
Mott insulators.

Feature Mott Insulator Band Insulator
(La2CuO4) (SrTiO3)

Mass renormalization factor from
kink feature at small doping x=0.01 ∼3.7 ∼1.3

Small polaronic effect
at small doping Yes No

Large pseudogap behavior
at small doping Yes No

Small Fermi Surface
pocket at small doping Maybe(YBCO)[25] Yes

Dielectric constant
(undoped) ∼ 20[26] ∼ 102 − 104

Under these assumptions one is, according to the calculations of Devreese et

al.[23, 10], left with three LO phonons at (for q = 0) 22, 58, and 99 meV with coupling

constants αi of 0.018, 0.945 and 3.090, respectively. Using that, for weak coupling,

λi = αi/6 [1, 24] this translates into λi’s of 0.003, 0.16 and 0.6 respectively. These

modes are indicated together with the electronic dispersions in the schematic Fig. 3(f).

The low energy kink in the electron dispersions matches very well with the 22 meV

mode associated with Sr-O bond stretching [20]. The other two phonon modes are at

higher energy than the band bottom and hence they should cause an overall band width

reduction. From the calculation, the coupling constants α of these 58-meV and 99-meV

modes will give a bandwidth-renormalized factor of 1.76, i.e. very close to our extracted

value of ∼1.7. The polar el-ph calculation strongly underestimates the λ′ ' 0.3 coupling

to the 22 meV phonon. The main coupling from this Sr-O bond stretching modes comes

from large momenta near the zone boundary as in the cuprates and is expected from

general grounds due to the displacement eigenvectors. Thus, it is a local deformation.

As we discussed in the previous paragraph this could well be significantly enhanced by

the proximity to the ferroelectric transition, a reason why its main impact is only on

the low energy phonon. However, given that the coupling is still moderate and this

phonon is of the adiabatic/Eliashberg kind, it does not interfere with the consistency of

our argument.

While small polarons are absent in STO, the cuprates at similar doping show a

sharp contrast in displaying strong el-ph coupling with mass renormalization as large

as 3.7 (see Table 1 for the comparison between LSCO and SrTiO3). For the following

reasons, the carriers doped into a Mott insulator can be subject to a stronger short-range
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el-ph interaction. One is that the additional polaronic effect due to the magnetic degrees

of freedom enhances the effective mass, and hence collaborate to form the composite

small polaron with magnon and phonon clouds[27]. Another reason is that fluctuations

with large momentum (e.g. k=(π/2, π/2) of the antiferromagnetic state in the cuprates)

are involved in dressing the doped carriers. Starting from the Fröhlich interaction, the

exchange of this large momentum can lead to the short-range el-ph interaction. In the

case of a band insulator, the large momentum in this same order of magnitude is not

immediately available. Therefore, small polaron formation is more likely to occur in a

Mott insulator than in a band insulator.

In conclusion, we have shown the quite unexpected results that there is little

evidence for small polaron formation in lightly doped SrTiO3 indicating that the large

dielectric behavior can occur independently of strong el-ph interactions. In turn, this

indicates that in doped Mott insulators like the cuprates, the dressing of electrons by

spin excitations and strong correlations conspire to give a short-range el-ph interaction

able to trap doped carriers and more readily form polarons.
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