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Abstract.
We find a correspondence between semiclassical QCD quantized on the light-front and a dual gravity model in anti–de

Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence –
light-front holography – leads to a light-front Hamiltonian and relativistic bound-state wave equations that are functions of an
invariant impact variable ζ which measures the separation of the quark and gluonic constituents within hadrons at equal light-
front time. The eigenvalues of the resulting light-front Schrödinger and Dirac equations are consistent with the observed light
meson and baryon spectrum, and the eigenmodes provide the light-front wavefunctions, the probability amplitudes describing
the dynamics of the hadronic constituents. The light-front equations of motion, which are dual to an effective classical gravity
theory, possess remarkable algebraic and integrability properties which are dictated by the underlying conformal properties
of the theory. We extend the algebraic construction to include a confining potential while preserving the integrability of the
mesonic and baryonic bound-state equations.
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INTRODUCTION

Quantum Chromodynamics (QCD) provides a fundamental description of hadrons in terms of structureless quarks and
gluons. Despite the successful applications of QCD in the perturbative regime, it still remains one of the most difficult
field-theoretic problems in strong interaction dynamics to understand the interactions and composition of hadrons in
terms of the confined constituent degrees of freedom of the QCD Lagrangian. Thus an important theoretical goal is
to find an initial approximation to QCD which is analytically tractable and which can be systematically improved.
For example, in quantum electrodynamics, the Coulombic Schrödinger and Dirac equations provide accurate first
approximations to atomic bound state problems which can then be systematically improved using the Bethe-Salpeter
formalism and correcting for quantum fluctuations, such as the Lamb Shift and vacuum polarization.

The AdS/CFT correspondence [1] between string states on anti–de Sitter (AdS) space-time and conformal gauge
field theories (CFT) in physical space-time has brought a new set of tools for studying the dynamics of strongly coupled
quantum field theories, and it has led to new analytical insights into the confining dynamics of QCD which is difficult
to realize using other methods. The AdS/CFT duality provides a gravity description in a (d + 1)-dimensional AdS
space-time in terms of a flat d-dimensional conformally-invariant quantum field theory defined at the AdS asymptotic
boundary. [2] Thus, in principle, one can compute physical observables in a strongly coupled gauge theory in terms of
a classical gravity theory.

As first shown by Polchinski and Strassler, [3] the AdS/CFT duality, modified to incorporate a mass scale, provides
a derivation of dimensional counting rules [4] for the leading power-law fall-off of hard scattering beyond the
perturbative regime. The modified theory generates the hard behavior expected from QCD, instead of the soft behavior
characteristic of strings. In order to describe a confining theory, the conformal invariance of AdS5 must be broken.
A simple way to impose confinement and discrete normalizable modes is to truncate the regime where the string
modes can propagate by introducing an infrared (IR) cutoff at a finite value z0 ∼ 1/ΛQCD. Thus the “hard-wall” at z0
breaks conformal invariance and allows the introduction of the QCD scale and a spectrum of particle states. [3] The
mechanisms of confinement are encoded in the warp of the AdS5 metrics near a large infrared value z0 which sets
the scale of the strong interactions. In this simplified approach the propagation of hadronic modes in a fixed effective
gravitational background encodes salient properties of the QCD dual theory, such as the ultraviolet (UV) conformal
limit at the AdS boundary at z→ 0, as well as modifications of the background geometry in the large z infrared region
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as are characteristic of strings dual to confining gauge theories. Since the AdS metric

ds2 =
R2

z2

(
ηµν dxµ dxν −dz2) , (1)

is invariant under a dilatation of all coordinates xµ → λxµ , z→ λ z, the variable z acts like a scaling variable in
Minkowski space: different values of z correspond to different energy scales at which the hadron is examined.

In the usual AdS/QCD approach [5, 6] bulk fields are introduced to match the SU(2)L×SU(2)R chiral symmetries
of QCD and its spontaneous breaking, but without explicit connection with the internal constituent structure of
hadrons. [7] Instead, axial and vector currents become the primary entities as in effective chiral theory. Following
this bottom-up approach only a limited number of operators are introduced, and consequently only a limited number
of fields are required to construct phenomenologically viable five-dimensional gravity duals. One can also effectively
modify the metric of AdS space by introducing a dilaton field to reproduce the observed linear Regge behavior of
the hadronic spectrum. [8] The resulting model is equivalent to the introduction of a harmonic oscillator confining
potential U ∼ κ4z2. In this “soft-wall” model, the value of κ breaks conformal invariance, and it sets the mass scale
for the hadronic spectrum. The soft-wall background approaches asymptotically AdS space for small values of the
variable z, as required by the near-conformal limit of QCD in the ultraviolet region.

We have recently shown a remarkable connection between the description of hadronic modes in AdS space and
the Hamiltonian formulation of QCD in physical space-time quantized on the light-front (LF) at equal light-front
time τ . Light-front quantization is the ideal framework for describing the structure of hadrons in terms of their quark
and gluon degrees of freedom. The simple structure of the light-front vacuum allows an unambiguous definition of
the partonic content of a hadron in QCD and of hadronic light-front wavefunctions which relate its quark and gluon
degrees of freedom to their asymptotic hadronic state. The light-front wavefunctions (LFWFs) of relativistic bound
states in QCD provide a fundamental description of the structure and internal dynamics of hadronic states in terms
of their constituent quark and gluons at a fixed light-front time τ = t + z/c, the time marked by the front of a light
wave, [9] – rather than at instant time t, the ordinary time. Unlike instant time quantization, the Hamiltonian equation
of motion in the LF is frame independent. This makes a direct connection of QCD with AdS/CFT methods possible.

An important first step for establishing the correspondence with AdS space is to observe that the LF bound state
Hamiltonian equation of motion in QCD has an essential dependence in the invariant transverse variable ζ , [10]
which measures the separation of the quark and gluonic constituents within the hadron at the same LF time. The
variable ζ plays the role of the radial coordinate r in atomic systems. The result is a single-variable light-front
relativistic Schrödinger equation. This first approximation to relativistic QCD bound-state systems is equivalent to
the equations of motion that describe the propagation of spin-J modes in a fixed gravitational background asymptotic
to AdS space. [10] The eigenvalues of the LF Schrödinger equation give the hadronic spectrum and its eigenmodes
represent the probability amplitudes of the hadronic constituents. By using the correspondence between ζ in the LF
theory and z in AdS space, one can identify the terms in the dual gravity AdS equations that correspond to the kinetic
energy terms of the partons inside a hadron and the interaction terms that build confinement. [10] The identification
of orbital angular momentum of the constituents in the light-front description is also a key element in our description
of the internal structure of hadrons using holographic principles. This mapping was originally obtained by matching
the expression for electromagnetic current matrix elements in AdS space with the corresponding expression for the
current matrix element using LF theory in physical space time. [11] More recently we have shown that one obtains
the identical holographic mapping using the matrix elements of the energy-momentum tensor, [12] thus providing a
consistency test and verification of holographic mapping from AdS to physical observables defined on the light front.

The integrability of the equations underlying a physical system is related to its symmetries. As we shall show,
conformal symmetry in fact yields integrability: the differential equations describing the relativistic bound state system
can be expressed in terms of ladder operators, and the solutions can be written in terms of analytic functions. The
application of ladder operators [13] is particularly useful in the study of AdS/QCD models [14] and the description
of arbitrary spin fields in AdS space. [15] We will show how the algebraic conformal properties can be extended to
include the mass scale of the soft-wall model and thus confinement. This algebraic construction is also extended to
build models of baryons.

LIGHT-FRONT QUANTIZATION OF QCD

One can express the hadron four-momentum generator P = (P+,P−,P⊥), P± = P0±P3, in terms of the dynamical
fields, the Dirac field ψ+, where ψ± = Λ±ψ , Λ± = γ0γ±, and the transverse field A⊥ in the A+ = 0 gauge [16]



quantized on the light-front at fixed light-cone time x+, x± = x0± x3

P− =
1
2

∫
dx−d2x⊥ψ̄+ γ

+ (i∇⊥)2 +m2

i∂+ ψ+ +(interactions), (2)

P+ =
∫

dx−d2x⊥ψ̄+γ
+i∂+

ψ+, (3)

P⊥ =
1
2

∫
dx−d2x⊥ψ̄+γ

+i∇⊥ψ+, (4)

where the integrals are over the initial surface x+ = 0. The LF Hamiltonian P− generates LF time translations
[ψ+(x),P−] = i ∂

∂x+ ψ+(x), whereas the LF longitudinal P+ and transverse momentum P⊥ are kinematical generators.
As in non-relativistic quantum mechanics, the LF Hamiltonian is additive in the kinetic and potential energy. For
simplicity we have omitted from (2 - 4) the contributions from the gluon field A⊥.

A physical hadron in four-dimensional Minkowski space has four-momentum Pµ and invariant hadronic mass states
Pµ Pµ = M2 determined by the Lorentz-invariant Hamiltonian equation for the relativistic bound-state system

Pµ Pµ |ψ(P)〉=
(
P−P+−P2

⊥
)
|ψ(P)〉= M2|ψ(P)〉, (5)

where the hadronic state |ψ〉 is an expansion in multiparticle Fock eigenstates |n〉 of the free light-front Hamiltonian:
|ψ〉 = ∑n ψn|ψ〉. The state |ψ(P+,P⊥,Jz)

〉
is an eigenstate of the total momentum P+ and P⊥ and the total spin

Jz. Quark and gluons appear from the light-front quantization of the excitations of the dynamical fields ψ+ and A⊥
expanded in terms of creation and annihilation operators at fixed LF time τ . The Fock components ψn(xi,k⊥i,λ

z
i ) are

independent of P+ and P⊥ and depend only on relative partonic coordinates: the momentum fraction xi = k+
i /P+, the

transverse momentum k⊥i and spin component λ
z
i . Momentum conservation requires ∑

n
i=1 xi = 1 and ∑

n
i=1 k⊥i = 0.

The LFWFs ψn provide a frame-independent representation of a hadron which relates its quark and gluon degrees of
freedom to their asymptotic hadronic state.

A Semiclassical Approximation to QCD

We can compute M2 from the hadronic matrix element

〈ψ(P′)|Pµ Pµ |ψ(P)〉= M2〈ψ(P′)|ψ(P)〉, (6)

expanding the initial and final hadronic states in terms of its Fock components. The computation is simplified in the
frame P =

(
P+,M2/P+,~0⊥

)
where P2 = P+P−. We find

M2 = ∑
n

∫ [
dxi
][

d2k⊥i
]
∑
q

(k2
⊥q +m2

q

xq

)
|ψn(xi,k⊥i)|2 +(interactions), (7)

plus similar terms for antiquarks and gluons (mg = 0). The integrals in (7) are over the internal coordinates of the n
constituents for each Fock state∫ [

dxi
]
≡

n

∏
i=1

∫
dxi δ

(
1−

n

∑
j=1

x j

)
,
∫ [

d2k⊥i
]
≡

n

∏
i=1

∫ d2k⊥i

2(2π)3 16π
3

δ
(2)
( n

∑
j=1

k⊥ j

)
, (8)

with phase space normalization ∑n
∫ [

dxi
][

d2k⊥i
]
|ψn(xi,k⊥i)|2 = 1.

The LFWF ψn(xi,k⊥i) can be expanded in terms of n−1 independent position coordinates b⊥ j, j = 1,2, . . . ,n−1,
conjugate to the relative coordinates k⊥i, with ∑

n
i=1 b⊥i = 0. We can also express (7) in terms of the internal impact

coordinates b⊥ j with the result

M2 = ∑
n

n−1

∏
j=1

∫
dx j d2b⊥ j ψ

∗
n (x j,b⊥ j)∑

q

(
−∇

2
b⊥q

+m2
q

xq

)
ψn(x j,b⊥ j)+(interactions). (9)



The normalization is defined by ∑n ∏
n−1
j=1
∫

dx jd2b⊥ j
∣∣ψn(x j,b⊥ j)

∣∣2 = 1. To simplify the discussion we will consider a
two-parton hadronic bound state. In the limit of zero quark mass mq→ 0

M2 =
∫ 1

0

dx
x(1− x)

∫
d2b⊥ψ

∗(x,b⊥)
(
−∇

2
b⊥

)
ψ(x,b⊥)+(interactions). (10)

The functional dependence for a given Fock state is given in terms of the invariant mass

M2
n =

( n

∑
a=1

kµ
a

)2
= ∑

a

k2
⊥a +m2

a

xa
→

k2
⊥

x(1− x)
, (11)

giving the measure of the off-energy shell of the bound state, M2−M2
n . Similarly in impact space the relevant variable

for a two-parton state is ζ 2 = x(1−x)b2
⊥. Thus, to first approximation LF dynamics depend only on the boost invariant

variable Mn or ζ , and hadronic properties are encoded in the hadronic mode φ(ζ ) from the relation

ψ(x,ζ ,ϕ) = eiLϕ X(x)
φ(ζ )√

2πζ
, (12)

thus factoring out the angular dependence ϕ and the longitudinal, X(x), and transverse mode φ(ζ ) with normalization
〈φ |φ〉=

∫
dζ |〈ζ |φ〉|2 = 1.

We can write the Laplacian operator in (10) in circular cylindrical coordinates (ζ ,ϕ) and factor out the angular
dependence of the modes in terms of the SO(2) Casimir representation L2 of orbital angular momentum in the
transverse plane. Using (12) we find [10]

M2 =
∫

dζ φ
∗(ζ )

√
ζ

(
− d2

dζ 2 −
1
ζ

d
dζ

+
L2

ζ 2

)
φ(ζ )√

ζ
+
∫

dζ φ
∗(ζ )U(ζ )φ(ζ ), (13)

where all the complexity of the interaction terms in the QCD Lagrangian is summed in the effective potential U(ζ ).
The LF eigenvalue equation Pµ Pµ |φ〉= M2|φ〉 is thus a light-front wave equation for φ(

− d2

dζ 2 −
1−4L2

4ζ 2 +U(ζ )
)

φ(ζ ) = M2
φ(ζ ), (14)

a relativistic single-variable LF Schrödinger equation. Its eigenmodes φ(ζ ) = 〈ζ |φ〉 determine the hadronic mass
spectrum and represent the probability amplitude to find n-partons at transverse impact separation ζ , the invariant
separation between pointlike constituents within the hadron [11] at equal LF time. Extension of the results to arbitrary
n follows from the x-weighted definition of the transverse impact variable of the n− 1 spectator system [11]:
ζ =

√
x

1−x

∣∣∣∑n−1
j=1 x jb⊥ j

∣∣∣, where x = xn is the longitudinal momentum fraction of the active quark. One can also
generalize the equations to allow for the kinetic energy of massive quarks using Eqs. (7) or (9). In this case, however,
the longitudinal mode X(x) does not decouple from the effective LF bound-state equations.

MESONS IN LIGHT-FRONT HOLOGRAPHY

On AdS space the physical states are represented by normalizable modes ΦP(xµ ,z) = e−iP·xΦ(z), with plane waves
along the Poncaré coordinates and a profile function Φ(z) along the holographic coordinate z. Each LF hadronic state
|ψ(P)〉 is dual to a normalizable string mode ΦP(xµ ,z) and the hadronic mass M2 is found by solving the eigenvalue
problem for the corresponding wave equation in AdS space, which, as we show below, is equivalent to the semiclassical
approximation Eq. (14).

As the simplest example we consider a truncated model where quark and gluons propagate freely in the hadronic
interior and the interaction terms effectively build the confinement. The effective potential is a hard wall: U(ζ ) =
0 if ζ ≤ 1/ΛQCD and U(z) = ∞ if ζ > 1/ΛQCD. This provides an analog of the MIT bag model where quarks are
permanently confined inside a finite region of space. [17] However, unlike bag models, boundary conditions are
imposed on the boost invariant variable ζ , not on the bag radius at fixed time. The resulting model is a manifestly



Lorentz invariant model with confinement at large distances and conformal behavior at short distances. Confinement
is imposed with the boundary conditions φ(ζ = 1/ΛQCD) = 0.

To study the stability properties of the quantum-mechanical system, it is convenient to consider a continuous
parameter ν instead of L which has quantized values. If ν2 ≥ 0 the LF Hamiltonian Pµ Pµ in the ζ -representation

Hν
LF(ζ ) =− d2

dζ 2 −
1−4ν2

4ζ 2 (15)

is written as a bilinear form
Hν

LF(ζ ) = Π
†
ν(ζ )Πν(ζ ), ν

2 ≥ 0, (16)

where the operator Πν and its adjoint Π
†
ν are defined by

Πν(ζ ) =−i

(
d

dζ
−

ν + 1
2

ζ

)
, Π

†
ν(ζ ) =−i

(
d

dζ
+

ν + 1
2

ζ

)
, (17)

with the commutation relation [
Πν(ζ ),Π†

ν(ζ )
]
=

2ν +1
ζ 2 . (18)

For ν2 ≥ 0 the Hamiltonian is positive definite, 〈φ
∣∣Hν

LC

∣∣φ〉 = ∫
dζ |Πν φ(z)|2 ≥ 0, and consequently M2 ≥ 0. For

ν2 < 0 the Hamiltonian cannot be written as a bilinear product and the Hamiltonian is unbounded from below. The
particle “falls towards the center” [18]. The critical value corresponds to ν = 0. Thus, if ν2 < 0 the expectation values
of the Hamiltonian are negative and M2 < 0. The critical value ν = 0 corresponds the the lowest possible stable
solution which we identify with the ground state of the LF Hamiltonian and thus with zero orbital angular momentum
L = 0. Higher orbital excitations are constructed by the L-th application of the raising operator on the ground state

〈ζ |φL〉= CL
√

ζ (−ζ )L
(

1
ζ

d
dζ

)L

J0(ζ M) = CL
√

ζ JL (ζ M) . (19)

The solutions φL(ζ ) = 〈ζ |φL〉 are eigenfunctions of the LF equation (14) with U = 0 and quantized orbital excitations,
L = 0,1,2, · · · . We thus recover the Casimir form L2 corresponding to the SO(2) group of rotations in the transverse
LF plane. The mode spectrum follows from the boundary conditions at ζ = 1/ΛQCD, and it is given in terms of the
roots of the Bessel functions: ML,k = βL,kΛQCD. For large quantum numbers M∼ 2n+L, in contrast to the usual Regge
dependence M2 ∼ n+L.

Upon the substitution Φ(ζ )∼ ζ 3/2 φ(ζ ), ζ → z, in the light-front wave equation (14) for U = 0 we find[
z2

∂
2
z −3z∂z + z2M2− (µR)2]

Φ(z) = 0,

the wave equation which describes the propagation of scalar modes in AdS5 space with AdS radius R. The five-
dimensional mass µ is related to the orbital angular momentum of the hadronic bound state by (µR)2 = −4 + L2.
The quantum-mechanical stability condition L2 ≥ 0 is thus equivalent to the AdS Breitenlohner-Freedman stability
bound [19] (µR)2 ≥−4. Since in the conformal limit U → 0, Eq. (14) is equivalent to an AdS wave equation for the
scalar field Φ(z). The hard-wall light-front model discussed here is thus equivalent to the hard wall model of Ref. [3].

Each hadronic state of spin J is dual to a normalizable mode ΦP(xµ ,z)µ1···µJ = e−iP·xΦ(z)µ1···µJ , with all the (totally
symmetric) polarization indices chosen along the 3 + 1 Poincaré coordinates. One can thus construct an effective
action in terms of high spin modes with only the physical degrees of freedom Φ(xµ ,z)µ1···µJ by shifting dimensions
ΦJ(z) = (z/R)−J

Φ(z). The shifted field ΦJ obeys the equation of motion[
z2

∂
2
z − (3−2J)z∂z + z2M2− (µR)2]

ΦJ = 0, (20)

where the fifth dimensional mass is rescaled according to (µR)2→ (µR)2−J(4−J). Having written the wave equation
for a J-mode in AdS space, we can find the corresponding equation in physical 3 + 1 space by performing the
substitution z→ ζ and φJ(ζ )∼ζ−3/2+JΦJ(ζ ). We find(

− d2

dζ 2 −
1−4L2

4ζ 2

)
φµ1···µJ = M2

φµ1···µJ , (21)

where µ is not a free parameter but scales according to (µR)2 = −(2− J)2 + L2. In the hard-wall model there is a
total decoupling of the total spin J and the π and ρ mesons are degenerate. The scaling dimensions are ∆ = 2 + L
independent of J in agreement with the twist scaling dimension of a two parton bound state in QCD.
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FIGURE 1. Parent and daughter Regge trajectories for the π-meson family for κ = 0.6 GeV (left) and for the I =1 ρ-meson and
the I =0 ω-meson families for κ = 0.54 GeV (right). The data is from [20].

A Soft-Wall Light-Front Model for Mesons

The conformal algebraic structure of the hard wall model can be extended to include a scale κ . This procedure breaks
conformal invariance and provides a solution for the confinement of modes, while maintaining an integrable algebraic
structure. It also allows one to determine the stability conditions for the solutions. The resulting model resembles the
soft wall model of Ref. [8]. We write the bound-state LF Hamiltonian as a bilinear product of operators plus a constant
C(κ2) to be determined:

Hν
LF(ζ ) = Π

†
ν(ζ )Πν(ζ )+C, ν

2 ≥ 0, (22)

where the LF generator Π and its adjoint Π†

Πν(ζ ) =−i

(
d

dζ
−

ν + 1
2

ζ
−κ

2
ζ

)
, Π

†
ν(ζ ) =−i

(
d

dζ
+

ν + 1
2

ζ
+κ

2
ζ

)
, (23)

obey the commutation relation [
Πν(ζ ),Π†

ν(ζ )
]
=

2ν +1
ζ 2 −2κ

2. (24)

For ν2 ≥ 0 and C ≥−4κ2, the Hamiltonian is positive definite, 〈φ
∣∣Hν

LC

∣∣φ〉,= ∫
dζ |Πν φ(z)|2 +C ≥ 0 and M2 ≥ 0.

For ν2 < 0 the Hamiltonian cannot be written as a bilinear product and the Hamiltonian is unbounded from below.
The lowest stable solution of the extended LF Hamiltonian corresponds to C = −4κ2 and ν = 0 and it is massless,
M2 = 0. We impose chiral symmetry by choosing C =−4κ2 and thus identifying the ground state with the pion. With
this choice of the constant C, the LF Hamiltonian (22) is

HLF(ζ ) =− d2

dζ 2 −
1−4L2

4ζ 2 +κ
4
ζ

2 +2κ
2(L−1), (25)

with eigenfunctions

φL(ζ ) = κ
1+L

√
2n!

(n+L)!
ζ

1/2+Le−κ2ζ 2/2LL
n(κ2

ζ
2), (26)

and eigenvalues M 2 = 4κ2(n+L). This is illustrated in Fig. 1 for the pseudoscalar meson spectra.



Next we show that the confining model has also an effective classical gravity description corresponding to an
AdS5 geometry modified by a positive-sign dilaton background exp(+κ2z2), with sign opposite to that of reference
of Ref. [8]. The positive dilaton solution has interesting physical implications, since it leads to a confining potential
between heavy quarks [21] and to a convenient framework for describing chiral symmetry breaking. [22] It also leads
to to the identification of a nonperturbative effective strong coupling αs and β -functions which are in agreement with
available data and lattice simulations. [23] In presence of a dilaton profile exp(+κ2z2) the wave equation for a spin J
mode Φ(z)µ1···µJ is given by [24][

z2
∂

2
z −

(
3−2J−2κ

2z2)z∂z + z2M2− (µR)2]
ΦJ = 0 (27)

and reduces to (20) in the conformal limit κ→ 0. Upon the substitution z→ζ and φJ(ζ )∼ζ−3/2+Jeκ2ζ 2/2 ΦJ(ζ ), we
find the LF wave equation(

− d2

dζ 2 −
1−4L2

4ζ 2 +κ
4
ζ

2 +2κ
2(L+S−1)

)
φµ1···µJ = M2

φµ1···µJ , (28)

with Jz = Lz + Sz and (µR)2 = −(2− J)2 + L2. Equation (28) has eigenfunctions given by (26) and eigenvalues
M2

n,L,S = 4κ2 (n+L+S/2). The results for S = 1 vector mesons is illustrated in Fig. 1, where the spectrum is built by
simply adding 4κ2 for a unit change in the radial quantum number, 4κ2 for a change in one unit in the orbital quantum
number and 2κ2 for a change of one unit of spin to the ground state value of M2. Remarkably, the same rule holds for
baryons as shown below.

BARYONS IN LIGHT-FRONT HOLOGRAPHY

The effective light-front wave equation which describes baryonic states in holographic QCD is a linear equation
determined by the LF transformation properties of spin 1/2 states. We write

DLF(ζ )ψ(ζ ) = Mψ(ζ ), (29)

where DLF is a hermitian operator, DLF = D†
LF , thus D2

LF = M2. We write DLF as a product DLF = αΠ, where Π is
the matrix valued (non-hermitian) generator

Πν(ζ ) =−i

(
d

dζ
−

ν + 1
2

ζ
γ

)
. (30)

If follows from the square of DLF , D2
LF = M2, that the matrices α and γ are 4×4 anti-commuting hermitian matrices

with unit square. The operator Π and its adjoint Π† thus satisfy the commutation relation[
Πν(ζ ),Π†

ν(ζ )
]
=

2ν +1
ζ 2 γ. (31)

The light front Hamiltonian HLF is

Hν
LF(ζ ) = Πν(ζ )†

Πν(ζ ) =− d2

dζ 2 +

(
ν + 1

2

)2

ζ 2 −
ν + 1

2
ζ 2 γ. (32)

The LF equation HLF ψ± = M2ψ±, has a two-component solution

ψ+(ζ )∼
√

ζ Jν(ζ M), ψ−(ζ )∼
√

ζ Jν+1(ζ M), (33)

where γψ± =±ψ±. Thus γ is the four dimensional chirality operator γ5. In the Weyl representation

γ =
(

I 0
0 −I

)
and iα =

(
0 I
−I 0

)
. (34)



The effective LF equation for baryons (29) is indeed equivalent to the Dirac equation describing the propagation of
spin-1/2 hadronic modes, on AdS5 space ΨP(xµ ,z) = e−iP·xΨ(z)[

i
(
zη

`m
Γ`∂m +2Γz

)
+ µR

]
Ψ = 0, (35)

where `,m represent the indices of the full space with coordinates xµ and z. Upon the transformation Ψ(z)∼ z2ψ(z),
z→ ζ , we recover (29) with µR = ν +1/2 and Γz =−iγ . Higher spin fermionic modes Ψµ1···µJ−1/2 , J > 1/2, with all
polarization indices along the 3+1 coordinates follow by shifting dimensions as shown for the case of mesons.

A Soft-Wall Light-Front Model for Baryons

An effective LF equation for baryons with a mass gap κ is constructed by extending the conformal algebraic
structure for baryons described above, following the analogy with the mesons. We write the effective LF Dirac equation
(29) in terms of the matrix-valued operator Π and its adjoint Π†

Πν(ζ ) =−i

(
d

dζ
−

ν + 1
2

ζ
γ−κ

2
ζ γ

)
, Π

†
ν(ζ ) =−i

(
d

dζ
+

ν + 1
2

ζ
γ +κ

2
ζ γ

)
, (36)

with the commutation relation [
Πν(ζ ),Π†

ν(ζ )
]
=
(

2ν +1
ζ 2 −2κ

2
)

γ. (37)

The extended baryonic model also has a geometric interpretation. It corresponds to the Dirac equation in AdS5
space in presence of a linear potential κ2z[

i
(
zη

`m
Γ`∂m +2Γz

)
+κ

2z+ µR
]

Ψ = 0, (38)

as can be shown directly by using the transformation Ψ(z)∼ z2ψ(z), z→ ζ .
Before computing the baryon spectrum we must fix the overall scale and the parameter ν . As for the case of the

mesons Eq. (22) we write the LF Hamiltonian Hν
LF = Π

†
ν Πν +C and chose the same value for C: C =−4κ2. With this

choice for C the LF Hamiltonian is

HLF =− d2

dζ 2 +

(
ν + 1

2

)2

ζ 2 −
ν + 1

2
ζ 2 γ5 +κ

4
ζ

2 +κ
2(2ν−3)+κ

2
γ5. (39)

The LF equation HLF ψ± = M2ψ±, has a two-component solution

ψ+(ζ )∼ z
1
2 +ν e−κ2ζ 2/2Lν

n (κ2
ζ

2), ψ−(ζ )∼ z
3
2 +ν e−κ2ζ 2/2Lν+1

n (κ2
ζ

2), (40)

and eigenvalues M2 = 4κ2(n+ν), identical for both plus and minus eigenfunctions.
The baryon interpolating operator O3+L = ψD{`1 . . .D`qψD`q+1 . . .D`m}ψ , L = ∑

m
i=1 `i, is a twist 3, dimension

9/2+L operator with scaling behavior given by its twist-dimension 3+L. We thus require ν = L+1 to match the short
distance scaling behavior. Higher spin fermionic modes Ψµ1···µJ−1/2 , J > 1/2, are obtained by shifting dimensions for
the fields as in the bosonic case. Thus, as in the meson sector, the increase in the mass squared for higher baryonic
states is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the proton.

The predictions for the 56-plet of light baryons under the SU(6) flavor group are shown in Fig. 2. As for the
predictions for mesons in Fig. 1, only confirmed PDG [20] states are shown. The Roper state N(1440) and the N(1710)
are well accounted for in this model as the first and second radial states. Likewise the ∆(1660) corresponds to the first
radial state of the ∆ family. The model is successful in explaining the important parity degeneracy observed in the
light baryon spectrum, such as the L=2, N(1680)−N(1720) pair and the ∆(1905),∆(1910),∆(1920),∆(1950) states
which are degenerate within error bars. The parity degeneracy of baryons is also a property of the hard wall model, but
radial states are not well described by this model. [25] For other recent calculations of the hadronic spectrum based on
AdS/QCD, see Refs. [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].
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FIGURE 2. 56 Parent and daughter Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV. Data from [20].

CONCLUSION

We have derived a correspondence between a semiclassical first approximation to QCD quantized on the light-front and
hadronic modes propagating on a fixed AdS background. This provides a duality between the bosonic and fermionic
wave equations in AdS higher dimensional space and the corresponding LF equations in physical 3 + 1 space.
The duality leads to Schrödinger and Dirac-like equations for hadronic bound states in physical space-time when
one identifies the AdS fifth dimension coordinate z with the LF coordinate ζ . The light-front equations of motion,
which are dual to an effective classical gravity theory, possess remarkable algebraic and integrability properties which
follow from the underlying conformal properties of the theory. We also extend the algebraic construction to include a
confining potential while preserving the integrability of the mesonic and baryonic bound-state equations.

The light-front holographic theory provides successful predictions for the light-quark meson and baryon spectra, as
function of hadron spin, quark angular momentum, and radial quantum number. [40] Using the dilaton framework the
pion is massless, corresponding to zero mass quarks, in agreement with chiral invariance arguments.

Higher spin light-front equations can be derived by shifting dimensions in the AdS wave equations. Unlike the top-
down string theory approach, one is not limited to hadrons of maximum spin J ≤ 2, and one can study baryons with
finite color NC = 3.

Both the hard and soft-wall models predict similar multiplicity of states for mesons and baryons as it is observed
experimentally. [41] In the hard-wall model the dependence has the form: M∼ 2n+L. However, in the soft-wall model
the observed Regge behavior is found: M2 ∼ n + L, which has the same slope in radial quantum number and orbital
angular momentum.

The semiclassical approximation to light-front QCD described in this paper does not account for particle creation
and absorption; it is thus expected to break down at short distances where hard gluon exchange and quantum cor-
rections become important. However, one can systematically improve the semiclassical approximation by introducing
nonzero quark masses and short-range Coulomb corrections, thus extending the predictions of the model to the dy-
namics and spectra of heavy and heavy-light quark systems.
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