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Orbitronics: the Intrinsic Orbital Hall Effect in p-Doped Silicon
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The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band.
Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much
reduced. We show that the electric field in p-doped silicon can induce a dissipationless orbital
current in a fashion reminiscent of the spin Hall effect. The vertex correction due to impurity
scattering vanishes and the effect is therefore robust against disorder. The orbital Hall effect can
lead to the accumulation of local orbital momentum at the edge of the sample, and can be detected
by the Kerr effect.
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Spin manipulation in semiconductors has seen remark-
able theoretical and experimental interest in recent years
with the advent of spin-electronics, and with the realiza-
tion that strong spin-orbit coupling in certain materials
can influence the transport of carriers in so-called spin-
tronics devices [1]. Recently, a new way to manipulate
spin has been proposed, where the spin current is created
by an electric field through the intrinsic spin-orbit cou-
pling in the semiconductor bands[2, 3]. The direction of
the spin polarization and the current flow direction are
mutually perpendicular and perpendicular to the electric
field. The spin Hall effect has been recently observed
experimentally by [4, 5].

While of possible great application in semiconductors
with large spin-orbit coupling such as GaAs and InSb, the
effect is expected to be smaller in the most used semicon-
ductor of the electronics industry: silicon. Indeed, the
small spin-orbit coupling in silicon, as measured by the
energy of the split-off band relative to the top of the va-
lence band, ∼ 44 meV , makes the spin-Hall effect effect
small at room temperature. Recently, Yao and Fang[6]
computed the intrinsic spin Hall effect from first princi-
ple, for a variety of materials including silicon.

Given the dominance of silicon in semiconductor in-
dustry, it is important to find a similar dissipationless
transport process which does not rely on the spin-orbit
coupling. In this paper, we investigate the possibility of
replacing the spin degree of freedom by the orbital degree
of freedom, and call the associated field of study orbi-
tronics. The valence band of Si consists largely of three
p-orbitals. The three orbital degrees of freedom trans-
form as a (pseudo-) spin one quantity under rotation,
are odd under time reversal, and couple to the crystal
momentum of the hole. We show that p-doped Si un-
der the influence of an electric field develops an intrinsic
orbital current of the p-band. The polarization of the
p-orbitals, the direction of flow, and the direction of the
electric field are mutually perpendicular. The transport
equation is similar in form to the spin-Hall equation[2]:

ji
j = σIǫijkEk. (1)

Here ji
j stands for the orbital current flowing along the j

direction, where the local orbitals are polarized along the
i direction. For an electric field on the y-axis, we expect
an orbital current flowing in the positive x direction to be
polarized in the +z = px + ipy direction while the orbital
current flowing in the negative x direction is polarized in
the −z = px − ipy direction. Like the spin current, the
orbital current is also even under time reversal, and the
above response equation is dissipationless.

As a semiconductor with diamond structure the va-
lence band of Si contains 3 p-orbitals where the holes
reside [7]. While in most semiconductors the intrinsic
spin−1/2 of the holes couples with the spin−1 p-orbitals
to create the light and heavy hole bands as well as the
split-off band, in silicon this coupling is small and its
energy scale is easily overtaken by disorder or thermal
fluctuations. We therefore neglect it. The diamond lat-
tice symmetry therefore requires that the form of the
Hamiltonian near the zone center be [8, 9]
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where the Ii are the orbital angular momentum matrices:
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and A, B, C are material constants. An essential feature
of the above Hamiltonian is the coupling between the lo-
cal orbital moment Ii and the momentum ki. In analogy
with the spin-orbit coupling we call this orbital-orbit cou-
pling. Within the spherical approximation A − B = C
and the Hamiltonian becomes

H = Ak2 − r(~k · ~I)2, (3)

where we have defined r ≡ A − B to simplify notation.
This form is identical to the spherically symmetric Lut-
tinger Hamiltonian for the light and heavy hole bands,
but as a fundamental physical (and, as we shall see,
mathematical) difference, the matrix I is not spin-3/2
4 × 4 matrix but spin-1 p-orbital 3 × 3 matrices. For
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simplicity, we now work with the spherically symmetric
Hamiltonian.

FIG. 1: Si energy bands from [10]. The effective Hamiltonian
in Eq.(3) describes the Γ25′ bands and is valid close to the Γ
point.

Good quantum numbers for this Hamiltonian are the
helicity λ = ~k · ~I/k and the total angular momentum
~J = ~x×~p+ ~I which is a sum of the usual motion angular
momentum plus the localized orbital momentum. The
energy bands contain of two degenerate bands of helicity
λ = ±1 as well as a third band of helicity λ = 0

ǫ±1(k) = Ak2 ǫ0(k) = (A − r)k2. (4)

Introducing five symmetric, traceless matrices[11] ξij
a ,

where a = 1, 2, 3, 4, 5, i, j = 1, 2, 3, ξij
a = ξji

a and ξii
a = 0,

the second term in Eq. (3) can be expanded as:

H(k) = ǫ(k) + r(daΓa) (5)

where

ǫ(k) = k2

3 (3A − 2r) , da(k) = ξij
a kikj , Γa = ξij

a IiIj ,

d1 = −
√

2kykz , d2 = −
√

2kxkz , d3 = −
√

2kxky

d4 = − 1√
2
(k2

x − k2
y), d5 = − 1√

6
(2k2

z − k2
x − k2

y). (6)

Following Ref. [11], one can similarly define the so called
conserved spin i.e. the spin operator projected onto the
eigenstate bands of the model. Using the projection op-
erators onto the helicity bands in terms of the Γa:

Pλ2=0 = (1 − (k̂ · I)2) = 1
3 + 1

k2 daΓa

Pλ2=1 = (k̂ · I)2 = 2
3 − 1

k2 daΓa. (7)

(with the usual projection operator properties P 2
0 = P0,

P 2
±1 = P±1, P0P±1 = 0) , the Hamiltonian can be writ-

ten as H = ǫ±1(k)P±1(k) + ǫ0(k)P0(k). The conserved

local orbital moment operator then commutes with the
Hamiltonian:

Icons
i = P0IiP0 + P1IiP1, [H, Icons

i ] = 0; i = 1, 2, 3.
(8)

The conserved orbital moment formalism physically im-
plies that we consider the system in its adiabatic state,
where changes to the equilibrium state, such as applied
fields, etc., are slow enough as to maintain the system
in its energy eigenstates. It is also the case that the lo-
cal orbital moment operator Ii has no projection onto
the zero-helicity band, i.e. P0IiP0 = 0 for i = 1, 2, 3.
Hence, the projected motion of local orbital moments is
equivalent to the projection onto the degenerate helicity
λ = ±1 bands.

We now consider the effect of a uniform electric field ~E
in our system. The application of an electric field intro-
duces an extra-potential V (x) = e ~E ·~x. This changes the
equation of motion by acting on the particle momentum
with the obvious result of accelerating the particles in the
momentum direction. Since however, the momentum is
coupled to the local orbital moment, the electric field will
influence its motion and orientation, in a similar way as
the spin-Hall effect. In particular, a non-zero local or-
bital current appears which selectively polarizes moving
electrons into certain p-orbitals.

One can define two orbital currents, though one is
perhaps more appropriate. First we have the conven-

tional orbital-current given by J i
j = 1

2

{

∂H
∂kj

, Ii
}

with

the brackets denoting an anticommutator. This cur-
rent is not conserved by the Hamiltonian dynamics and
thus a more appropriate current to consider is that given
by the motion of the conserved orbital moment J i
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1
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∂kj

, P1I
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}

. This con-

served current is the current of the orbital moment in the
helicity ±1 band. We calculate the DC-response of both
of these currents using the Kubo formula.

The Green’s function for the above Hamiltonian is
matrix-valued and reads :

G(E, k) = (E − (ǫ(k) + (A − B)daΓa))−1 (9)

which involves inverting a 3 × 3 matrix. The lack of a
Clifford-algebra property for the 3×3 Γa matrices makes
the solution of this problem much harder than in the
similar spin-Hall effect formalism [11]. However, after
some algebra and the use of the identity P0P1 ≡ 0, the
Green’s function can be written as:

G(E, k) =
3(rk2 − 3E(k)) − 9rdaΓa

(−3E(k) + 2rk2)(3E(k) + rk2)
, (10)

with E(k) ≡ E−ǫ(k). We compute the response function
of the spin current to an electric field. From the Kubo
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formula we get:

Ql
ij(iνm) =

1

V β

∑

k,n

Tr(J l
iG(i(ωn + νm), k)JjG(iωn, k))

(11)
with Matsubara frequencies νm = 2πm/β, ωn = (2n +
1)π/β, and charge current operator Jj = ∂H/∂kj. After
performing the summation over the Matsubara frequen-
cies, and after tracing over all the matrices, the compli-
cated sum is reduced to a simpler form. For example the
Q1

23 component for the conserved current is given by:

Q1
23(iνm) = − 1

V

∑

k

(nF (ǫ±1) − nF (ǫ0))r
2k2

xνm

2((iνm)2 − r2k4)
. (12)

In this equation nF is the Fermi-Dirac distribution func-
tion. The next step is to consider the zero-frequency
limit of the orbital conductivity which is obtained from

the response function as σl
ij = limiνm→0

Ql
ij(iνm)

νm
. After

the momentum integration, we obtain a beautiful tensor
structure:

σi
jk = ǫijkσI . (13)

It is especially suggestive that this tensor structure is
identical to the one in the spin Hall effect [2] although
the gauge (matrix) structure of the Hamiltonian is fun-
damentally different. The conductivity σI gives:

σI =

∫ kF
±1

kF
0

d3k

(2π)3
k2

x

2k4
=

1

12π2
(kF

±1 − kF
0 ). (14)

kF
±1,0 are the Fermi momenta of the two bands. An iden-

tical picture emerges if we consider the response of the
non-conserved orbital current to an electric field, the only
difference being in the value of the constant σI which in
the non-conserved case is σI = 1

12π2 (5
3 + 4 A

A−B
)(kF

±1 −
kF
0 ). Estimates for the orbital and charge conductivities

for silicon at a given carrier density are given in Table I.
These calculations assume the mobility of holes in silicon
is 450 cm2/V · s[12].

In the computation above we have made 3 approxima-
tions. We now discuss their validity. The first approxi-
mation is the neglect of the Si spin-orbit (SO) coupling.
As commented at the beginning of the paper, the Si SO
coupling is small (44 meV) and is likely to get suppressed
by the energy scale of disorder and temperature. The
energy scale at room temperature is of the same order
of magnitude as the Si SO coupling ∼ 26 meV , while
the difference of energies between ǫ±1 − ǫ0 bands at the
Fermi energy is much larger e.g. ∆E ∼ 120 meV at
n = 1020/cm3 (refer to Table I for values at other densi-
ties). Hence the orbital Hall effect proposed here is much
larger than the spin Hall effect that Si might have due
to its small SO coupling. Moreover, our approximation
gets better as the temperature is increased.

Another caveat in this calculation is our neglect of
anisotropy when considering the spherical Luttinger
Hamiltonian as a model for silicon. We have assumed
that in the Luttinger Hamiltonian (A−B) ≈ C for silicon
though this is not necessarily true. When ((A−B)−C)/A

is large we cannot form the rotationally invariant (~k · ~I)2

term and the problem becomes more mathematically
challenging. However, the anisotropy only slightly mod-
ifies the numerical factors given in the formulas for σI .

Now we turn to the effect of impurities. In the con-
text of the spin Hall effect, analytical calculations have
shown that the spin Hall effect in the Rashba model[3]
is cancelled by the vertex corrections due to impurity
scattering[13]. On the other hand, the vertex correction
vanishes identically[14] for the spin Hall effect in the Lut-
tinger model describing the holes[2]. This result rests
on the fact that the current vertex is odd under parity,
where the Hamiltonian is even under parity. A similar
argument is valid here: the orbital current operator is
odd under parity while the Hamiltonian is even. For this
reason, the vertex correction due to impurity scattering
vanishes for the orbital Hall effect discussed here and the
effect should be robust.

Consider now an electric field parallel to the y-axis. In
this case, per the transport equation J i

j = ǫijyEy we have
an orbital current flowing in the j = x direction with or-
bital local moment polarized in the i = z direction. Since
there is no net charge current in the xz plane, what is
happening at a microscopic level is that there are an equal
number of holes flowing in the ±x direction. However,
the holes flowing in the +x direction tend to populate
more the px + ipy local orbitals so as to give a net +z
polarization, while the holes flowing in the −x direction
tend to occupy predominantly px − ipy local orbitals so
as to give the net −z polarization. At one of the bound-
aries of the sample there will be a net accumulation of
px + ipy occupied orbitals while at the opposite bound-
ary the holes will tend to occupy predominantly px − ipy

orbitals.
We now turn to the experimental detection of our ef-

fect. There have been several recent experiments that
are setup to detect spin currents via the associated spin
accumulation at the boundary [4, 5] and these provide us
with a basis for detecting the intrinsic orbital current in
silicon. Due to the fact that Si is an indirect-gap material
with low efficiency for light emission, an LED-type exper-
iment like [5], where the polarization of the emitted light
gives information about the orbital where the emitting
electron resides, is not experimentally viable. However,
Kerr and Faraday rotation measurements are insensitive
to the Si indirect gap and can be used to probe orbital
polarization.

As seen from the detection of the spin-Hall effect in
GaAs the time-resolved Kerr (Faraday) microscope is an
effective experimental apparatus for spintronics. A very
similar experiment to that performed in [4] could be per-
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n(cm−3) σI ( 1

Ω·cm
) σc(

1

Ω·cm
) ℓ(µm) ∆E(meV) ρI ( µB

cm2 )

1021 20.7 72000 3.9 540 2 × 1015

1020 9.63 7200 1.8 120 9 × 1014

1019 4.47 720 0.85 24 4 × 1014

1018 2.07 72 0.39 5.4 2 × 1014

1017 0.963 7.2 0.18 1.2 9 × 1013

1016 0.447 0.72 0.085 0.25 4 × 1013

TABLE I: Parameter values are given as a function of the
density n. We have presented the orbital conductivity σI , the
charge conductivity σc, the spin diffusion length ℓ, the energy
difference between the two hole bands at the Fermi energy
∆E, and the orbital polarization density ρI .

A (eV/m2) B (eV/m2) C (eV/m2) A-B (eV/m2)

0.951 1.51 −2.06 −0.558

TABLE II: Specific material parameters for silicon calculated
using [7, 15].

formed with a Si sample. The orbital current will create
two regions at the edge of the sample where electrons
occupy orbitals polarized in opposite directions and thus
will have different optical properties with respect to cir-
cularly polarized light. The change in the angle of the
beam reflected (or transmitted, in the case of Faraday ro-
tation) from the surface of the sample gives information
about the orbital moment polarized on the direction of
the beam. One obstacle to performing this measurement
in Si is the possibly short relaxation time of the orbital
angular momentum. Since there are no systematic study
of the orbital relaxation in Si, we take the hole spin relax-
ation time as a rough estimate, since these two quantities
transform the same way, and couple to the crystal mo-
mentum in the same way. The resolution of the Kerr mi-
croscope in [4] is ≈ 1 µm and must be comparable to the
size of the region where the orbitally polarized electrons
accumulate. This size is L =

√
Dτs where τs is the spin-

relaxation time (although this is an orbital polarization,
we expect the relaxation time to be comparable to the
spin relaxation time). D is the hole diffusion coefficient
and has the expression v2

F τ/3 where τ is the momentum
relaxation time and vF is the Fermi velocity. The size of
the orbital polarization region hence depends heavily on
the hole-spin relaxation time. Hole-spin relaxation times
in semiconductors have been measured to be anywhere
from τs ≈ 4 ps[16] to τs ≈ 1 ns [17]. Hole-spin relaxation
times for Si structures have been measured to be on the
order of ∼ 10 ps at low temperatures[18, 19]. However,
these measurements are “bipolar” measurements where
both electrons and holes are excited and spin-polarized.
A “monopolar” spin measurement, which excites carri-
ers only in intraband or intrasubband transitions, would
measure spin relaxation times without electron-hole in-

teraction and exciton formation[20]. This measurement
was carried out in [20] for p-type quantum wells in a
regime of intraband or intersubband transitions and they
measured a hole-spin lifetime of ∼ 30 ps. This regime is
the most relevant for our calculations so we will use this
value in our subsequent estimations. We have estimated
the hole-spin diffusion constant (which we expect to be
close to the orbital diffusion constant) and the spatial
distribution of the orbital moments. The values for the
length over which the holes are distributed are given in
Table I as ℓ. For a steady electric current Jy we can esti-
mate the orbital current density to be jI ∼ (σI/σc)Jy[2].
The values of orbital polarization density are given by
the expression jIτs[2]. Assuming that 3× 105V/cm is an
upper bound for the electric field in Si[12] we have calcu-
lated several values of the maximum orbital polarization
density in Table I under ρI .
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