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Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs
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We show that the bulk Dresselhauss (k3) spin-orbit coupling term leads to an intrinsic spin-Hall
effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall
effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato
et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic
spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On
the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller
than the observed effect.

PACS numbers: 73.43.-f,72.25.Dc,72.25.Hg,85.75.-d

Recent theoretical work predicts dissipationless spin
currents induced by an electric field in semiconductors
with spin-orbit coupling[2, 3]. The response equation is
given by ji

j = σsǫijkEk, where ji
j is the current of the i-th

component of the spin along the direction j and ǫijk is the
totally antisymmetric tensor in three dimensions. The re-
sponse equation was derived by Murakami, Nagaosa and
Zhang[2] for p-doped semiconductors described by the
Luttinger model of the spin-3/2 valence band. In an-
other proposal by Sinova et al. [3], the spin current is
induced by an in-plane electric field in the 2-dimensional
electron gas (2DEG) described by the Rashba model[3].
The intrinsic spin-Hall effect predicted by these recent
theoretical works is fundamentally different from the ex-
trinsic spin-Hall effect [4, 5] due to the Mott type of skew
scattering by impurities [6]. The intrinsic spin-Hall effect
arises from the spin-orbit coupling of the host semicon-
ductor band, and has a finite value in the absence of
impurities. On the other hand, the extrinsic spin-Hall
effect arises purely from the spin-orbit coupling to the
impurity atoms.

Experimental observation of the spin-Hall effect has
been recently reported by Kato et al. [1] in an electron
doped bulk sample and by Wunderlich et al. in a two
dimensional hole gas (2DHG)[7]. The 2DHG experiment
has been analyzed in a previous paper [8] where it was
shown that the vertex correction due to potential impu-
rity scattering vanishes for that particular system. The
experimental system is also in the regime where lifetime
broadening due to impurity scattering is much less than
the spin splitting, thus strongly suggesting an intrinsic
mechanism of the spin-Hall effect. In the experiment
of Ref. [1], spin accumulation due to a spin current is
observed even in the unstrained GaAs where no appar-
ent spin splitting is observed. The absence of observed
spin splitting seems to show the absence of intrinsic spin-
orbit coupling in unstrained n-doped GaAs. This fact
prompted the authors of Ref. [1] to interpret the ob-
served spin-Hall effect in terms of the extrinsic mecha-
nism due to impurity scattering only. In this paper we
show that, under close scrutiny, the results of [1] are con-
sistent with an intrinsic mechanism. We first show that

the unstrained GaAs has a Dresselhauss k3 spin splitting
which escapes detection by the method used in [1, 9].
We then show that this spin splitting leads to a spin-Hall
current. This therefore explains the observed spin ac-
cumulation on the edges of the unstrained GaAs within
the framework of the intrinsic spin-Hall effect. Further-
more, the observed magnitude is consistent with the the-
ory, after lifetime broadening due to impurity scatter-
ing is taken into account. We also predict that the bulk
Dresselhauss term produces no net uniform magnetiza-
tion in the sample, this being generated solely by the
strain terms. In the case of strained GaAs, we compute
the self-energy correction in the weak spin-orbit coupling
limit and find a value for the spin-Hall conductivity close
(enough) to the measured value. The independence of
the spin current on the crystalographic directions can
also be explained by the dominance of the k3 term over
the k-linear terms induced by the small strain. We also
perform an order-of magnitude estimate and find out that
the extrinsic spin-Hall effect is seven orders of magnitude
lower than the clean limit of the intrinsic spin-Hall effect,
and several orders of magnitude lower than the observed
experimental value.

Let us first examine the extrinsic spin-Hall effect. In
the extrinsic mechanism[4, 5], there is no spin-orbit cou-
pling in the band structure, and the spin-Hall effect is
caused by the scattering of electrons by the spin-orbit
interaction with impurities. The Hamiltonian is given
by:

H =
~

2k2

2m
+

~
2

2m2c2
~σ(~∇V (r) × ~k), (1)

where V (r) is the impurity potential. The extrinsic spin-
Hall effect is basically derived from the atomic Mott scat-
tering [6], and the important length scale is governed
by the Compton wave length λc = ~/mc. The extrin-
sic spin-Hall effect has been computed systematically for
this Hamiltonian[10], and the order of the magnitude of
the effect can be estimated to be:

σextrinsic ∼ e2

~
(λckF )2kF , (2)
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where kF is the fermi wave vector. For the experimental
system by Kato et al., with kF = 108m−1 and a con-
duction band effective mass of m = 0.0665me, Eq. (2)
gives σextrinsic = 1.2 × 10−4Ω−1m−1, almost 4 orders of
magnitude smaller than the observed spin-Hall conduc-
tance. On the other hand, the intrinsic spin-Hall effect is
a genuine solid state effect, governed purely by the fermi
wave vector kF , and the order of magnitude of the effect
is given by

σclean
intrinsic ∼ e2

~
kF (3)

in the clean limit. Therefore, we see that the ratio of the
two effects is given by [11]

σextrinsic

σclean
intrinsic

∼ (λckF )2 ∼ 10−7. (4)

Therefore, in distinguishing between the two effects, it is
extremely important to keep in mind the smallness of the
dimensionless parameter λckF . In the literature of the
anomalous Hall effect, a so called “enhancement factor”
is sometimes introduced in a rather ad-hoc basis[10, 12].
However, this “enhancement factor” is microscopically
based on the spin-orbit coupling within the band struc-
ture, and would necessarily lead to a spin splitting of the
bands. Therefore, we can safely conclude that if there

were no spin splitting due to the intrinsic spin-orbit cou-

pling within the band, the extrinsic spin-Hall effect is far
too small to explain the experiment by Kato et al. in the
unstrained GaAs.

Let us now turn to the intrinsic spin-orbit coupling
within the conduction band. The Hamiltonian of an
inversion asymmetric bulk (unstrained) semiconductor
contains a Dresselhauss k3 spin splitting term in the con-
duction band, which can be written as a momentum de-
pendent magnetic field:

H =
~

2

2m
k2 + Bi(k)σi, i = 1, 2, 3 (5)

where Bx = γkx(k2
z − k2

y), By = γky(k2
x − k2

z),
Bz = γkz(k

2
y − k2

x). The coupling constant γ has been
determined in a number of independent experiments, and

a value of γ ≈ 25eV Å
3

is widely quoted in the litera-
ture [13, 14, 15, 16]. We must now reconcile this spin
splitting with the fact that the measurement carried out
in Ref. [9] does not see any splitting in the unstrained
sample. In [9], a spin packet injected at the Fermi mo-
mentum is subsequently dragged by an external electric
field ~E. Experiments are performed along two crystallo-
graphic directions ~E||[110] and ~E||[11̄0]. This creates an

average nonzero particle momentum 〈~k〉 ∼ e
~

~Eτ which
in turn creates a non-zero average (over the Fermi sur-

face) internal magnetic field 〈 ~B〉. The spin splitting in

[9] is obtained as a derivative of the averaged 〈 ~B〉 with

respect to the drag momentum 〈~k〉. Due to the special

symmetry of the Dresselhauss spin-orbit coupling, this
procedure turns out to yield a null result, even if γ is
finite. Take, for example ~E||[110], then the momentum

of a particle injected near the Fermi momentum ~kF is:

~k = ~kF + 〈~k〉, 〈~k〉 = −eτ

m
~E||[110], 〈kx〉 = 〈ky〉. (6)

To first order in 〈~k〉, the components (say x) of 〈 ~B〉 av-
eraged over the Fermi surface is:

〈Bx〉 = 〈kx〉
∫

dΩ

4π

[

(kF
z )2 − (kF

y )2 − 2kF
x kF

y

]

. (7)

Since the spin-orbit coupling term is much smaller than
the kinetic term, the Fermi surface is, to first order in
γ, a sphere (there is, of course, a zero order in 〈kx〉
term, but this obviously vanishes upon integration over
the Fermi surface so we have omitted it). As the in-
tegration is carried over a sphere, it is obvious that
∫

(kF
z )2 =

∫

(kF
y )2 = (kF )2/3 and

∫

kF
x kF

y = 0. There-
fore 〈Bx〉 = 0, and no spin splitting is expected from
this procedure, even though in the Dresselhauss term γ
maybe finite. Note that this cancellation would not hap-
pen if the spin-orbit coupling term were k-linear since
the derivative of ~Bint would just be a constant. This is
exactly what happens in the strained samples of GaAs
where the spin splitting was explained by k-linear terms
[17].

A related fact shows that, due to its symmetry, the
bulk-Dresselhaus term produces no uniform magnetiza-
tion in the bulk of the sample. This is an easily falsifiable
prediction of our theory. The Hamiltonian (5) has two

energy levels E± = ~
2

2m
k2 ± B where B =

√
BiBi. The

uniform magnetization 〈σi〉 induced by an electric current
Jj = ∂H/∂kj (due to the applied electric field Ej) can
be easily computed in linear response, and one obtains:

〈σi〉 = 2πeτ
~

QijEj

Qij = 〈TσiJj〉 =
∫

d3k
(2π)3

nE−
−nE+

B2

(

Bi
∂B
∂kj

− B ∂Bi

∂kj

)

(8)

where nE±
are the Fermi functions of the two bands.

By inspection, all the components of Bi
∂B
∂kj

− B ∂Bi

∂kj
are

odd in the components ki and hence vanish under inte-
gration due to cubic symmetry. This leads to 〈σi〉 ≡ 0.
By contrast, a k-linear internal magnetic field, as in the
strained samples, gives a finite uniform magnetization
due to the fact that ∂Bi

∂kj
is a constant while B is isotropic

in (and proportional to) k [17]. The bulk Dresselhauss
term is most likely also the explanation of the contradic-
tion between the observed spin splitting along the [110]
and [11̄0] directions, and the uniform magnetization on
these directions. In [18] it is observed that although the
spin splitting for E||[110] is consistently larger than the
spin splitting for the E||[11̄0], the uniform magnetiza-
tion for E||[110] is usually lower than that for E||[11̄0].
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This can be very well explained by the missing bulk-
Dresselhauss term in the case when this term subtracts
from the splitting on the [110] direction but adds to the
splitting in the [11̄0] directions, which makes it qualita-
tively possible that the uniform magnetization observed
be in agreement with the spin splitting. Quantitative
modelling of this involves precise knowledge of the sam-
ple Hamiltonian (including the strain) which is currently
not possible (mainly because of limited knowledge about
out-of-plane spin-orbit coupling terms).

Even though it creates no uniform magnetization, the
bulk Dresselhauss term does give rise to an intrinsic spin-
Hall effect when under the action of an electric field. We
define the spin current as usual (ε = ~

2k2/2m):

J l
i =

1

2

{

∂H

∂ki

, σl

}

=
∂ε

∂ki

σl +
∂Bl

∂ki

, (9)

and the expanded expression for the Green’s function
G(k, iωn) = [iωn − H ]−1 as:

G(k, iωn) = f(k, iωn)(g(k, iωn) + Bi(k)σi)

f(k, iωn) = 1
(iωn−ε(k))2−B2 , g(k, iωn) = iωn − ε(k).(10)

When subjected to the action of an electric field ~E, the
frequency dependent spin conductance (not including the
vertex correction) can be found in linear response as:

J l
i = σl

ijEj ; σl
ij =

Ql
ij(ω)

−iω
; Ql

ij(iνm) =

= 1
V β

∑

k,n Tr[G(k, i(ωn + νm))J l
i (k)G(k, iωn)Jj(k)].(11)

Summing over the Matsubara frequencies iωn, analyti-
cally continuing iνm → ω, as well as omitting a dissipa-
tive term which vanishes upon momentum integration,
we obtain the expression for the frequency dependent (re-
active) spin conductivity:

σl
ij(ω) =

~
2

2m

∫

d3k

(2π)3
nE−

− nE+

B(B2 − ω2)
kiǫlnrBn

∂Br

∂kj

(12)

where i, j, l, r, n = x, y, z. Unlike the uniform magneti-
zation case, the integrand is even in k and finite upon
integration. Hence the spin current in the unstrained
GaAs can be qualitatively explained by the presence of
a intrinsic spin-Hall effect due to the bulk-Dresselhauss
term. Working in spherical coordinates, substituting the
explicit expression for the bulk Dresselhauss spin split-
ting Bi(k), using the expression (valid for small γ) of the
difference between the Fermi momenta of the two spin-
split bands:

kF
− − kF

+ ≈ 2m

~2

B(kF )

kF
; kF =

kF
+ + kF

−

2
, (13)

as well as integrating over the spherical angles, one ob-
tains for the DC spin-Hall conductivity:

σl
ij =

kF

12π2
ǫlij . (14)

This is the intrinsic spin-Hall conductivity in the clean
limit, ~/τ << B(k), which we call σclean

intrinsic. For the car-
rier concentration in [1] we have kF = 108m−1 and we
obtain σclean

intrinsic = 200Ω−1m−1. This is much larger than
the observed conductivity of 0.2 ∼ 0.5Ω−1m−1. But this
is expected since we have so far not taken the influence
of disorder into account . In the experiment by Kato
et al., the lifetime broadening due to impurity scatter-
ing is much larger than the weak spin splitting due to
the Dresselhauss coupling. The intrinsic spin-Hall effect
is therefore in the dirty limit, and a significant reduction
from the clean result is therefore expected. Note that the
lifetime broadening due to impurity scattering leads to a
reduction of the intrinsic spin-Hall conductivity. This is
different from the extrinsic spin-Hall effect due to spin-
orbit coupling to the impurity potential, which makes a
small, but positive contribution to the spin-Hall conduc-
tivity.

To properly take into account disorder, one must per-
form a self-consistent calculation taking into account
both the self-energy and the vertex correction. In the
case of the electron Rashba model with a k-linear spin
splitting, many groups have shown that the vertex cor-
rection cancels the intrinsic spin-Hall effect [19, 20]. How-
ever, this cancellation seems to be special to the k-linear
spin splitting, and it has been shown that the vertex cor-
rection due to k2 light/heavy hole splitting in the Lut-
tinger model, or due to k3 spin splitting in the heavy hole
band, vanishes identically [8, 21]. We expect that for a
similar reason, the vertex correction due to the k3 Dres-
selhauss spin splitting would not cancel the intrinsic spin-
Hall effect either. We will hence neglect the vertex correc-
tion and focus on the self-energy correction which is easy
to extract analytically. The self-energy approximation
to disorder can be simulated by letting ω = i~/τ in Eq.
(12). The values in [1] are in the regime ~/τ >> B(k),
we thus obtain:

σl
ij =

~
2

2m

1

(~/τ)2

∫

d3k

(2π)3
nE−

− nE+

B
kiǫlnrBn

∂Br

∂kj

(15)
which, upon momentum integration gives the lower
bound for the spin conductivity:

σk
ij =

4kF

105π2

(

γk3
F

~/τ

)2

ǫijk. (16)

For the values γ = 25eV Å
3
, kF = 108m−1 we ob-

tain a bulk Dresselhauss spin splitting energy γk2
F ≈

0.025meV while ~/τ ≈ 1.6meV for a sample of mobility
µ = 1m2/V s as the one in the experiment. Using these
values, we obtain for the intrinsic, disorder quenched
spin conductivity σdirty

intrinsic = 0.02Ω−1m−1. This lower
bound is smaller than the measured conductivity (which
is 0.2Ω−1m−1 for small electric field and 0.5Ω−1m−1 for
large electric field. This is a lower bound for the spin con-
ductivity since ~/τ is an upper bound for the frequency ω



4

in the dirty limit. Considering the uncertainty associated
with the value of γ, the crudeness of the estimate, and
the indirect determination of the experimental value, the
agreement is reasonably good.

The application of strain induces two extra spin split-
tings in the Hamiltonian which are linear in the momen-
tum k [17]. There is one structural inversion asymmetry
(SIA) splitting of the form α(kyσx − kxσy), and a bulk-
inversion asymmetry (BIA) of the form δ(kxσx − kyσy),
where α and δ are strain dependent. For the values of the
splitting in sample E used in [9] we have α/~ = 183m/s
and δ/~ = 112m/s. We observe that the splitting at
the Fermi momentum is 0.011meV for the SIA term and
0.007meV for the BIA term. By contrast, the k3 Dres-
selhauss coupling is 0.025meV , so it is likely that it will
dominate (although not overwhelmingly) the spin cur-
rent. Moreover, a vertex correction computation for the
SIA or BIA term separately reveals that the spin current
caused by these terms vanishes upon the introduction of
impurities [19] (exact numerical diagonalization results
[22, 23] are, however, at odds with [19]), whereas a vertex
calculation for a k3 term shows finite spin current [8, 21].
It is therefore plausible that the bulk Dresselhauss term
dominates the spin-Hall transport even in the strained
samples. This naturally explains the independence of
spin current on the crystallographic directions of the ap-
plied electric field, since the bulk spin conductivity for the
Dresselhauss term is direction independent. The exper-
imental features observed can therefore be qualitatively
explained by an intrinsic mechanism.

In conclusion, we have shown that without any spin
splitting in the electron band, the extrinsic spin-Hall ef-
fect is far too small to explain the experimentally ob-
served value of spin-Hall conductivity in [1]. In order to
definitively determine the origin of the spin-Hall effect,
we propose to carry out similar experiments in materials
without any known intrinsic spin-orbit coupling, and a
null result would give the definitive proof that the extrin-
sic spin-Hall effect is far below the current experimental
sensitivity, and can not be the origin of the spin-Hall
effect observed in Ref. [1]. We have shown that the ex-
perimental results are consistent with the interpretation
of an intrinsic spin-Hall effect in terms of a bulk Dressel-
hauss term in the unstrained sample. Furthermore, this
intrinsic spin-orbit coupling is consistent with the appar-
ent absence of spin splitting observed (in the unstrained
samples) in the spin drag experiment[9]. We also predict
that the uniform magnetization in the unstrained bulk
GaAs samples will be close to zero due to the symme-
try of the k3 Dresselhaus term. Since the experiment

is carried out in a regime where the lifetime broaden-
ing due to impurity scattering is large compared to the
spin splitting, the observed spin-Hall conductivity is sig-
nificantly reduced from the value in the clean limit. It
is argued that the k-linear terms in the strained GaAs
samples [9, 17], although crucial for the appearance of a
uniform magnetization, have a limited effect on the spin
current due to the dominance of the Dresselhauss term,
thereby qualitatively explaining the direction indepen-
dence of the spin-Hall effect observed in the experiment.
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