
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

IPPP/09/96 MIT-CTP-4095

SLAC–PUB–13868 SB/F/371-09 UCLA/TEP/09/202

Next-to-Leading Order Jet Physics with B LACK HAT

C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero d, D. Forde e, f , T. Gleisberg c,
H. Itab, D. A. Kosower g∗ and D. Maître h∗
aCenter for Theoretical Physics, MIT, Cambridge, MA 02139, USA
bDepartment of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA
cSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
dUniversidad Simón Bolívar, Departamento de Física, Apartado 89000, Caracas 1080A,
Venezuela
eTheory Division, Physics Department, CERN, CH–1211 Geneva 23, Switzerland
f NIKHEF Theory Group, Science Park 105, NL–1098 XG Amsterdam, The Netherlands
gInstitut de Physique Théorique, CEA–Saclay, F–91191 Gif-sur-Yvette cedex, France
hDepartment of Physics, University of Durham, DH1 3LE, UK

We present several results obtained using the BLACK HAT next-to-leading order QCD program

library, in conjunction with SHERPA. In particular, we present distributions for vector boson plus

1,2,3-jet production at the Tevatron and at the asymptotic running energy of the Large Hadron

Collider, including newZ + 3-jet distributions. TheZ + 2-jet predictions for the second-jetPT

distribution are compared to CDF data. We present the jet-emission probability at NLO inW+ 2-

jet events at the LHC, where the tagging jets are taken to be the ones furthest apart in pseudora-

pidity. We analyze further the large left-handedW± polarization, identified in our previous study,

for W bosons produced at highPT at the LHC.

RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field
Theory to Phenomenology), October 25 - 30 2009, Ascona, Switzerland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



NLO Jet Physics withBLACK HAT Kosower and Maître

1. Introduction

The dawn of the Large Hadron Collider (LHC) era brings renewed incentive to continue im-
proving theoretical predictions of Standard-Model backgrounds to new physics searches. For many
searches, including some channels for the Higgs boson and for dark matter particles, the signals
will be excesses in jet + lepton or jet + missingET distributions. Such signals can be mimicked by
Standard-Model processes; accordingly, a thorough and quantitatively reliable theoretical predic-
tion is needed. This requires a calculation through next-to-leading order (NLO) in QCD.

Leading-order (LO) computations, while an important first step, suffer from a strong depen-
dence on the unphysical renormalization and factorizationscales. At this order, they enter only
through the strong couplingαs and parton distribution functions, uncompensated by any behav-
ior of the short-distance partonic matrix elements. Because the QCD coupling is large and runs
quickly, the absolute normalization of cross sections has asubstantial dependence on scales. For
reasonable scale variations, the dependence is of the orderof ±40% for theV + 3-jet processes we
shall study, withV a heavy electroweak vector boson. The dependence also growssubstantially
with increasing number of jets. At NLO, the virtual corrections introduce a compensating depen-
dence on the scales. The scale dependence shrinks to±10%, and we obtain a quantitatively reliable
answer. Shapes of distributions can also show a dramatic scale dependence with poor scale choices.
Some shapes do display noticeable “genuine” NLO corrections, independent of scale issues.

NLO predictions forV + n-jet production at hadron colliders require several ingredients:

• tree-levelV + (n+2)-parton matrix elements, which provide the LO contribution;

• interference of one-loop and tree amplitudes forV + (n+2) partons (virtual contribution);

• tree-levelV + (n+3)-parton matrix elements (real-emission contribution);

• a subtraction approximation capturing the singular behavior of the real-emission term;

• the integral of the approximation over the singular phase space (real-subtraction term).

These contributions must be convoluted with parton distribution functions, obtained from NLO fits,
and integrated over the final phase space, incorporating appropriate experimental cuts.

Schematically, we combine the contributions as follows,

dσNLO
V+n

dObs
=

∫

dx1,2 f1 f2

[

∫

dΦn δObsσ tree
2→V+n+

∫

dΦn δObs
(

σ1-loop
2→V+n + σ

∫

app
2→V+n

)

+

∫

dΦn+1 δObs
(

σ tree
2→V+n+1−σapp

2→V+n+1

)

]

, (1.1)

wheredΦn denotes theV +n-parton phase space;dx1,2 f1 f2 the integral over the appropriate parton
distributions, a sum over types being implicit;δObs, the binning function for the desired distribution;
σ tree, the tree-level squared matrix elements;σ1-loop, the virtual corrections;σapp, the approxima-
tion to the real-emission contribution; andσ

∫

app, the approximation’s integral over singular phase
space. The set of subtraction terms ensures that each of the terms in this equation is separately
finite, and thus may be computed numerically.
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We use the BLACK HAT program library [1, 2, 3, 4] to compute the virtual correctionsσ1-loop,
and the SHERPA package [5] to computeσ tree and the required approximation (σapp andσ

∫

app).
The approximation uses the Catani–Seymour dipole approach[6]. The phase-space integration is
performed with SHERPA, implementing a multi-channel approach [7].

The BLACK HAT library implements on-shell methods for one-loop amplitudes numerically.
Such amplitudes can be written as a sum of cut termsCn, containing branch cuts in kinematic
invariants, and rational termsRn, free of branch cuts,

An = Cn + Rn . (1.2)

All the branch cuts appear in the form of logarithms and dilogarithms, and can be written as a sum
over a basis of scalar integrals — bubblesI i

2, trianglesI i
3, and boxesI i

4,

Cn = ∑
i

di I
i
4 + ∑

i

ci I
i
3 + ∑

i

bi I
i
2 . (1.3)

(Massive particles in the loop also require tadpole integrals.) We take all external momenta to be
four dimensional, expressible in terms of spinors. The coefficients of these integrals,bi ,ci , and
di , as well as the rational remainderRn, are rational functions of spinor variables (in the form of
spinor products). The BLACK HAT library computes these coefficients numerically, leveraging off
recent analytic progress. In particular, it exploits generalized unitarity [8, 9]. We use Forde’s ap-
proach [10] to computebi andci , making use also of the subtraction approach to integral reduction
first introduced by Ossola, Papadopoulos and Pittau [11]. Toobtain the rational terms we have
implemented both loop-level on-shell recursion [12], and a“massive continuation” approach due
to Badger [13], which is related to theD-dimensional generalized unitarity [14] approach of Giele,
Kunszt and Melnikov [15].

One-loop matrix element computations can suffer from numerical instabilities. In BLACK -
HAT, this problem is solved by detecting pieces of the amplitudewhich do not have a sufficient
accuracy and recomputing them with higher precision using the multiprecision package QD [16].
This approach has the advantage of solving the problem usingthe same approach for well-behaved
points and for numerically unstable ones. As discussed in refs. [1, 4], with a series of tests — the
simplest of which checks whether the infrared divergences have the proper values — there is no
need fora priori knowledge of what set of circumstances can lead to instabilities. In each con-
tribution where precision loss is detected, BLACK HAT automatically switches to higher precision,
regardless of the underlying cause. With on-shell methods this happens infrequently and therefore
has only a mild effect on the overall computation time.

We have previously used these software tools to provide the first phenomenologically useful
NLO study of the production of aW boson in association with up to three jets [3, 4]. In this Contri-
bution, we extend our previous studies with a more detailed look at the question of scale choices;
at aspects of the polarization ofWs produced at highPT; and at a new distribution displaying the
probability of emitting a jet into a rapidity gap. We also present the first NLO results onZ+ 3-jet
production at hadron colliders, in a leading-color approximation designed to be accurate within
a few percent. In all cases, we decay the vector boson to leptons,W+ → l+νl , W− → l−ν̄l , and
Z → l+l−, using the appropriate vector boson linewidth. We include the virtual photon contribu-
tion to l+l− production. Other recent state-of-the-art NLO results maybe found in ref. [17]. The
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production ofW + 3 jets has also been computed at NLO using a leading-color approximation and
extrapolation [18, 19].

2. Scale Choices

The renormalization and factorization scales are not physical scales. Physical quantities should
be independent of them. A dependence on them is nonetheless present in theoretical predictions
that are truncated at a fixed order in perturbation theory. Atleading order, the dependence arises
solely throughαs and the parton distributions, respectively. We adopt the usual practice and choose
the two to be equal,µR = µF = µ . NLO results greatly reduce the dependence compared to LO, but
of course they do not eliminate it completely. We still need to choose this scale. We should expect
a good choice forµ to be near a typical energy scale for the observable we are computing, in order
to minimize the uncomputed logarithms in higher-order terms. However, multi-jet processes such
asV + 2,3-jet production have many intrinsic scales, and it is not cleara priori how to distill them
into a single number. For any given point in the fully-differential cross section, there is a range of
scales one could plausibly choose. For example, one might choose the same fixed scaleµ for all
events. However, because there can be a large dynamic range in momentum scales (particularly at
the LHC, where jet transverse energies well aboveMW are common), it is natural to pick the scale
µ dynamically, event by event, as a function of the event’s kinematics.
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Figure 1: LO and NLO predictions for the second jetET distribution inW + 3 jet production at the LHC.
The only difference between the left and right panels is the scale choice:µ = EW

T on the left andµ = ĤT

on the right. The former choice is clearly problematic and should not be used in phenomenological studies.
The bottom panels show the LO and NLO predictions, varied by afactor of two around the central scale, and
divided by the NLO value at the central scale.

Previous studies (seee.g.refs. [20, 21]) have used the transverse energy of the vectorboson,
EV

T , as the scale choice. For many distributions at the Tevatron, this is satisfactory. With the larger
dynamic range at the LHC, the choice becomes problematic. Indeed, for some observables, such as
the transverse-energy distribution of the second-hardestjet in W + 3-jet production, shown in the
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Figure 2: The NLO PT distribution of the third jet inZ + 3-jet production at the Tevatron. For the left
panel the scale choiceµ = EZ

T is used, and for the right panelµ = ĤT/2. Although the two NLO results are
compatible, the LO results have large shape differences, illustrating thatµ = ĤT/2 is a better choice than
µ = EZ

T at the Tevatron as well. The lepton and jet cuts match the CDF ones [20].

left panel of fig. 1, it goes disastrously wrong, leading to negative values of the distribution forET

beyond 475 GeV. Even at the Tevatron, the scale choiceµ = EV
T is not necessarily a good one; for

example, with this choice, the left panel of fig. 2 displays a large change in shape between LO and
NLO in thePT distribution of the third hardest jet inZ+ 3-jet production. This difficulty reflects
the emergence of a large logarithm ln(µ/E), whereE is a typical energy scale, spoiling the validity
of the perturbative expansion.
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Figure 3: Two distinctW + 3 jet configurations with rather different values for theW transverse energy.
In configuration (a) an energeticW balances the energy of the jets, while in (b) theW is relatively soft.
Configuration (b) generally dominates over (a) when the jet transverse energies get large.

To understand the problem with the scale choiceµ = EV
T , consider the two configurations

depicted in fig. 3. In configuration (a), theW has a transverse energy larger than that of the jets,
and accordingly sets the scale for the process. In configuration (b), the two leading jets roughly
balance inET , while theW has much lower transverse energy. Here, theW scale is too low, and not
characteristic of the process. In the tail of the distribution, we expect configuration (b) to dominate,
because it results in a larger second-jetET for fixed center-of-mass partonic energy; contributions
from higher center-of-mass energies will be suppressed by the fall-off of the parton distributions.

Can we choose a scale that treats the different final-state objects more democratically? The
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total partonic transverse energy,

ĤT = ∑
partonsi

Ei
T + Ee

T + /ET , (2.1)

or a fixed fraction of it, is such a choice. As we can see in the right panels of figs. 1 and 2, this
choice results in stable and sensible NLO predictions — and also in a relatively flat ratio of the
NLO and LO predictions. For LO predictions, it is better to use such a scale when NLO results
are unavailable. A similar type of scale choice, based on thecombined invariant mass of the jets,
has been motivated by soft-collinear effective theory [22]. Local scales associated with “branching
histories” as used in parton showers have recently been studied forW+ 3-jet production at LO [19].

3. Z + Jets at the Tevatron

At hadron colliders,Z boson production manifests itself primarily in either charged-lepton
pair production, or the production of missing transverse energy (when theZ decays to neutrinos).
The latter process is an important background to a wide variety of supersymmetry searches (when
no charged lepton is required), and to dark matter searches more generally. Thel+l− mode has
a significantly lower rate, but it is an excellent calibration process, as theZ can be reconstructed
precisely. It is also an excellent process for confronting NLO predictions with experimental data.

We have computed the NLOZ + 1,2,3-jet production cross sections for the Tevatron (pp̄
collisions at

√
s= 1.96 TeV), with theZ decaying into a charged lepton pair. We applied the same

cuts used by the CDF collaboration [20] in their measurementof these processes forZ → e+e−,

Pjet
T > 30 GeV, Ee

T > 25 GeV, ∆Re−jet > 0.7, 66< Me+e− < 116 GeV,

|η jet| < 2.1, |ηe1| < 1, |ηe2| < 1 or 1.2 < |ηe2| < 2.8, (3.1)

where the electron cuts apply to both electrons and positrons, and the jet cuts apply to all jets. We
cut on the jet pseudo-rapidityη rather than CDF’s cut on rapidityy; the two cuts coincide at LO
but differ slightly at NLO. We employed three different infrared-safe jet algorithms [23], SISCone
(with merging parameterf = 0.75), kT and anti-kT , all with R= 0.7. Production of anl+l− pair
can also be mediated by a virtual photon; we include these contributions as well, although they are
suppressed by the cut on the lepton-pair invariant massMe+e− .

Fig. 4 shows how theZ+ 1,2,3-jet cross section depends on a fixed scaleµ , independent of
the event kinematics, for the anti-kT algorithm and with the cuts (3.1). Here choosingµ ≈ MZ is
appropriate, because the cross section is dominated by low-PT jets. The upper three panels show the
scale dependence of the cross section at NLO, compared to that at LO, inZ+ 1-, Z+ 2-, andZ+ 3-
jet production, respectively. They illustrate the lessened dependence at NLO. The bottom panel
shows the ratio of NLO to LO results for all three cases, demonstrating the increasing sensitivity
to scale variations at LO with increasing number of jets. This is expected, because there is an
additional power ofαs(µ) multiplying the LO cross section for each additional jet. Accordingly,
the impact of an NLO calculation also grows with the number ofjets. The results for thekT and
SISCone algorithms (not shown) are similar.

Fig. 5 compares the theoretical predictions for the second-jet PT distribution inZ+ 2-jet pro-
duction with data from CDF [20]. CDF used the midpoint algorithm [24]. This algorithm is
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Figure 4: The scale dependence of the cross section forZ + 1,2,3-jet production at the Tevatron, for the
anti-kT jet algorithm using a leading-color approximation withnf terms, as a function of the common renor-
malization and factorization scaleµ , with µ0 = MZ. The bottom panel shows theK factors, or ratios between
NLO and LO results, for the three cases.
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Figure 5: The second-jetPT distribution forZ+2 jets at LO and NLO compared against CDF data [20].

infrared unsafe forZ + 3-jets at NLO, so we use infrared-safe ones instead. Fig. 5 shows results
for the anti-kT algorithm; the other two algorithms yield similar results.It is worth noting that
CDF did not attempt to “deconvolve” the hadronization corrections (estimated using Pythia) from
their measured data; rather, they provided a table of hadronization corrections. This is helpful be-
cause it will allow for future improvements to hadronization models to be taken into account in
theoretical predictions. Accordingly, we have used these hadronization corrections to generate a
complete prediction from the LO and NLO perturbative predictions. The hadronization corrections
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are significant for lowPT, on the order of 20 % at 30 GeV, and become rather small at larger jet
transverse momenta. As expected, the LO scale-dependence band is much larger than the NLO
one. Excepting perhaps the last bin, the agreement between the NLO prediction and the data is
quite good, especially given the different jet algorithms.

Fig. 6 gives our predictions for the three jetPT distributions inZ+ 3-jet production, using the
anti-kT jet algorithm. With the choice of scaleµ = ĤT/2, only minor shape changes are visible
between LO and NLO, for all three distributions. The NLO plots are based on a leading-color
approximation along the lines of refs. [3, 4], except that pieces proportional to the number of light
quark flavors (nf ) are included. We expect this approximation to be valid to a few percent.
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Figure 6: The LO and NLOPT distributions forZ+ 3-jet production for the leading, second and third jet,
for the anti-kT algorithm and scale choiceµ = ĤT/2. The thin vertical bars in the top panels indicate the
integration errors.
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Figure 7: The left panel shows the ratio of the charged-leptonET distributions at the LHC forW+ andW−

production in association with at least three jets, computed at NLO. The right panel shows the corresponding
ratio for the neutrinoET , or equivalently/ET .

As noted in ref. [4], at the LHC theET distributions of the daughter leptons show a surprisingly
strong shape dependence on whether they come from aW+ or aW−, independent of the number
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of jets. Fig. 7 shows the ratio of the NLO transverse energy distributions for theW± boson decay
products in inclusiveW+ 3-jet production at the LHC, charged leptons in the left panel and neutri-
nos in the right panel. The differences betweenW+ andW− distributions are quite dramatic. The
left panel shows a large ratio forW+ toW− at smallEe

T which declines at largerEe
T . In contrast, the

corresponding ratio for theEν
T , or equivalently the missing transverse energy/ET in the event, starts

somewhat smaller but increases rapidly withET . The significant difference in behavior between
W+ andW− suggests a means for separatingW bosons produced in top quark decays from those
produced from light quarks; theWs from top decays do not exhibit a similar phenomenon.
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Figure 8: The LO and NLO predictions for polarization fractions of theleft-handed,fL (top curve), right-
handedfR (middle curve) and longitudinalf0 (bottom curve) fractions forW + 2 jets at the LHC. The left
panel gives the polarization forW+ and the right panel forW−. For high transverse momentum,PT,W, the
W bosons become predominantly left-handed.

This disparate behavior is explained by a net left-handed polarization for bothW+ andW− at
high transverse momentum. This effect is easily visible at LO, and it does not get washed out at
NLO. In fig. 8, we give the fraction ofW bosons in each of the three polarization states, left-handed,
right-handed and longitudinal (fL, fR, f0, respectively) forW+ 2-jet production at the LHC, at both
LO and NLO. As seen in the figure, at high transverse momentum theW± bosons are preferentially
left handed. Although the cross-sections forW+ andW− are rather different, their polarizations
are nearly identical. Interestingly, we also find that when theWs have a transverse momentum of
more than 50 GeV, the polarization is quite independent of the jet transverse energy cuts. With
W± bosons left-hand polarized at largeEW

T , theW+ tends to emit the left-handed neutrino forward
relative to its direction of motion (resulting in a larger transverse energy) and the right-handed
positron backward (smaller transverse energy). In contrast, theW− prefers to emit the left-handed
electron forward. At highET , such decays produce an enhancement in the neutrinoET distribution
and a depletion in the charged-lepton distribution, forW+ relative toW−, consistent with the results
displayed in fig. 7. We note that this phenomenon is distinct from the well-known dilution of the
W rapidity asymmetry at the Tevatron, when passing to the decay lepton, which can be explained
using angular momentum conservation solely along the beam axis [25].

5. Emission into Rapidity Gaps

In previous work [21], we provided the first NLO study of the probability of emitting a third jet
in W + 2-jet events, as a function of the rapidity interval betweentwo leading-ET jets at the LHC.
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This distribution was studied earlier at LO at the Tevatron and compared to CDF data [26]. Jet
emission probabilities are relevant to Higgs searches in vector-boson fusion [27], in which color-
singlet exchange leads to a paucity of jet radiation in the central region between two forward tag
jets. On the other hand, QCD backgrounds with color exchange, as inW + 2-jet production, will
generally lead to significant jet radiation.
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Figure 9: The ratio of the inclusiveW−+ 3-jet cross section to theW−+ 2-jet cross section as a function of
the pseudorapidity separation∆η between the two most widely separated jets that pass the cuts. The solid
(black) line gives the NLO result, while the dashed (blue) line gives the LO results.

To mimic vector-boson fusion searches, however, the appropriate tag jets are not the two hard-
est ones (byET), but rather the two most separated in pseudorapidity. Therefore, in fig. 9 we
present the ratio of theW− + 3-jet cross section to theW− + 2-jet cross section as a function of
the pseudorapidity separation∆η between the two most separated jets. The emission probability
rises roughly linearly with∆η . The NLO result is somewhat less than the LO one at large∆η .
(The ratio forW+ is quite similar.) This plot is similar to one for Higgs production in association
with jets [28], obtained from high-energy factorization considerations. It would be interesting to
compare results obtained in this way to NLO results for the same quantities.

6. Conclusions

In this Contribution we presented some new results forW + 3-jet production obtained from
BLACK HAT combined with SHERPA, expanding on earlier scale-dependence studies [3, 4]. We
also demonstrated thatW bosons produced at largePT are indeed polarized left-handed, explaining
an asymmetry betweenW+ andW− in the transverse energy distributions of the daughter leptons.
BecauseWs from top decays do not exhibit this polarization effect, itmay prove effective for
distinguishing suchWs from ones produced by light quarks. We presented the first NLO study
of the probability of emitting a third jet between the two most widely separated jets inW + 2-
jet production. We also presented the first NLO results forZ+ 3-jet production. We observed that
even at the Tevatron, choosing the renormalization and factorization scale to equal the vector boson
transverse energy is not a particularly good choice, as it induces large shape changes between LO
and NLO.

A publicly available version of BLACK HAT is in preparation and is currently being tested in
diverse projects (seee.g.ref. [29]). This version uses the proposed Les Houches interface for one-
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loop matrix elements. It has been tested with both C++ and Fortran clients. The public version will
provide all processes that have been carefully tested with the full BLACK HAT code.

In the more distant future, the next benchmark process for BLACK HAT + SHERPA is the pro-
duction of aW boson in association with four jets at NLO. Using the techniques described above,
the virtual part of the NLO cross section seems within reach.Computing the real emission ma-
trix elements, and integrating them over the seven-particle phase space (including the decay of the
vector boson) appears to be rather challenging with the current tools, due to the large number of
integration channels. It is interesting to note that in thiscase the bottleneck no longer seems to be
the virtual contributions to the cross section.

The results summarized here are indicative of the type of physics that can be carried out using
BLACK HAT in conjunction with SHERPA. We look forward to comparing predictions from these
tools to the forthcoming LHC data.
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