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Abstract

We use magnetic force microscopy (MFM) to measure the local penetration depth λ in

Ba(Fe0.95Co0.05)2As2 single crystals and use scanning SQUID susceptometry to measure its tem-

perature variation down to 0.4 K. We observe that superfluid density ρs over the full temperature

range is well described by a clean two-band fully gapped model. We demonstrate that MFM can

measure the important and hard-to-determine absolute value of λ, as well as obtain its temperature

dependence and spatial homogeneity. We find ρs to be uniform on the submicron scale despite the

highly disordered vortex pinning.
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The magnetic penetration depth λ, one of the two fundamental length scales in super-

conductors [1], characterizes many fundamental properties. It evaluates the phase stiffness

of the superconducting state by the temperature Tmax
θ ∝ 1/λ2 at which phase order would

disappear[2]. It also determines the superfluid density ρs = 1/λ2, the number of electrons in

the superconducting phase. However, its absolute value is notoriously difficult to measure,

especially in samples that may have either intrinsic or extrinsic inhomogeneity. In this letter,

we will report a new technique to measure λ by magnetic force microscopy (MFM). The

advantage of using local probes over bulk techniques is that it allows us to study the sample

homogeneity. We implement this technique to determine ρs in a iron-pnictide superconduc-

tor Ba(Fe0.95Co0.05)2As2.

Iron-pnictides superconductors have been under extensive study since their recent discov-

ery [3]. The high transition temperature [4], the proximity to a magnetic state [5–7], and the

existence of multiple conducting bands [8, 9] combined to make it difficult and interesting

to resolve key issues like the superconducting order parameter (OP) symmetry [10, 11], the

pairing mechanism [12] and the role of impurities and inhomogeneity [13]. Those problems

can be studied by measuring ρs. When the gap has nodes, ρs(T ) varies as a power law in T

at low T , as demonstrated in YB2Cu3O7−δ [14, 15], while a fully gapped OP gives a low-T

exponential dependence [16]. Since it is difficult to determine λ, its temperature variation

∆λ(T ) ≡ λ(T ) − λ(0) is often measured, which follows the same temperature dependence

as ρs at low T. Sometimes this approach is sufficient, e.g. linear ∆λ in clean LaFePO over

a wide temperature range provides strong evidence of well formed line nodes [17, 18]. How-

ever, in the Ba-122 family, a steep power-law ∆λ was obtained in the Co-doped compounds

[19, 20] while an exponential ρs was measured in the K-doped materials [21]. The question

waiting for clarification is whether different dopants lead to different OP structure. ∆λ mea-

surement can not infer OP symmetry except for T ¿ Tc, but for multi-band pnictides, the

low-T regime may be dominated by the small-gap regions of the Fermi surface and may be

altered by interband impurity scattering [22]. It is thus important to measure the absolute

value of λ to determine ρs over the full temperature range.

In this paper, we measure the local ∆λab(T ) and λab(T ), the penetration depth for screen-

ing currents flowing in the a-b planes, in electron-doped Ba(Fe1−xCox)2As2 single crystals

(x ≈ 0.05, Tc = 18.5 K, grown from self-flux [6]) from T = 5 K to Tc by magnetic force mi-

croscopy (MFM) [Fig. 1]. We also use scanning SQUID susceptometry (SSS) [23] to measure
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∆λab(T ) down to 0.4 K. We find that ρs can be well described by a two-band fully gapped

OP over the full temperature range. We also use MFM to image and manipulate vortices to

measure the homogeneity of λab(T ) and the flux pinning force. We find that ρs is uniform

to within 10% or better, although vortex pinning is highly inhomogeneous.
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FIG. 1: Technique to measure λ and ∆λ by MFM from Meissner repulsion (a) and vortex imaging

(b,c). (a) z dependence of ∂Fz/∂z (blue symbols) at T = 5, 12 and 18 K and the fit to the

truncated cone model (red dashed line). (Inset): Sketch to illustrate that the tip-superconductor

interaction in the Meissner state can be approximated by the interaction between the tip and its

image mirrored through a plane (dashed line) λab below the surface of the superconductor (solid

line) when z À λab. Comparing the curves provides ∆λab independently of the tip model. Fits

give λab(T ) at T = 5, 12, 18 K to be 0.33, 0.37, 1.10 µm. (b, c) Images of two vortices (z = 400

nm) at 5 K (b) and 10 K (c). The shapes and amplitudes depend on both the magnetic field from

vortices and the tip structure, but the similarity shows that both the spatial variation and the

temperature-induced change of λab are small. (d,e) Scanning electron microscopy images of the

tip before (d) and after (e) the measurements. Also shown are the truncation distance h0 = 300±30

nm in (d) and h0 = 400 ± 20 in (e). An accidental crash during the measurement changes the

truncation distance h0 from 300± 30 nm (d) to 400± 20 nm (e). Despite the crash, ∂Fz/∂z curves

taken before and after the crash give the same λab(5K) to within 10 nm.
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In our MFM, a sharp magnetic tip at the end of a flexible cantilever faces the crystal

surface, which is parallel to the a-b plane. By measuring the shift in the cantilever’s resonant

frequency [24], we determine ∂Fz/∂z [25], where F is the force between the tip and the

sample, and ẑ is along the tip magnetization direction and is normal to the cantilever and

to the crystal a-b surface. ∂Fz/∂z changes abruptly within a few nanometers of the surface,

allowing precise determination of the tip-sample separation z. In the Meissner state, the

tip-superconductor interaction can be approximated by the magnetic interaction between

the tip and its image mirrored through a plane at z = −λab (Fig. 1a inset) [26]. This local

levitation force is determined uniquely by z + λab(T ) for z À λab (λc does not enter for any

source field above a smooth, infinite ab surface) [27]. Thus, changing T at constant z offsets

a ∂Fz/∂z curve along the ẑ-axis by ∆λab(T ). To acquire the data labeled as MFM ∆λ in

Fig. 2, we park the tip at z = 500 nm, change T and acquire ∂Fz/∂z. The z offset required

to match ∂Fz(T )/∂z with a reference curve at T = 5 K gives λab(T ) − λab(5K). Using a

similar method for data acquired by SSS in a 3He refrigerator [18], we extend measurements

of ∆λ down to 0.4 K on two nominally identical samples. The SSS results match the MFM

results over the common temperature range. By using local scanning probes, we reduce the

influence of the complex topography around the sample edges [27].

Figure 2 shows that ∆λab(T ) increases very slowly with T at low T , inconsistent with the

the linear dependence that would be expected for line-nodes. The same behavior appears

at three different locations on two samples with SSS and at four different locations with

MFM on a third sample. Between T = 0.02Tc and 0.4Tc ∆λab(T ) varies by about an order

of magnitude less than has been reported for a similar sample using a bulk technique [20].

At low T , ∆λab(T ) can be described by either a two-band fully-gapped model or by a power

law with a small coefficient as described below.

We also extract λab(T ) by modeling the tip-superconductor interaction, with the magnetic

tip as a sharp, single domain cone, truncated a at distance h0 = 400± 20 nm from its apex

as shown in Fig. 1e. Within the model, the z-dependence of ∂Fz/∂z is given by:

∂Fz(z, T )/∂z − ∂Fz(z, T )/∂z|z=∞ = (1)

A

(
1

z + λab(T )
+

h0

(z + λab(T ))2 +
h2

0

2 (z + λab(T ))3

)

where A is determined by the tip shape and the coating. The value A = 78pN from fitting at

T < Tc/2 is consistent to within 30% with the magnetic moment expected from the nominal
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iron coating on the tip, and with that inferred from the tip-vortex interaction [25]. We

record ∂Fz/∂z as a function of z and T and extract λab at many temperatures by fitting to

Eq. 1 with A and h0 fixed and λab and ∂Fz/∂z(∞, T ) allowed to vary separately for each T .

The fit works well for all T (Fig. 1). The resulting values of λab(T ) are shown in Figure 2

with label ”MFM λ” and agrees well with the model-independent ∆λ. If we consider only

statistical errors, we obtain λab(5K) = 325 ± 5 nm with 70% confidence interval. However,

the systematic error from the finite width corrections of the tip-geometry is 5%. In addition,

the ±20 nm uncertainty on h0 leads to 74 pN ≤ A ≤ 81 pN by bootstrapping. The extremals

of A and h0 gives ±35 nm systematic error on λab(5K). Thus, adding the two main sources

of systematic error, we find λab(5K) = 325± 50 nm.

Knowing λab(T ) gives ρs over the full temperature range (Fig. 2). The fact that ρs does

not saturate at low T is inconsistent with a single-band isotropic gap. A two-band fully

gapped OP, which was proposed theoretically [10, 11] and tested experimentally [8, 21],
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FIG. 2: Normalized superfluid density ρs(T )/ρs(0) ≡ λab(0)2/λab(T )2 vs. T. We determine

∆λab(T ) by MFM (squares) and by SSS (diamonds) from measuring the change in the diamagnetic

response at fixed height. These values are offset to match the absolute value of λab(T ) obtained

by fitting the MFM data to the truncated cone model (circles). The green solid line shows a fit

of the two-band s-wave model discussed in the main text (∆1 = 2.6Tc, ∆2 = 0.8Tc, x = 0.88 and

a = 1.4). The width of the dashed band reflects the uncertainty in λab(0). Inset: ∆λab vs. T at

low T . Black dashed line: one-gap s-wave model with a = 1.5 and ∆0 = 1.95Tc. Magenta dashed

line: ∆λab(T ) = cT 2.2 ( c = 0.14nm/K2.2).
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describes the data well (Fig. 2). In the model, ρs(T ) = xρ1(T )+(1−x)ρ2(T ): ρ1,2(T ) are the

superfluid densities in bands i = 1, 2, with gaps ∆i(T ) = ∆i(0) tanh
(

πTC

∆i(0)

√
ai

(
TC

T
− 1

))
;

ai describes the rate of ∆i(T ) increasing upon cooling from Tc [16]. Our fit (taking into

account the systematic error on λab(5K)) gives ∆1(0) = 2.5 ± 0.3Tc, ∆2(0) = 0.70 ± 0.1Tc,

x = 0.89 ± 0.06 and a1 = 1.45 ± 0.4 with a2 ≡ 1. The value of a1 suggests that pairing is

likely to be more complicated than phonon-mediated weak coupling [12, 28], which would

give a = 1. The magnitude of ∆1,2(0) is consistent with the scaled down values deduced

from optical spectroscopy on similar materials with higher Tc [8, 9]. At low T a power

law cT n where n = 2.2 and c = 0.14 nm/K2.2 also fits the data. The dominant sources of

errors are the calibration accuracy of the scanner, thermal drift, and the breakdown of the

assumption of z À λab, which together would bound c between 0.12 and 0.18 nm/K2.2. The

small coefficient is inconsistent with that previously reported [19]. We rule out a nodal OP

model since the impurity scattering rate required for such a model [29] to match our data

is much higher than that reported in previous works on d-wave cuprates with deliberately

added impurities [30, 31]. Instead, we interpret this weakened exponential behaviour of ∆λab

and ρs(T ) from 0.4 K all the way to Tc as strong evidence for two full gaps, consistent with

the extended s-wave OP [10, 32].

We repeated the touchdown measurement at four positions separated by around 10 µm

and obtained λab(T = 5 K) = 325 nm, 330 nm, 325 nm and 330 nm. This result suggests

that λab is uniform across the sample.

A second test of uniformity is afforded by measuring the local Tc by mapping the lowest T

at which we cannot detect Meissner levitation by MFM (sensitivity corresponds to λab(T ) >

3 µm) or diamagnetic response by SSS (sensitivity corresponds to λab(T ) > 20 µm [33]). We

find the variation of Tc to be less than 0.5 K throughout the range of 10× 10µm2 by MFM

and 200× 200µm2 by SSS.

Vortex imaging provides a third test of ρs(T ) uniformity. To this end, we cool the sample

in an external magnetic field and scan the tip at a constant height z above the surface at 5

K. All vortices appear very similar (Fig. 3a), indicating that the spatial variation of λab is

limited. The convolution of the tip and the vortex field makes it difficult to extract λab from

the vortex imaging. Instead, we calculate the normalized curvature at each vortex peak to

quantify the spatial variation: C ≡ max (∂Fz/∂z)−2 det
(

∂2(∂Fz/∂z)
∂xi∂xj

)
(i, j run over 1, 2 and

x1 ≡ x, x2 ≡ y). The length-scale, C−1/4, characterizes the spatial extent of the magnetic
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field from each vortex (Fig. 3a). The scatter (Fig. 3b) of the normalized C−1/4 (±8%) at

constant z gives an estimate for the spatial variation of λab.

In contrast to the uniform ρs, vortex pinning is very inhomogeneous. Vortices do not

form an ordered lattice when field-cooled in fields up to 13 mT, the highest field that allows

us to resolve individual vortices in this material. Instead, vortices always appear in the

same regions when we thermal cycle in different fields using different cooling rates (Fig. 4a).

This behavior suggests inhomogeneous pinning. To measure the pinning force distribution,

we use the MFM tip to drag individual vortices and to convert the recorded ∂Fz/∂z to the

required force [25]. We measure two different forces (Fig. 4b): the force for dragging the

most weakly pinned vortex, Fmin, a measure of the smallest pinning force (Fig. 4c); and

the force for dragging all of the vortices (usually <∼ 10) in a field of view, Ftyp, a measures

of the typical pinning force (Fig. 4d). In this sample 2 <∼ Ftyp/Fmin
<∼ 4. Ftyp ≈ 18 pN

at 5K, corresponding to a critical current of Jc ≈ 80 kA/cm2 (Fc = JcΦ0d, where Φ0 is

the flux quantum, d = 10µm is the sample thickness), consistent with the value from bulk

measurement of an optimally doped sample [34]. Even at Ftyp, vortices do not follow the tip

all the way, indicating the existence of pinning forces larger than Ftyp. In fact, Ftyp is still at

least an order of magnitude smaller than the force required to stabilize vortices in the dense
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FIG. 3: Spatial uniformity of λab from vortex imaging at 5 K. (a) Image of vortices at T = 5K,
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FIG. 4: Inhomogeneous vortex pinning. (a) Image of vortices at T = 5 K, z = 80 nm and

B = 9.5 mT, overlaid by the vortex positions (dots) in Fig. 3a and the boundary of that scan

(black frame). The vortex configuration is highly disordered. Vortices avoid the same regions

in both scans, taken days apart and many thermal cycles apart. (b) Local critical current (left

ordinate) and the depinning force (right ordinate) vs. T . The comparison of minimum and typical

values implies inhomogeneous pinning. (c) Image of vortices at T = 5 K, z = 120 nm showing that

Fmin only moves the vortex at the bottom. (d) Image of moving vortices at T = 14.5K, z = 430nm

showing that Ftyp allows us to drag all vortices a distance of several microns.

clusters we see (the vortex-vortex interaction for a pair separated by 400 nm corresponds

to a current density of 3 MA/cm2). We do not detect any correlation between pinning and

superfluid density, suggesting that strong pinning exists without affecting superconductivity

on the scale of λab. The ability to measure the absolute value of the penetration depth despite

a disordered vortex configuration is important, since the most commonly used method,

muon-spin-rotation [35], assumes an ordered vortex configuration.

To conclude, by measuring λab(T ) and ∆λab(T ) locally we find that underdoped

Ba(Fe1−xCox)2As2 (x ≈ 0.05) has homogenous ρs whose temperature dependence can be

described by a two-band fully-gapped OP. This result provides thermodynamic evidence

for fully gapped models such as the proposed extended s-wave model [10, 11] for Co-doped

122 pnictides and shows that it has the similar OP structure as the K-doped, despite the

different dopants and substitution cites. We obtain λab(0) = 325 ± 50 nm, which gives

Tmax
θ = A(h̄c)2a/(16πe2λ2) ≈ 260 K, where a =

√
πξc, ξc = 1.1 nm [36] and A=2.2 in the

three-dimension limit [2, 34]. Tmax
θ À Tc, hinting that phase fluctuations are not as impor-
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tant here as in the underdoped cuprates [2]. Instead, Tc in the underdoped iron-pnictides

may be suppressed by the competition with non-superconducting phases. MFM allows us to

obtain the superfluid density and to map its spatial variation down to the submicron scale.

This capability may be useful to study how different phases compete for charge carriers.
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