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Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations
showed that the dominant contributions to the spectral weight near the Fermi energy came from
the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the Γ point and
two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band
model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and
q = (π, 0) spin density wave (SDW) fluctuations. We argue that this minimal model contains the
essential low energy physics of these materials.

PACS numbers: 71.10.Fd, 71.18.+y, 71.20.-b, 74.20.-z, 74.20.Mn, 74.25.Ha, 75.30.Fv

Introduction - The recent discovery of superconductiv-
ity in a family of Fe-based oxypnictides with large tran-
sition temperatures [1, 2, 3, 4, 5, 6] has led to tremen-
dous activity aimed at identifying the mechanism for su-
perconductivity in these materials. Preliminary exper-
imental results including specific heat [7], point-contact
spectroscopy [8] and high-field resistivity [9, 10] measure-
ments suggest the existence of unconventional supercon-
ductivity in these materials. Furthermore, transport[11]
and neutron scattering[12] measurements have shown the
evidence of magnetic order below T = 150K. An experi-
mental determination of the orbital and spin state of the
Cooper pairs, however, has not yet been made.

The high transition temperatures and the electronic
structure of the Fe-pnictide superconductors suggest that
the pairing interaction is of electronic origin.[13] First-
principle band structure calculations [14, 15, 16, 17] have
shown that superconductivity in these materials is asso-
ciated with the Fe-pnictide layer, and that the density of
states (DOS) near the Fermi level gets its maximum con-
tribution from the Fe-3d orbitals. The consensus based
on these calculations is that the Fermi surface consists of
two hole pockets and two electron pockets. Calculations
from Ref. [15] also show van Hove singularities which
might be responsible for enhanced ferromagnetic fluctu-
ations. The bare magnetic spin susceptibility determined
from these bands exhibits both ferromagnetic q ∼ 0 and
finite q SDW peaks.

Several tight binding models for the band structure
have been proposed. Cao et al. [18] used 16 localized
Wannier functions to construct a tight-binding effective
Hamiltonian. Kuroki et al. [19] have used a 5 orbital
tight binding model to fit the band structure near the
Fermi energy. Others have introduced generic 2-band
models [20, 21, 22]. However, the relationship of these
latter models to the multiple Fermi surface electron and
hole pockets found in LDA calculations is unclear. Since
it appears likely that these multiple Fermi surfaces play
an essential role in determining the momentum depen-

dence of the spin and orbital fluctuations which would
mediate an electronic pairing mechanism, we would like
to construct a minimal model that exhibits a Fermi sur-
face similar to that obtained from band structure calcu-
lations.

This model has two orbitals per site on a two dimen-
sional square lattice. By adjusting the one-electron hop-
ping parameters and the chemical potential one can ob-
tain a Fermi surface which has the same topology as
found from the band structure calculations. The non-
interacting spin susceptibility also exhibits both ferro-
magnetic and finite q SDW peaks. With the addition of
an onsite intra-orbital and inter-orbital Coulomb inter-
actions, and an intra-orbital Hunds rule coupling, this
model represents what we believe is a minimal model
for describing the low energy physics of these materi-
als. In addition, the relative simplicity of this model
should be useful in the phenomenological analysis of ex-
periments related to the gap symmetry [23] and in nu-
merical density-matrix renormalization group (DMRG)
and dynamic cluster studies.

Model Hamiltonian - The structure of the FeAs layer
of LaOFeAs viewed along the c-axis is illustrated in
Fig. 1a. The Fe ions form a square lattice which is inter-
laced with a second square lattice of As ions. These As
ions sit in the center of each square plaquette of the Fe
lattice and are displaced above and below the plane of
the Fe ions as indicated in the figure. This leads to two
distinct Fe sites and a crystallographic unit cell which
contains two Fe and two As ions. As shown by various
band structure calculations, the main contribution to the
density of states within several eV of the Fermi surface
comes from the Fe 3d states which disperse only weakly
in the z-direction. The 3d Fe orbitals hybridize among
themselves and through the As p orbitals leading to a
complex of bands. However, as noted in Ref. [16], the
bandstructure near the Fermi level is relatively simple in
the unfolded 1Fe/cell BZ where it primarily involves three
Fe orbitals dxz, dyz and dxy (or dx2−y2). Based upon this

SLAC-PUB-13927

SIMES, SLAC National Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA  94309



2

FIG. 1: (a) The Fe ions form a square lattice and the crys-
tallographic unit cell contains two Fe and two As ions. The
As ions are located either directly above (solid circles) or be-
low (dashed circles) the faces of the Fe square array. (b)A
schematic showing the hopping parameters of the two-orbital
dxz − dyz model on a square lattice. Here t1 is a near neigh-
bor hopping between σ-orbitals and t2 is a near neighbor hop-
ping between π-orbitals. We also include a second-neighbor
hopping t4 between different orbitals and a second-neighbor
hopping t3 between similar orbits.

observation and by making the further approximation
that the role of the dxy (dx2−y2) orbit can be replaced by
a next near neighbor hybridization between dxz, dzy or-
bitals, we consider a two-dimensional square lattice with
two degenerate “dxz, dyz” orbitals per site. While one
may well need a third orbit to control the relative sizes
and eccentricities of the electron and hole pockets, we
find that a two-orbital model can lead to a Fermi sur-
face which resembles that obtained in the bandstructure
calculations.

The tight-binding parameters of the 2-orbital model
that we will study are illustrated in Fig. 1. It is conve-
nient to introduce a two-component field

ψks =

(

dxs(k)

dys(k)

)

(1)

Here dxs(k) (dys(k)) destroys a dxz (dyz) electron with
spin s and wave vector k. Then the tight binding part of
the Hamiltonian can be written as

H0 =
∑

ks

ψ+
ks [(ε+(k) − µ) 1 + ε−(k)τ3 + εxy(k)τ1]ψks,

(2)
with τi the Pauli matrices and

ε±(k) =
εx(k) ± εy(k)

2
,

εx(k) = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky,

εy(k) = −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky,

εxy(k) = −4t4 sinkx sin ky.
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FIG. 2: (a) The band structure of the two-band model with
t1 = −1, t2 = 1.3, t3 = t4 = −0.85 and µ = 1.45, plotted along
the path (0, 0) → (π, 0) → (π, π) → (0, 0) as shown in Fig. 3
(a) by the black dashed lines. (b) The band structure folded
to the small BZ, with the Γ, X, M defined in the small BZ as
shown in Fig. 3 (b). (c) The two-d band structure for kx, ky ∈

[0, π]. A saddle point exists for each band. (d) The density of
states of the two band model, with two Van Hove singularities.
The dashed line shows the fermi level corresponding to our
choice of µ = 1.45.

The one electron Matsubara Green’s function is given
by

Ĝs(k, iωn) =
(iωn − ǫ+(k)) 1̂ − ǫ−(k)τ̂3 − ǫxy(k)τ̂1

(iωn − E+(k)) (iωn − E−(k))
(3)

with

E±(k) = ǫ+(k) ±
√

ǫ2−(k) + ǫ2xy(k) − µ (4)

In Figure 2 we show the band structure of the model
for a specific choice of hopping parameters t1 = −1, t2 =
1.3, t3 = t4 = −0.85, in units of |t1|. The folded energy
spectrum in Fig. 2 (b) shows the band structure in the 2
Fe/cell zone. Due to the saddle points in the energy spec-
trum (as shown in Fig. 2 (c)), there are two Van Hove
singularities in the density of states, which also qualita-
tively agrees with the LDA results.[15] In Figure 3 we
show the Fermi surface for the same set of parameters.
On the large BZ (Fig. 3a) associated with our model
which has 1 Fe/unit cell, there are two hole Fermi pock-
ets labeled α1 and α2 defined by E−(k) = 0, and two
electron Fermi pockets β1 and β2 defined by E+(k) = 0.
To compare with band structure calculations, one must
fold the large BZ into a smaller one which is dual to the
crystallographic unit cell containing two Fe atoms. The
dashed square in Fig. 3 (a) marks this smaller zone and
in Fig. 3 (b) we show what happens as the α1,2 and β1,2
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FIG. 3: (a) The Fermi surface of the 2-orbital model on the
large 1Fe/cell BZ. Here, α1,2 surfaces are hole Fermi pock-
ets given by E

−
(kf ) = 0 and β1,2 are electron Fermi pockets

by E+(kf ) = 0. The dashed square indicates the BZ of the
2Fe/cell. (b) The Fermi surface folded down into the 2 Fe/cell
BZ consists of two α surfaces around Γ and two elliptically de-
formed β surfaces around the M point. Here the parameters
are the same as in Fig. 2

bands of Fig. 3 (a) are folded back into the 2Fe/cell BZ.
One sees that this gives Fermi surfaces with the same
topology that is obtained from LDA band structure cal-
culations [24].

One-loop spin susceptibility.– Now we study the one-
loop spin-susceptibility for the tight-binding model (2).
Due to the existence of two degenerate orbitals in our
model, the spin susceptibility also has orbital indices,
and is defined by

χst(q, iΩ) =

∫ β

0

dτeiΩτ 〈TτSs(−q, τ) · St(q, 0)〉 (5)

here s, t = 1, 2 label the orbital indices, and Ss(q) =
1

2

∑

k ψ
†
sα(k + q)~σαβψsβ(k) is the spin operator for the

orbital labeled by s. The physical spin susceptibility is
given by

χS(q, iΩ) =
∑

s,t

χst(q, iΩ).

The one loop contribution to the spin susceptibility can

be obtained as

χS(q, iΩ) = −
T

2N

∑

k,ωn

Tr [G(k + q, iωn + iΩ)G(k, iωn)]

= −
1

2N

∑

k,ν,ν′

|〈k + q, ν|k, ν′〉|
2

iΩ + Eν,k+q − Eν′,k

· (nF (Eν,k+q) − nF (Eν′,k)) (6)

Here Eνk, ν = +1(−1) is the eigenvalue of the upper
(lower) band given by Eq. (4), and |k, ν〉 the correspond-
ing eigenvector. nF (E) = 1/(eβE + 1) is the fermi distri-
bution function.
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FIG. 4: (a) The ω = 0 bare spin susceptibility χS(q) versus
q for the same tight-binding parameters as used in Fig. 3.
(b) The bare spin susceptibility χS(q) (red solid line) and the
RPA spin susceptibility χRPA

S (q) for U = V = 6, J = 0 (blue
dashed line) along the (0, 0) → (π, 0) → (π, π) → (0, 0) path
in BZ, as shown by the dashed line in subfigure (a).

Fig. 4 shows a plot of the static spin susceptibility
χS(q, 0) versus q, where one can see the structure as-
sociated with the various nesting points and density of
states features. For our choice of parameters, the largest
value of χ0(q) occurs around q = (π, 0) and (0, π), which
suggests a transition to an antiferromagnetic (AFM) or-
dered phase at some critical interaction strength. This
is also in agreement with the result of band structure
calculations[16, 25]. A recent neutron scattering exper-
iment has confirmed that such a peak develops below
T ∼ 150K [12]. Such a peak in the spin susceptibility
comes from the nesting between the electron and hole
Fermi pockets, which can be seen from the chemical po-
tential dependence of the spin susceptibility. As shown in
Fig. 5, the spin susceptibility at q = (0, 0) jumps discon-
tinuously at µ ∼ 1.2, which follows the behavior of the
density of states shown in Fig. 2 (d), and corresponds to
the onset of electron Fermi pockets. At the same time,
the q = (0, π) spin susceptibility is also enhanced sig-
nificantly due to the nesting effect. When the chemical
potential is increased further, the fermi level gets closer
to the Van Hove singularity, and the hot point of the spin
susceptibility is shifted gradually to the neighborhood of
(0, 0) and (π, π), as shown in Fig. 5 (b).

The RPA spin susceptibility.— Now we consider the
effect of electron-electron interaction in this model. For
the two d orbitals we considered, the generic form of the
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FIG. 5: (a) The chemical potential dependence of Reχ(q, ω =
0) with q = (0, 0), (0, π) and (π, π). The vertical dashed line
shows the chemical potential µ = 1.45 which we are work-
ing on. (b) The three-d color plot of spin susceptibility as a
function of kx, ky and chemical potential µ. The hot points in
BZ shifts from (π, 0) to (0, 0) and (π, π) with electron doping
as µ increases. The deepest red region shows the Van Hove
singularities.

on-site interaction can be written as

Hint =
∑

i

(

U
∑

s

nis↑nis↓ + V ni1ni2 − JSi1 · Si2

)

(7)

with U and V the intraband and interband Coulomb re-
pulsion, and J the Hunds rule coupling. For an isolated
Fe atom, the intraband U and interband V are similar
in magnitude, and J is an order of magnitude smaller
[26]. Thus we expect the U and V to be the dominant
terms in the interaction. We suggest that H = H0 +Hint

represents a minimal model for the Fe-pnictides super-
conductors.

Next we will study the effect of such interactions on
the spin fluctuations within RPA. Due to the two band
nature of the model we considered, the RPA correction
should be calculated for the generic spin susceptibility
χst(q, iΩ) defined in Eq. (5), which is determined by the
following matrix equation:

χRPA(q, iΩ) = χ0(q, iΩ) (I − Γχ0(q, iΩ))−1 (8)

Here χ0 is the 2 × 2 matrix formed by the intra-orbital
and inter-orbital spin susceptibility defined in Eq. (5),
and Γ is the interaction vertex defined by

Γ =

(

U J/2
J/2 U

)

(9)

We note that the interband interaction V does not con-
tribute to the RPA response when only the spin fluctua-
tions are considered.

In the following we set J = 0, which makes the inter-
action vertex Γ in Eq. (9) proportional to the identity.
For the tight-binding model parameters used in Fig. 3
and U = 6, we obtain the RPA spin susceptibility shown
in Fig. 4 (b) by the dashed line. As expected, the spin
susceptibility is enhanced around the hot points (π, 0)
and (0, π). We have also carried out the RPA calculation

for a finite Hunds rule coupling J > 0, and find that the
spin fluctuations are enhanced by increasing J , but the
structure of χ(q) remains qualitatively the same.

In conclusion, we have described a minimal model for
the Fe-pnictides which we believe contains the essential
low energy physics of these materials. This model con-
sists of a two dimensional square lattice of sites with
each site having two degenerate orbitals. By fitting the
tight binding parameters, one can obtain a band struc-
ture which, after folded to the 2Fe/cell BZ, exhibits two
hole pockets around the Γ point and two electron pock-
ets around the M point. The electron-electron interac-
tions are taken to be onsite intra-orbital and inter-orbital
Coulomb interactions U and V and an onsite Hund’s rule
coupling J . The structure of the bare spin susceptibility
is peaked around (π, 0) for the parameters we chose to
fit the fermi surface. Such AFM spin fluctuations also
leads to the possibility of non-conventional superconduc-
tivity, which we will discuss in a separate work. Different
types of spin or orbial orders and superconductivity can
possibly occur for different fillings. Therefore, we con-
clude that this model contains a rich variety of magnetic,
orbital and pairing correlations.
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