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Calculation of CSR impedance using mode expansion method
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We study an impedance due to coherent synchrotron radiation (CSR) generated by a short

bunch of charged particles passing through a dipole magnet of finite length in a vacuum

chamber of a given cross section. In our method we decompose the electromagnetic field

of the beam over the eigenmodes of the toroidal chamber and derive a system of equations

for the expansion coefficients in the series. The general method is further specialized for a

toroidal vacuum chamber of a rectangular cross section where the eigenmodes can be com-

puted analytically. We also develop a computer code that calculates the CSR impedance for

a toroid of rectangular cross section. Numerical results obtained with the code are presented

in the paper.

I. INTRODUCTION

Synchrotron radiation of a relativistic beam moving in a toroidal chamber with conducting walls

has been extensively studied in the past (see, e.g., [1–3]). The effect of the coherent radiation on

beam dynamics is usually formulated in terms of a so called coherent synchrotron radiation (CSR)

impedance or wake field. Many important features of the CSR impedance has been analyzed based

on an exact solution of Maxwell’s equations for rectangular cross section of the chamber. In the

limit when the characteristic transverse size of the vacuum chamber L is much smaller than the

toroid radius R, L � R, this solution can be simplified, and the wake field and impedance can

be computed. A special case of a beam propagating between parallel conducting plates can be
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treated using a simpler method of image charges [4]. The results of the parallel plates model are

formulated in a relatively simple analytical expressions, and are widely used in applications.

One of the drawbacks of the previous approaches [1–4] is that they are only applicable to a

very specific geometry of the toroid, for which Maxwell’s equations allow separation of variables.

A different and a more general approach to the problem was proposed by the authors in Ref. 5.

It uses the smallness of the parameter ε =
√

L/R to simplify Maxwell’s equations, keeping only

terms of the lowest order in ε. It turns out that in this approximation the transverse components

of the electric field satisfy a so called parabolic equation which was proposed more than fifty

years ago in the diffraction theory [6], and has been widely used since that time. It is also a

standard approximation in the FEL theory [7], and more recently was applied to the beam radiation

problems in free space [8] and to the theory of high frequency impedance [9]. In a subsequent

development of the method [10, 11], Agoh and Yokoya added a source term to the parabolic

equation due to the beam current and developed an algorithm for its numerical solution. Important

practical results for various accelerators were obtained using the code in [12, 13].

In this paper we continue developing the approach of Ref. 5 and apply it to the case of the

coherent synchrotron radiation of a beam that passes through a bend magnet of finite length. The

FIG. 1: A section of a vacuum chamber with toroidal bend between points A and B (a quarter of the pipe is

cut out to expose the internal parts of the drawing). The thick black solid line is the central line of the pipe.

Shown is a local coordinate system at position with the longitudinal coordinate equal s.

geometry of the problem is shown in Fig. 1: it includes a toroidal segment and two long straight

sections connected to the toroidal one. The first, entrance straight section is connected to the
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toroidal one at point A, and the second, exit section is connected at point B. The cross section of

every pipe is assumed to be the same. The length of the toroidal segment is equal to l as measured

along the central line of the toroid between points A and B. This central line is assumed to be a

plane curve. The coordinate along the axis of the toroid is s; it is chosen in such a way that the

beam propagates in the positive direction. We also use x and y coordinates in directions transverse

to s: the coordinate y is perpendicular to the plane of the central line, and the coordinate x is

measured along the radius of the curvature of the central line. The origin of the coordinate system

x, y is located on the central line of the pipe.

We note that the wakefield of a point charge for the trajectory shown in Fig. 1 in free space, in

the absence of metallic walls, was calculated in Ref. 14.

We assume that a bunch of ultrarelativistic charged particles travels through the bend with the

velocity v close to the speed of light and use the approximation v = c. We also assume that the

bunch length σz is much smaller than the characteristic transverse size L—in the opposite limit

the frequencies associated with the bunch are below the cutoff, and the bunch does not radiate.

Although not required in the general method, we make several additional simplifying assumptions:

a) the transverse size of the beam is small and can be neglected, and b) the beam orbit coincides

with the central line of the pipe. It follows also from these assumptions that the longitudinal

distribution of the beam (relative to its cental point) does not changes with time—it is “frozen” by

the requirements of v = c and the zero transverse extension of the beam.

Our approach to the general problem is split into several steps. In Section II we first present

and analyze a parabolic equation that describes excitation of the electromagnetic field by moving

charges inside of a toroidal section of the waveguide of radius R. Of course, this equation is also

valid for a straight cylindrical pipe, where formally R = ∞. Eigenmodes in a toroidal waveguide

and the general method of finding electromagnetic field of the beam by means of expanding it over

the modes in described in Section III. We then consider, in Section IV, the specific problem of a

beam entering the toroid from a straight pipe, and, in Section V, a beam exiting from the toroid

to the straight waveguide. General formulae obtained for arbitrary shape of the cross section of

the waveguides and arbitrary transverse profile of the beam density are then applied to the case of

a rectangular cross section and a narrow beam in Section VI. Finally, in Section VII, we present

numerical results for the longitudinal CSR wake field for several different geometries of the toroid.

Throughout the paper we assume a perfect conductivity of the walls.
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II. PARABOLIC EQUATION FOR THE FIELD

In this section we present a parabolic equation for the electromagnetic field generated by a beam

of charged particles in a toroidal waveguide with a given cross section. The detailed derivation of

the equation can be found in [5, 10]; here we only present the equation and discuss its conditions

of validity.

We consider a section of a smooth toroidal vacuum chamber of radius R and arbitrary cross

section as the one shown in Fig. 1 between points A and B. The parabolic equation is formulated

for the electric field and the current in the curvilinear coordinate system x, y and s shown in

Fig. 1. We introduce the Fourier transformed electric field Ê and the longitudinal component of

the current ĵs with the aid of the following expressions

Ê(x, y, s, ω) =

∫ ∞

−∞
dt eiωt−iks E(x, y, s, t) , ĵs(x, y, s, ω) =

∫ ∞

−∞
dt eiωt−iks js(x, y, s, t) , (1)

where k ≡ ω/c. We also introduce the transverse component of the electric field Ê⊥ as a two-

dimensional vector Ê⊥ = (Êx, Êy), and the longitudinal component of the electric field Ês. Note

that the additional factor e−iks in Eqs. (1) removes a rapidly oscillating dependence of the Fourier

components on the variable s, typical for waves propagating along s with the velocity close to the

speed of light.

A mathematical assumption that leads to the parabolic equation is a slow dependence of the

functions Ê⊥ and ĵs versus s, such that ∂/∂s � k. It means that we are interested in components

of the field propagating in the positive direction of s at small angles to the axis of the toroid. In

particular, we neglect a part of the field propagating in the negative direction of s. As was shown

in Refs. 5, 10 using this approximation for the electric field Ê⊥ generated by the beam inside the

toroid leads to the following parabolic equation

∂

∂s
Ê⊥ =

i
2k

(
∇2
⊥Ê⊥ +

2k2x
R

Ê⊥ − 4π
c
∇⊥ ĵs

)
, (2)

where ∇⊥ = (∂/∂x, ∂/∂y). The longitudinal electric field can be expressed through the transverse

one and the current

Ês =
i
k

(
∇⊥ · Ê⊥ − 4π

c
ĵs

)
. (3)

Boundary conditions for Eq. (2) are imposed on the metal wall by the requirement that the

tangential components of the electric field vanish on the surface of the toroid. If n is a normal
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vector to the surface, we have

Ê⊥
∣∣∣∣
wall
× n = 0, Ês

∣∣∣∣
wall

= 0 . (4)

If follows from Eq. (3) that, if the density of the current on the wall vanishes, the second equation

in (4) reduces to (div Ê⊥)
∣∣∣∣
wall

= 0.

Note that an axisymmetric version of Eq. (2) for a straight pipe (R = ∞) was used in [9] for a

study of the longitudinal impedance in the limit of high frequencies.

III. EIGENMODES AND BEAM FIELD EXPANSION

Within the framework of the parabolic equation a toroidal waveguide possesses a set of eigen-

modes which are special solutions of Eq. (2) with ĵs = 0. Each eigenmode can be characterized

by two integer indices, m and p, and the wave number qmp(ω), which is a function of frequency ω,

Êmp,⊥(x, y, s) = Emp,⊥(x, y) eiqmp(ω)s, Êmp,s(x, y, s) = Emp,s(x, y) eiqmp(ω)s . (5)

To simplify notations we do not indicate the argument ω in the components of the field in Eq. (5).

We will also drop arguments of these functions in what follows in cases where it does not lead to

confusion. A time dependent solution corresponding to a given mode is given by

Emp,⊥ = Emp,⊥(x, y) e−iωt+ikmp(ω)s, Emp,s = Emp,s(x, y) e−iωt+ikmp(ω)s , (6)

with kmp(ω) = qmp(ω) + k. Note that the validity condition for the parabolic equation ∂/∂s � k

requires |qmp| � k, which means that the frequency of the mode is much larger the cutoff frequency

(at which kmp = 0).

The transverse structure of the mode and the eigenvalue qmp(ω) are determined from the homo-

geneous parabolic equation:

iqmp Emp,⊥ =
i

2k

(
∇2
⊥Emp,⊥ +

2k2x
R
Emp,⊥

)
, (7)

which is obtained by putting (5) into Eq. (2) and setting ĵs = 0. The longitudinal component of

the field can be expressed through the perpendicular components using Eq. (3):

Emp,s =
i
k
∇⊥ · Emp,⊥. (8)

As we will see below in the analysis of eigenmodes of a rectangular waveguide (Eq. (59)),

the parabolic equation correctly describes modes at frequencies much higher than their cutoff
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frequencies. Such modes make a dominant contribution to the impedance of a bunch with a length

much shorter than the characteristic transverse size of the waveguide.

One can prove that the modes Emp,⊥ compose a complete orthogonal set, which can always be

normalized in such a way that the following orthogonality condition
"

dx dy
(
Emp,⊥ · E∗m′p′⊥

)
= δmm′ δpp′ (9)

holds, where the integration goes over the cross section of the toroid.

In general case, for a given shape of the toroid, Eq. (7) represents a two dimensional problem

which can be solved numerically. An example of such a solution for a round cross-section of the

toroid is given in Ref. 5. Eigenmodes for rectangular cross-section can be found analytically [5].

We give a short derivation for this case in Section VI A.

Following a general method of Ref. 15, we expand the perpendicular part of the electric field

Ê⊥ generated by the current ĵs into a series

Ê⊥ =
∑

p,m

Cmp(s)Êmp,⊥(x, y, s) (10)

over the eigenmodes. Putting this series into Eq. (2), multiplying the result by Ê∗mp,⊥, integrating

it over the cross-section of the waveguide and using the orthogonality property (9) leads us to the

equation for the series coefficients:

dCmp

ds
= −2πi

ω
e−iqmp s

"
dx dy

(
∇⊥ ĵs · E∗mp,⊥

)
. (11)

As discussed in the Introduction, we assume that the current ĵs does not vary with s and inte-

grate (11) over s from s = 0 to the current value of s. The right side of (11) depends on s through

the exponential factor e−iqmp s which makes the integration trivial:

Cmp(s) = Cmp(0) +
2π
ωqmp

(
e−iqmp s −1

) "
dx dy

(
∇⊥ ĵs · E∗mp,⊥

)
. (12)

Using Eq. (3), we also obtain the longitudinal component of the field:

Ês =
i
k

∑

m,p

[
Cmp(0) eiqmp s +

2π
ωqmp

(
1 − eiqmp s

) "
dx dy

(
∇⊥ ĵs · E∗mp,⊥

)]
∇⊥ · Emp,⊥ − 4πi

ω
ĵs. (13)

Eq. (12) and (13) give a general solution for the longitudinal field generated by the beam inside

the toroidal pipe. This solution depends on the initial values of the coefficients Cmp(0) which

should be found from expansion of the beam field at the entrance to the toroidal segment over the

toroidal eigenmodes. We will carry out this expansion in the next section.
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IV. BEAM ENTERING A TOROIDAL SEGMENT FROM A STRAIGHT SECTION

When the beam enters the toroidal section at point A (corresponding to s = 0) in Fig. 1, its field

at this point, E(0), is equal to the equilibrium steady state Coulomb field that it carries in the long

straight pipe. We will use the notation E ss
⊥ for this steady state field. Because we assume that the

beam is moving with the speed of light the longitudinal component of E ss
⊥ is equal to zero. It is

therefore equal to zero at the entrance s = 0 to the toroidal segment. The continuity of the electric

field at s = 0 allows us to determine the initial values Cmp(0) in Eq. (13).

Indeed, putting simultaneously Ês = 0 and s = 0 in Eq. (13) gives

0 =
i
k

∑

m,p

Cmp(0)∇⊥ · Emp,⊥ − 4πi
ω

ĵs. (14)

Finding ĵs from this equation and substituting it back to Eq. (13) gives

Ês =
i
k

∑

m,p

[
−Cmp(0) +

2π
ωqmp

"
dx dy

(
∇⊥ ĵs · E∗mp,⊥

)] (
1 − eiqmp s

)
∇⊥ · Emp,⊥. (15)

The perpendicular electric field of the beam at s = 0, which we denote Ê⊥(0), being also continu-

ous at this point can be expanded into the series over eigenmodes of the toroid as

Ê⊥(0) =
∑

m,p

Cmp(0)Emp,⊥. (16)

Using the orthogonality property (9), we find

Cmp(0) =

"
dx dy

(
Ê⊥(0) · E∗mp,⊥

)
. (17)

Substituting Cmp(0) into Eq. (15) gives

Ês =
i
k

∑

m,p

[
2π
ωqmp

"
dx dy

(
∇⊥ ĵs · E∗mp,⊥

)
−

"
dx dy

(
Ê⊥(0) · E∗mp,⊥

)] (
1 − eiqmp s

)
∇⊥ · Emp,⊥.

(18)

Making integration by parts in the first term on the right side and using Eq. (8) yields an alternative

form of the last equation:

Ês = −
∑

m,p

[
2πi

cqmp

"
dx dy ĵs E∗mp,s +

"
dx dy

(
Ê⊥(0) · E∗mp,⊥

)] (
1 − eiqmp s

)
Emp,s. (19)

It is interesting to note here that the second term in Eq. (19) gives a solution to a different

problem where a plane electromagnetic wave falls onto an open end of a toroidal pipe in the normal
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direction. In this case, the source current is zero, ĵs = 0, and the longitudinal projection of the

incoming wave is also zero, Es(0) = 0, as has been assumed in the derivation of Eq. (19). Eq. (19)

then gives a distribution of the longitudinal field along s trapped inside the toroidal waveguide in

the parabolic equation approximation.

As was pointed out above, from field continuity at s = 0 we have

Ê⊥(0) = Ê ss
⊥ , (20)

where Ê ss is the Fourier component of the beam field in the straight pipe. The field Ê ss
⊥ can also

be found from the parabolic equation (2) in the limit R→ ∞. With the assumed equality v = c, the

beam current in the straight pipe has a form js(x, y, s − ct), and, as it follows from (1), the Fourier

transformed ĵs does not depend on s. Hence, Ê ss
⊥ does not depend on s either, and the parabolic

equation for Ê ss
⊥ in a straight pipe reduces to

∇2
⊥Ê

ss
⊥ =

4π
c
∇⊥ ĵs. (21)

As was mentioned at the beginning of this Section, the parallel component Es of this field is zero

so that Eq. (3) reduces to

∇⊥ · Ê ss
⊥ =

4π
c

ĵs. (22)

Equations (21) and (22) are consistent with the perpendicular field being a potential one, i.e.

Ê ss
⊥ = ∇⊥ψ, (23)

with the potential ψ = ψ(x, y) obeying the Poisson equation

∇2
⊥ψ =

4π
c

ĵs. (24)

The boundary condition Ê ss
⊥
∣∣∣∣
w
× n = 0 at the conducting wall of the waveguide means that ψ has

a constant value on the wall, ψ = const. Without loss of generality, the constant can be set to zero,

so that Eq. (24) should be solved with the boundary condition

ψ = 0. (25)

A general solution of the boundary value problem Eqs. (24) and (25), for a rectangular cross

section, in a form most suitable for our purposes, can be found in Ref. 16. We will use this

solution below in Section VI B.
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Repeating the calculation that leads to Eq. (19) and using Eqs. (20) and (23) for Ê⊥(0) one

finds for the transverse component of the electric field inside the toroid

Ê⊥ = −
∑

m,p

[
eiqmp s

"
dx dy ψ̂ divE∗mp,⊥ +

2π
ωqmp

(
1 − eiqmp s

) "
dx dy ĵs divE∗mp,⊥

]
Emp,⊥. (26)

V. TRANSITION FROM TOROIDAL SEGMENT TO STRAIGHT PIPE

We will now consider what happens to the electromagnetic field beyond point B, at s > l, after

the beam exits from the toroidal section. We assume that the straight exit pipe is long enough so

that eventually electromagnetic field of the beam reaches its steady state, the radiation that came

out of the toroidal section gets behind the beam and the interaction between the radiation field and

the beam ceases.

With minor modifications, we can repeat the derivation of Section II and find the longitudinal

electric field of the beam after it exits from the toroid into the straight pipe. We now need to expand

the field into a series of eigenmodes in the straight waveguide. They satisfy the same Eq. (7) with

R = ∞:

ĩqmp Ẽmp,⊥ =
i

2k
∇2
⊥Ẽmp,⊥, (27)

where we use the tilde to distinguish various quantities in the straight pipe from their analogs in

the toroid. Each mode has a longitudinal component of the field given by Eq. (8). It is convenient

to separate the steady state field given by Eq. (23) from the field in the straight waveguide and

expand the difference over the eigenmodes:

Ê⊥ = Ê ss
⊥ +

∑

p,m

C̃mp(s)Êmp,⊥. (28)

Repeating the derivation of Section II, it is easy to find that

dC̃mp

ds
= 0, (29)

and hence C̃mp(s) are equal to their initial values at the transition point s = l, C̃mp(s) = C̃mp(l).

Equation (29) can be explained as follows. When the beam enters the straight pipe, it ceases

to radiate electromagnetic waves, and the amplitudes of the waveguide eigenmodes do not change

with distance s. They are determined by the electromagnetic field that comes out from the toroidal

segment and is converted into the eigenmodes of the straight waveguide at the transition point

s = l.
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To find the coefficients C̃mp we use the continuity of the field at the transition point B and

expand the difference Ê⊥ − Ê ss
⊥ = Ê⊥ − ∇⊥ψ̂ at s = l (that is at the exit from the toroid) over the

eigenmodes of the straight waveguide,

Ê⊥ − ∇⊥ψ̂ =
∑

p′,m′
C̃m′p′Ẽm′p′,⊥ eĩqm′ p′ (s−l) . (30)

Note that

∇⊥ψ̂ =
∑

m,p

["
dx dy

(
∇⊥ψ̂ · E∗mp,⊥

)]
Emp,⊥ = −

∑

m,p

["
dx dy ψ̂ divE∗mp,⊥

]
Emp,⊥, (31)

where the integration goes over the cross section of the pipe. Using the orthogonality condition
"

dx dy
(
Ẽmp,⊥ · Ẽ

∗
m′p′,⊥

)
= δmm′ δpp′ (32)

for the modes of the straight waveguide, and also using

Ê⊥ − ∇⊥ψ̂ =
∑

m,p

["
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
divE∗mp,⊥

] (
1 − eiqmpl

)
Emp,⊥, (33)

which follows from Eqs. (26) and (31) at s = l, we find the coefficients

C̃m′p′ =
∑

m,p

["
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
divE∗mp,⊥

] (
1 − eiqmpl

)
αmp|m′p′ , (34)

where

αmp|m′p′ =

"
dx dy

(
Emp,⊥ · Ẽ

∗
m′p′,⊥

)
(35)

stands for the matrix elements in the expansion

Emp,⊥ =
∑

m′,p′
αmp|m′p′Ẽm′p′,⊥ (36)

of the toroidal eigenmodes Emp,⊥ over the eigenmodes Ẽm′p′ of the straight waveguide. It might be

also useful to expand E∗mp,⊥ in the integrand of the right side in (34),

E∗mp,⊥ =
∑

m′′,p′′
α∗mp|m′′p′′Ẽ

∗
m′′p′′,⊥. (37)

Then, Eq. (30) reads

Ê⊥ − ∇⊥ψ̂ =
∑

p,m

∑

p′,m′

∑

p′′,m′′

["
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
div Ẽ∗m′′p′′,⊥

]
×

× αmp|m′p′α∗mp|m′′p′′
(
1 − eiqmpl

)
eĩqm′ p′ (s−l) Ẽm′p′,⊥. (38)
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a

bx

y

FIG. 2: Cross section of a rectangular toroidal chamber with a denoting the width in the horizontal (x) and

b— the height in the vertical (y) directions. The origin of the coordinate system is located at the center of

the rectangle.

An expression for the longitudinal field is obtained from the previous formula by substituting

Ẽm′p′,⊥ with Ẽm′p′,s:

Ês =
∑

p,m

∑

p′,m′

∑

p′′,m′′

["
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
div Ẽ∗m′′p′′,⊥

]
×

× αmp|m′p′α∗mp|m′′p′′
(
1 − eiqmpl

)
eĩqm′ p′ (s−l) Ẽm′p′,s. (39)

VI. RECTANGULAR CROSS SECTION OF THE VACUUM CHAMBER

We will now apply the general formalism developed in previous Sections for an arbitrary ge-

ometry of the transverse cross section of the toroid to a particular case of the rectangular cross

section. In this case, the parabolic equation can be solved using separation of variables and the

eigenmodes are explicitly expressed in terms of the trigonometric and Airy functions.

A. Eigenmodes in toroidal waveguide with rectangular cross section

We consider a toroidal waveguide with rectangular cross section of width a along the x axis

an height b along the y axis. Note that the characteristic transverse size L introduced in the Intro-

duction, for rectangular cross section, is estimated as L ∼ min(a, b). The origin of the coordinate

system is at the center of the rectangle, with the metallic boundaries located at x = ±a/2 and

y = ±b/2, see Fig. 2. In such a waveguide, the eigenmodes are separated into two sets. One set

comprises the modes polarized along the x axis, and the other set along the y axis.



12

It is convenient to introduce the dimensionless coordinate

ξ = (2k2/R)1/3x , (40)

and

ξa = (2k2/R)1/3a, ξb = (2k2/R)1/3b . (41)

Using the variable ξ, the transverse electric field in these modes can be written as [5]

Emp,x = Vm(ξ) sin
[
πp
b

(
b
2

+ y
)] / √

Npa/ξa , p = 1, 2, 3 . . . (42a)

for the Ex-modes, and

Emp,y = Um(ξ) cos
[
πp
b

(
b
2

+ y
)] / √

Npa/ξa , p = 0, 1, 2 . . . (42b)

for the Ey-modes, where

Np =
b

2 − δp0

denotes a normalization factor for the index p, and δp0 = 1 if p = 0 and δp0 = 0 otherwise.

The functions Um(ξ) and Vm(ξ) obey the same equation,

V ′′m + (ξ − Ξm)Vm = 0, U′′m + (ξ − Ξm)Um = 0, (43)

but different boundary conditions at ξ = ±ξa/2, namely,

V ′m|ξ=±ξa/2 = 0, Um|ξ=±ξa/2 = 0. (44)

The prime in the equations above indicate differentiation with respect to ξ. The notation Ξm in

Eqs. (43) stands for

Ξm(ω) = −
(
2k2

R

)−2/3 (
k2 − k2

mp −
π2 p2

b2

)
≈

(
2k2

R

)−2/3 (
2kqmp +

π2 p2

b2

)
. (45)

where in the last equation we used the smallness qmp � k.

A general solution to Eqs. (43), (44) involves the Airy functions Ai and Bi, see [5], and can be

written as

Vm(ξ) = vm(ξ)/
√

NV
m , Um(ξ) = um(ξ)/

√
NU

m , (46)

with

vm(ξ) = Ai(ΞV
m − ξ) −

Ai′(ΞV
m + ξa/2)

Bi′(ΞV
m + ξa/2)

Bi(ΞV
m − ξ), (47a)

um(ξ) = Ai(ΞU
m − ξ) −

Ai(ΞU
m + ξa/2)

Bi(ΞU
m + ξa/2)

Bi(ΞU
m − ξ), (47b)
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where the eigenvalues ΞV
m and ΞU

m of Ξm are found, respectively, from the equations

V ′m(ξa/2) = 0, Um(ξa/2) = 0. (48)

The factors NV
m and NU

m in Eq. (46) determine normalization of the eigenfunctions on the index m

and are given below. Index m is defined so as to indicate the number of nodes of the functions

Um(ξ) and Vm(ξ) on the interval −ξa/2 6 ξ < ξa/2. It takes the values 0, 1, 2 . . . for the functions

Vm and 1, 2, 3 . . . for the functions Um.

The normalization (9) for the vectorial functions Emp,⊥, with the explicit expressions for the

field components (42), leads to the following conditions for the functions Vm and Um:
∫ ξa/2

−ξa/2
V2

m(ξ) dξ =

∫ ξa/2

−ξa/2
U2

m(ξ) dξ = 1 . (49)

Using the identity ∫
dµCi2(µ) = µCi2(µ) − Ci′2(µ)

valid for any linear combination Ci(µ) = αAi(µ) +βBi(µ) of the Airy functions, we find from (49)

that the normalization constants in Eq. (46) are given by the following expressions:

NV
m =

(
1
2ξa − ΞV

m

)
v2

m

(
1
2ξa

)
+

(
1
2ξa + ΞV

m

)
v2

m

(
−1

2ξa

)
,

NU
m = u′2m

(
1
2ξa

)
− u′2m

(
−1

2ξa

)
.

After the eigenvalues ΞU
m and ΞV

m are found, the corresponding values of qmp are obtained from

the equation (45),

2kqmp =
ξ2

b

b2

(
Ξm − π

2 p2

ξ2
b

)
, (50)

where ξb is defined in (41). We will use the notations qV
mp and qU

mp to distinguish between the

eigenvalues of the functions Vm and Um, respectively.

Longitudinal fields for the eigenmodes can be found from Eq. (8); they are expressed as

Emp,s(ξ, y) =
i
k
ξa

a
V ′m(ξ) sin

[
πp
b

(
b
2

+ y
)] / √

Npa/ξa, (51a)

Emp,s(ξ, y) = − i
k
πp
b

Um(ξ) sin
[
πp
b

(
b
2

+ y
)] / √

Npa/ξa (51b)

for the Ex and Ey modes, respectively; note that modes with either m = 0 or p = 0 have no

longitudinal field.

The right side of (50) can vanish at some particular frequencies leading to qmp = 0 and kmp =

ω/c. Such a frequency corresponds to a resonant mode that has a phase velocity equal to the speed

of light and can be excited by an ultrarelativistic beam. Coherent synchrotron radiation due to

excitation of such modes was studied in detail in Ref. 5.
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B. Steady state field in straight rectangular waveguide

As explained in Section IV, in addition to finding modes in the toroidal waveguides, we need to

calculate the steady state field of the bunch in a straight waveguide. For a rectangular waveguide,

this field can be found analytically from Eqs. (24) and (25). For our purposes, it is enough to

consider only the case when the source current corresponds to a point charge q moving along the

geometrical center of the waveguide, i.e. js = qc δ(x) δ(y) δ(s− ct). The Fourier transformation (1)

of the current gives

ĵs = q δ(x) δ(y). (52)

It is convenient to consider ψ in (24) as a function of variables ξ and y and expand it in Fourier

series over the variable y:

ψ = −4q
c

∞∑

p=1

ψp(ξ) sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
, (53)

where the functions ψp(ξ) obey the equation

ψ′′p (ξ) −
(
πp
ξb

)2

ψp(ξ) = −2π
ξb
δ(ξ). (54)

Solving this equation with the boundary condition ψp(±ξa/2) = 0 yields [16]

ψp(ξ) =
sinh

[
πp (ξa/2 − |ξ|) /ξb

]
p cosh

[
πpξa/2ξb

] . (55)

The electric field is then given by

Ê ss
x (ξ, y) = −4q

c
ξa

a

∞∑

p=1

ψ′p(ξ) sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
,

Ê ss
y (ξ, y) = −4q

c
π

b

∞∑

p=1

pψp(ξ) sin
[
πp
2

]
cos

[
πp
b

(
b
2

+ y
)]
. (56)

C. Eigenmodes in straight rectangular waveguide

The eigenmodes of the straight rectangular waveguide in our approximation satisfy the

parabolic equation (27) with the longitudinal electric field in the modes given by

Ẽmp,s =
i
k

div Ẽmp,⊥ (57)
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(we remind the reader that we use tilde to indicate quantities that refer to a straight waveguide,

with toroidal analogs not having the tilde sign.). Introducing the functions Ṽm(ξ) and Ũm(ξ) that

are related to the field components Ẽmp,x and Ẽmp,y through equations (42), we find that

Ṽm(ξ) = cos
[
πm
ξa

(
ξa

2
+ ξ

)] / √
ÑV

m , m = 0, 1, 2 . . . , (58a)

Ũm(ξ) = sin
[
πm
ξa

(
ξa

2
+ ξ

)] / √
ÑU

m , m = 1, 2 . . . , (58b)

where the factors ÑV
m and ÑU

m determine normalization of the modes. If we choose the same

normalization (49) for the functions Ṽm(ξ) and Ũm(ξ) as for Vm(ξ) and Um(ξ), we obtain

ÑV
m = ÑU

m =
ξa

2 − δm0
.

The modes with different polarization but the same numbers m and p have equal wavenumbers

q̃mp = − 1
2k

(
π2m2

a2 +
π2 p2

b2

)
. (59)

Note that this expression can be obtained from the exact dispersion relation for eigenmodes in rect-

angular waveguide in the limit when the mode frequency is much larger than the cutoff frequency.

The quantity div Ẽmp,⊥ related to the longitudinal electric field in the mode is equal to

div Ẽmp,⊥ = − 2√
ab

πm

a
sin

[
πm
ξa

(
ξa

2
+ ξ

)]
sin

[
πp
b

(
b
2

+ y
)]

(60a)

for the Ex-modes and

div Ẽmp,⊥ = − 2√
ab

πp

b
sin

[
πm
ξa

(
ξa

2
+ ξ

)]
sin

[
πp
b

(
b
2

+ y
)]

(60b)

for the Ey-modes; note that longitudinal field is absent if either m = 0 or p = 0.

Finally, we also note that for large negative values of Ξm, such that

|Ξm| � 1
2 ξa, (61)

the toroidal modes (42) approach the modes of a straight waveguide. In this limit, ΞU
m ≈ ΞV

m ≈
−π2m2/ξ2

a, and Vm(ξ) ≈ Ṽm(ξ), Um(ξ) ≈ Ũm(ξ). The condition (61) can be also written as π2m2 �
2ξ3

a or

m � ka
π

√
a
R
.
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D. Beam entering and exiting rectangular toroidal section

Using the results of the previous sections, we can calculate the longitudinal field (19) generated

by a point charge after it enters a toroidal waveguide from a long straight section. These calcula-

tions are carried out in Appendix A, and the result is given by Eq. (A8). We re-emphasize here that

we use the Fourier representation and the right side of (A8) is a function of the frequency ω. Note

that at frequencies of resonant modes, that is when qU
mp = 0 or qV

mp = 0, the denominator of the

right side of (A8) vanishes. This however does not lead to a singularity of the expression because

the corresponding numerator 1 − eiqU
mp s or 1 − eiqV

mp s vanishes at the same time.

If the toroidal part of the transition is long enough, as the beam propagates away from the en-

trance to the toroid and s increases, the electromagnetic field inside the toroid will be approaching

its limiting steady state value. This steady state toroidal field can be formally obtained as a limit

s → ∞ in Eq. (A8). It is derived in Appendix B and is given by Eq. (B11). On the axis ξ = y = 0

it reduces to a relatively simple expression

Ês0(ω) = Ês(0, 0) = −8πiqξb

ωb2

∑

m,p

{
V ′2m (0)

ΞV
m − π2 p2/ξ2

b + sgn(ω) i0
+

ΞU
mU2

m(0)
ΞU

m − π2 p2/ξ2
b + sgn(ω) i0

}
sin2

[
πp
2

]
,

(62)

A similar expression has been derived in Ref. 5 (Eq. (B9) in Appendix B), however, it was incor-

rectly concluded that from this equation it follows that the field in front of the particle is equal to

zero.

Note that in contrast to (A8), Eq. (B11) is singular at frequencies of the resonant modes where

one of the denominators on the right side vanishes. The terms sgn(ω) i0 in the denominators

of (B11) establish the correct way to treat these singularities. According to Eq. (B7), the delta-

function parts of the singular expression contribute to the real part of Ês0(ω), which is an even

function of the frequency ω. The principal part of the singularity is responsible for the imaginary

part of Ês0(ω), and is an odd function of frequency.

After the beam exits the toroidal segment and enters the region s > l the straight pipe, the

electromagnetic field generated inside the toroid travels with the beam for some time. The group

velocity of this field, however, is smaller than the speed of light, and eventually it starts to lag

behind the beam. Calculation of this field is carried out in Appendix C.

In Appendix D we obtain general expressions for the longitudinal field integrated through the

toroidal segment and the exit pipe. This field gives the usual definition of the longitudinal CSR
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wake caused by the beam passage though the bend magnet.

VII. NUMERICAL RESULTS

To calculate the field generated by a bunch of particles traveling through a toroidal bend shown

in Fig. 1, we wrote a computer program using the Mathematica programming environment [17].

The program assumes a beam moving with the speed of light on the central line of the toroid

x = y = 0 and neglects the transverse size of the bunch. The distribution function of the bunch is

given by N f (s− ct) where N is the number of particles in the bunch, and f is normalized by unity.

The bunch is characterized by the spectrum f̂ (ω):

f̂ (ω) =

∫ ∞

−∞
dω e−iωz/c f (z) . (63)

For a Gaussian bunch with the rms length σz we have f̂ (ω) = exp(−ω2σ2
z/2c2). The field of the

bunch in the space-time domain is given by the inverse Fourier transform:

Es(s, t) = N
∫ ∞

−∞

dω
2π

eiω(s/c−t) Ês f̂ . (64)

We express this field as a function of the variables z = s − ct, which is a coordinate relative to the

center of the bunch at a given time, and divide it by the total charge Nq; the resulting quantity is

the longitudinal wake of the bunch at location s:

w(z, s) =
1
q

∫ ∞

−∞

dω
2π

eiωz/c Ês f̂ . (65)

The code calculates this wake on the beam orbit x = y = 0 for any given value of s. It can also

compute the integrated wake ∫ ∞

0
w(z, s) ds , (66)

using Eq. (D5), where the integration takes into account both the wake in the toroid and in the

exiting straight pipe. Note that the wake in the straight entrance pipe, where s < 0, is zero, which

is reflected in the choice of the lower integration limit in (66).

In addition to calculation of the field for the geometry shown in Fig. 1, our code computes the

field Ês using Eq. (62). This steady state field would set up in a long toroidal section when the

transition processes caused by the entrance to the toroid can be neglected. As was pointed out in

Appendix B, the field Ês has singularities at the frequencies corresponding to the toroidal modes

that are resonant with the beam. A special numerical procedure is used to select singularities in
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(62) and to separately evaluate their contribution to the integral (65). We use this algorithm, in

particular, for comparison with a model of two conducting parallel plates widely referred to for

evaluation of the shielding effect of the conducting walls.

To illustrate the capabilities of the code we compute the CSR wake for the following numerical

parameters: the rms bunch length σz = 0.5 mm and the orbit radius R = 1 m. We vary the aspect

ratio of the rectangle A = a/b and the vertical dimension b. The plots below represent three values

A = 3, 1, 0.5 and four different values b = 4, 2, 1, 0.5 cm.
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FIG. 3: Steady state wake fields in the toroid for the aspect ratio A = 3 and various values of b: a) b = 4

cm, b) b = 2 cm, c) b = 1 cm, and d) b = 0.5 cm.

Figs. 3, 4 and 5 show plots of the steady state wake field (Eq. (62)) for a rectangular toroid with

the aspect ratio A = 3 in Fig. 3, A = 1 in Fig. 4, and A = 0.5 in Fig. 5, and the four different values

of the dimension b. The black curve on each plot shows the wake for the toroid and the dashed

line shows the Gaussian beam profile. For comparison, in Figs. 3 and 4, the red curve shows the

wake calculated for the parallel plates model with the gap equal to b and the blue line shows the
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wake field in free space (no shielding).
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FIG. 4: Steady state wake fields in the toroid for the aspect ratio A = 1 and various values of b: a) b = 4

cm, b) b = 2 cm, c) b = 1 cm, and d) b = 0.5 cm.
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FIG. 5: Steady state wake fields in the toroid for the aspect ratio A = 0.5 and various values of b: a) b = 4

cm, b) b = 2 cm, c) b = 1 cm, and d) b = 0.5 cm.
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Analyzing Fig. 3, one can see that a vacuum chamber with an aspect ratio A = 3 can be

reasonably well approximated by the parallel plates model, however, only in the vicinity of the

bunch. There are noticeable deviations from the model at large distances s ∼ 5 − 10 mm behind

the bunch which become more pronounced for smaller values of the gap b. Of course, the square

cross section of the vacuum chamber, Fig. 4 with A = 1, shows even a larger deviation from the

parallel plates model, as expected.

An interesting feature visible in Figs. 4c, 5b and 5c is almost sinusoidal oscillations of the wake

behind the bunch. This effect can be explained by a dominant excitation by the beam of a single

resonant mode (that is a mode with the phase velocity equal to the beam velocity c) in the toroid.

For example, as calculations show, the frequency of the lowest resonant mode in the toroid with

a square cross section of 1 cm (corresponding to the case of Figs. 4c) is equal to ω = 1.43 · 1012

s−1 corresponding to the wavelength of 1.31 mm. This is the wavelength of oscillations seen

in Figs. 4c). Similarly, the lowest resonant mode for the toroid with A=0.5 and b=2 cm has a

wavelength of 2.0 mm, in agreement with the oscillation period in Fig. 5b.

Figs. 6 and 7 show plots of the transient wake fields of the bunch inside the toroid for several

distances s from the entrance to the toroid. Fig. 6a demonstrates a build up of the wake with

increasing distance from the entrance. Fig. 6b shows that even deep inside the toroid, at distances

∼ 90 cm, the wake field behind the beam, z ∼ 5− 10 mm, does not reach an equilibrium value and

continues to evolve with increasing s.
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FIG. 6: Wakefields for the case A = 3 and b = 2 cm at various distances from the entrance to the toroid: a)

distances 4, 8, 12 and 16 cm from the entrance (a larger distance corresponds to a larger amplitude of the

wake), b) distances 84, 88, 92 and 96 cm from the entrance.
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FIG. 7: Wakefields for the case A = 1 and b = 2 cm at various distances from the entrance to the toroid: a)

distances 4, 8, 12 and 16 cm from the entrance (a larger distance corresponds to a larger amplitude of the

wake), b) distances 84, 88, 92 and 96 cm from the entrance.

We compared the process of build-up of the wakefield at the entrance to a toroidal segment for

the case A = 3 and b = 4 cm with the wakefield at the entrance to a bend in free space (which

mathematically corresponds to the limit a, b→ ∞ in our method). The wakefield in free space was

computed using equations from Ref. [14], in the limit γ → ∞. The result of such a comparison

is shown in Fig. 8. The shielding effect in the toroid of this large aperture is relatively week and
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FIG. 8: Comparison of the wakefields at the entrance to the toroidal segment with A = 3 and b = 4 cm with

the free-space case. The four pairs of lines 1, 2, 3 and 4 correspond to distances 5.7, 11.3, 17.0, and 22.6

centimeters from the entrance point respectively. The blue lines show the wakefield in free-space and the

black lines show the wakefield in the toroidal segment.

this plot shows a rather good agreement with the free space wakefield. The deviations from the

free space case are observed in front of the bunch at larger distances (17 and 22.6 cm) from the
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entrance to the bend.

Fig. 9 shows the evolution of the wake after the beam exits from the toroidal section and travels

through the straight pipe. Note how with increasing distance from the exit ∆s, the wake in the
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FIG. 9: Wakefields for the case A = 3 and b = 2 cm after the beam exit from the toroidal section at various

distances ∆s from the exit: blue line—∆s = 0, red broken line—∆s = 2 m, and thin black line—∆s = 4 m.

vicinity of the bunch, |z| . 5 mm, gradually disappears, while the wake at large distance behind

the bunch, z ∼ −15 mm, decreases with the distance rather slowly.
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FIG. 10: Integrated wake for the case A = 3 and b = 2 cm and three lengths of the toroidal segment: 5 (blue

line), 10 (broken red line) and 20 (thin black line) cm.

Finally, Fig. 10 shows an integrated wake (66) for three different lengths of the toroidal seg-

ments.
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VIII. CONCLUSIONS

In this paper we presented a new method for calculation of the CSR wake in a vacuum cham-

ber with perfectly conducting metallic walls. Our general method, in principle, is applicable to

arbitrary cross section of the toroidal pipe. It, however, requires knowledge of the toroidal modes

for this cross section, which in general can only be found numerically. Note however, that find-

ing the eigenmodes constitutes a two dimensional computational problem, and can relatively easy

accomplished with existing numerical codes.

Although we focused our analysis on calculation of the longitudinal CSR wake field, the trans-

verse component of the wake can also be computed in our method.

In the case of a rectangular cross section of the pipe the toroidal eigenmodes can be calculated

analytically and summation in the series representation of the electromagnetic field can be carried

out. A numerical algorithm that calculate the CSR wake for such a cross section is implemented

as a Mathematica computer code. The results of the numerical calculations with the code are

presented and compared with the parallel plates model.
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APPENDIX A: DERIVATION OF EXPRESSION FOR Ês IN RECTANGULAR TOROID

The longitudinal electric field is given by Eq. (19) with Ê⊥(0) replaced by the field Ê ss
⊥

Ês = −
∑

m,p

[
2πi

cqmp

"
dx dy ĵs E∗mp,s +

"
dx dy

(
Ê ss
⊥ · E∗mp,⊥

)] (
1 − eiqmp s

)
Emp,s. (A1)

We first calculate the first term in the square brackets using the source current (52) and the fields

(51):

Ê(1)
s (ξ, y, s) = −2πi

c

∑

m,p

["
dx dy ĵs E∗mp,s

]
1 − eiqmp s

qmp
Emp,s =

= −2πiq
c

∑

m,p

1 − eiqmp s

qmp
E∗mp,s(0, 0)Emp,s(ξ, y)

= −2πiq
ck2

(
2k2

R

)2/3 ∑

m,p

1 − eiqV
mp s

qV
mp

V ′m(0) V ′m(ξ)
Npa/ξa

sin
[
πp
b

(
b
2

)]
sin

[
πp
b

(
b
2

+ y
)]

− 2πiq
ck2

(
πp
b

)2 ∑

m,p

1 − eiqU
mp s

qU
mpNp

Um(0) Um(ξ)
Npa/ξa

sin
[
πp
b

(
b
2

)]
sin

[
πp
b

(
b
2

+ y
)]
. (A2)
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The second term in Eq. (A1) is computed using Eqs. (56) for Ê ss
⊥ , (42) for Emp,⊥, and (51) for

Emp,s:

Ê(2)
s (ξ, y, s) = −

∑

m,p

["
dx dy

(
Ê ss
⊥ · E∗mp,⊥

)] (
1 − eiqmp s

)
Emp,s

=
2iqb
ω

(
2k2

R

)1/3 ∑

m,p

[∫ ξa/2

−ξa/2
dζ ψ′p(ζ)Vm(ζ)

]
V ′m(ξ)

1 − eiqV
mp s

Npa/ξa
sin

[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]

− 2iqb
ω

(
πp
b

)2
(
2k2

R

)−1/3 ∑

m,p

[∫ ξa/2

−ξa/2
dζ ψp(ζ)Um(ζ)

]
Um(ξ)

1 − eiqU
mp s

Npa/ξa
sin

[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
.

(A3)

Using the definition of ξa and ξb from (41) and noting that Np = b/2 for all modes (with p ≥ 1)

contributing to longitudinal field, we rewrite the above equations as follows

Ê(1)
s (ξ, y, s) = −4πiqξ3

b

b4kω

∑

m,p


1 − eiqV

mp s

qV
mp

V ′m(0)V ′m(ξ) +
1 − eiqU

mp s

qU
mp

π2 p2

ξ2
b

Um(0)Um(ξ)

×

× sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
, (A4)

and

Ê(2)
s (ξ, y, s) = −4iqξ2

b

b2ω

∑

m,p

{
−RpmV ′m(ξ)

(
1 − eiqV

mp s
)

+ Tpm
π2 p2

ξ2
b

Um(ξ)
(
1 − eiqU

mp s
)}
×

× sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
, (A5)

where

Rpm =

∫ ξa/2

−ξa/2
dξ ψ′p(ξ) Vm(ξ), Tpm =

∫ ξa/2

−ξa/2
dξ ψp(ξ) Um(ξ) .

Remember that

Ês(ξ, y, s) = Ê(1)
s (ξ, y, s) + Ê(2)

s (ξ, y, s). (A6)

Eqs. (A6), (A4) and (A5) can be somewhat simplified if one uses the following relations

2π
ξb

Um(0) +
2kqU

mpb2

ξ2
b

∫ ξa/2

−ξa/2
dξUm(ξ)ψp(ξ) =

∫ ξa/2

−ξa/2
dξ ξUm(ξ)ψp(ξ), (A7a)

2π
ξb

V ′m(0) +
2kqV

mpb2

ξ2
b

∫ ξa/2

−ξa/2
dξ V ′m(ξ)ψp(ξ) = −

∫ ξa/2

−ξa/2
dξ ξ Vm(ξ)ψ′p(ξ). (A7b)
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They allow us to combine the sum (A6) into a single expression for Ês:

Ês(x, y, s) =
4iqξ2

b

b2ω

∑

m,p


[∫ ξa/2

−ξa/2
dζ ζ Vm(ζ)ψ′p(ζ)

]
V ′m(ξ)

1 − eiqV
mp s

ΞV
m − π2 p2/ξ2

b

−
[∫ ξa/2

−ξa/2
dζ ζ ψp(ζ) Um(ζ)

]
Um(ξ)

π2 p2

ξ2
b

1 − eiqU
mp s

ΞU
m − π2 p2/ξ2

b

×

× sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
. (A8)

To prove Eqs. (A7) we use Eqs. (43), (54) and (50) in the following chain of transformations

2π
ξb

Um(0) =
2π
ξb

∫ ξa/2

−ξa/2
dξUm(ξ) δ(ξ)

= −
∫ ξa/2

−ξa/2
dξ

[
Um(ξ)ψ′′p (ξ) − π

2 p2

ξ2
b

Um(ξ)ψp(ξ)
]

= −
∫ ξa/2

−ξa/2
dξ

[
U′′m(ξ)ψp(ξ) − π

2 p2

ξ2
b

Um(ξ)ψp(ξ)
]

= −
∫ ξa/2

−ξa/2
dξ

[(
ΞU

m − ξ
)

Um(ξ)ψp(ξ) − π
2 p2

ξ2
b

Um(ξ)ψp(ξ)
]

= −
(
ΞU

m −
π2 p2

ξ2
b

) ∫ ξa/2

−ξa/2
dξUm(ξ)ψp(ξ) +

∫ ξa/2

−ξa/2
dξ ξUm(ξ)ψp(ξ),

and

2π
ξb

V ′m(0) =
2π
ξb

∫ ξa/2

−ξa/2
dξ V ′m(ξ) δ(ξ)

= −
∫ ξa/2

−ξa/2
dξ

[
V ′m(ξ)ψ′′p (ξ) − π

2 p2

ξ2
b

V ′m(ξ)ψp(ξ)
]

= −
∫ ξa/2

−ξa/2
dξ

[
−V ′′m (ξ)ψ′p(ξ) +

π2 p2

ξ2
b

Vm(ξ)ψ′p(ξ)
]

= −
∫ ξa/2

−ξa/2
dξ

[
−

(
ΞV

m − ξ
)

Vm(ξ)ψ′p(ξ) +
π2 p2

ξ2
b

Vm(ξ)ψ′p(ξ)
]

= −
(
ΞV

m −
π2 p2

ξ2
b

) ∫ ξa/2

−ξa/2
dξ V ′m(ξ)ψp(ξ) −

∫ ξa/2

−ξa/2
dξ ξ Vm(ξ)ψ′p(ξ).

APPENDIX B: EXPRESSION FOR Ês IN THE LIMIT s→ ∞

Let us now consider Ê(2)
s given by (A5) in the limit s→ ∞. We can neglect the terms eiqV

mp s and

eiqU
mp s because they are rapidly oscillating functions,

Ê(2)
s (ξ, y) = −4iqξ2

b

b2ω

∑

m,p

[
−RpmV ′m(ξ) + Tpm

π2 p2

ξ2
b

Um(ξ)
]

sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
. (B1)
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Note that

∑

m

∫
dζ ψ′p(ζ) Vm(ζ) Vm(ξ)

is the expansion of ψ′p(ξ) into a series over the complete set of orthogonal functions Vm(ξ). Hence,

∑

m

RpmV ′m(ξ) = ψ′′p (ξ). (B2)

Similarly

∑

m

TpmUm(ξ) = ψp(ξ). (B3)

Substituting (B2) and (B3) into Eq. (B1) yields

Ê(2)
s (ξ, y) = −4iqξ2

b

b2ω

∑

p

{
−ψ′′p (ξ) +

π2 p2

ξ2
b

ψp(ξ)
}

sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]

= −8πiqξb

b2ω

∑

p

δ(ξ) sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
, (B4)

where we used Eq. (54). The final step is to expand the delta function into series over functions

Um:

δ(ξ) =
∑

m

Um(0)Um(ξ), (B5)

which gives

Ê(2)
s (ξ, y) = −8πiqξb

b2ω

∑

m,p

Um(0)Um(ξ) sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
. (B6)

This will now properly combine with Ê(1)
s (ξ, y) in the limit s→ ∞.

We now consider the field Ê(1)
s given by (A4). In the limit of s → ∞ the following asymptotic

relations hold

lim
s→∞

1 − eias

a
= lim

s→∞
1 − cos as

a
− i lim

s→∞
sin as

a
= P1

a
− iπδ(a) =

1
a + i0

, (B7)

where symbol P indicates that integration of 1/a should be treated as a principal integral. Equiva-

lently, we can write

lim
s→∞

1 − eias

a
=

1
a + i0

. (B8)
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Using this relation, we find that in this limit

Ê(1)
s (ξ, y) = −4πiqξ3

b

b3kω

∑

m,p

{
V ′m(0)V ′m(ξ)

qV
mp + i0

+
Um(0)Um(ξ)

qU
mp + i0

π2 p2

ξ2
b

}
sin

[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
, (B9)

Adding now (B6) and (B9) we obtain

Ês(ξ, y) = Ê(1)
s (ξ, y) + Ê(2)

s (ξ, y)

= −4πiqξ3
b

b4kω

∑

m,p

{
V ′m(0)V ′m(ξ)

qV
mp + i0

+
Um(0)Um(ξ)

qU
mp + i0

π2 p2

ξ2
b

+
2b2k
ξ2

b

Um(0)Um(ξ)
}
×

× sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
. (B10)

Using (50) we arrive to the final formula

Ês(ξ, y) = −8πiqξb

b2ω

∑

m,p

{
V ′m(0)V ′m(ξ)

ΞV
m − π2 p2/ξ2

b + sgn(ω) i0
+

ΞU
mUm(0)Um(ξ)

ΞU
m − π2 p2/ξ2

b + sgn(ω) i0

}
×

× sin
[
πp
2

]
sin

[
πp
b

(
b
2

+ y
)]
. (B11)

Note that Ês(ξ, y) has singularity at the frequencies where Ξm − π2 p2/ξ2
b = 0. As it follows

from Eqs. (50) and (6), at these frequencies qmp = 0 and kmp = ω/c, which means that the phase

velocity of these modes is equal to the speed of light. Such modes are resonantly excited by an

ultrarelativistic particle, and in steady state their amplitude tends to infinity. A detailed study of

excitation of these modes (using a different method) was carried out in [5].

APPENDIX C: DERIVATION OF EXPRESSION FOR Ês FOR A BEAM EXITING TOROIDAL

SECTION

In this section, we derive the wake field within a second straight segment given by Eq. (39)

for the case of a waveguide with rectangular cross section. Note that in this case the number of

summations in Eqs. (38) and (39) reduces by two since the transformation matrix has a form

αmp|m′p′ = αm|m′ δpp′ , (C1)

and the integral in the square brackets can be calculated analytically.

Taking into account the specific form (C1) of the coefficients αmp|m′p′ = αm|m′ δpp′ in this case

reduces (39) to

Ês =
∑

p,m,m′,m′′

["
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
div Ẽ∗m′′p,⊥

]
αm|m′α∗m|m′′

(
1 − eiqmpl

)
eĩqm′ p(s−l) Ẽm′p,s, (C2)
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where

αm|m′ ≡
"

dx dy
(
Emp,⊥ · Ẽm′p,⊥

)
, (C3)

and α∗m|m′′ = αm|m′′ because Emp,⊥ and Ẽm′p,⊥ are real functions.

To distinguish between the αm|m′ coefficients for Ex and Ey modes we will use subscripts V and

U correspondingly. With the use of Eqs. (58) αm|m′ can be rewritten as

αV
m|m′ =

∫ ξa/2

−ξa/2
dξ Vm(ξ) cos

[
πm′

ξa

(
ξa

2
+ ξ

)] / √
ÑV

m′ . (C4)

and

αU
m|m′ =

∫ ξa/2

−ξa/2
dξUm(ξ) sin

[
πm′

ξa

(
ξa

2
+ ξ

)] / √
ÑU

m′ . (C5)

In the limit π2m2 � 2ξ3
a, the toroidal eigenmodes approach those of the straight waveguide, and,

hence,

αm|m′ ≈ δmm′ . (C6)

Let us now calculate the matrix element

I =

"
dx dy

(
ψ̂ − 2π

ωqmp
ĵs

)
div Ẽ∗m′′p,⊥.

We first calculate contribution from Ex mode, denoting it by IV :

IV = − 2√
ab

πm′′

a

"
dx dy

(
ψ̂ − 2π

ωqV
mp

ĵs

)
sin

[
πm′′

ξa

(
ξa

2
+ ξ

)]
sin

[
πp
b

(
b
2

+ y
)]
.

Since it turns into zero both for p = 0 and m′′ = 0, we dropped here the terms with δp0 and δm′′0

that come from normalization factors. Putting here ψ̂ from Eq. (53) and ĵs from (52) gives

IV =
2√
ab

q
c
πm′′

a

(
2ab
ξa

∫ ξa/2

−ξa/2
dξ ψp sin

[
πm′′

ξa

(
ξa

2
+ ξ

)]
+

2π
kqV

mp
sin

[
πm′′

2

])
sin

[
πp
2

]
.

Since ψp(ξ) given by Eq. (55) is an even function of ξ, we have

∫ ξa/2

−ξa/2
dξ ψp sin

[
πm′′

ξa

(
ξa

2
+ ξ

)]
= sin

[
πm′′

2

] ∫ ξa/2

−ξa/2
dξ ψp cos

[
πm′′

ξa
ξ

]
,

and straightforward integration gives

1
ξa

∫ ξa/2

−ξa/2
dξ ψp cos

[
πm′′

ξa
ξ

]
=

2π
ξaξb

(
1 − cos [πm′′/2] / cosh

[
πp ξa/2ξb

])
(
π2m′′2/ξ2

a + π2 p2/ξ2
b

)
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Since sin [πm′′/2] cos [πm′′/2] = 0, the second term in the numerator of the right side can be

dropped. Hence,

IV =
q
c

8π√
ξaξb

πm′′

ξa

(
1

π2m′′2/ξ2
a + π2 p2/ξ2

b

+
1

ΞV
m − π2 p2/ξ2

b

)
sin

[
πp
2

]
sin

[
πm′′

2

]
.

Similar calculations give the contribution IU of the Ey mode into the integral I:

IU =
q
c

8π√
ξaξb

πp
ξb

(
1

π2m′′2/ξ2
a + π2 p2/ξ2

b

+
1

ΞU
m − π2 p2/ξ2

b

)
sin

[
πp
2

]
sin

[
πm′′

2

]
.

Gathering all together, we get

Ês(x, y, s) = ÊU
s (x, y, s) + ÊV

s (x, y, s) (C7)

where

ÊU
s (x, y, s) =

q
c

8π√
ξaξb

∑

p,m,m′,m′′

(
1

π2m′′2/ξ2
a + π2 p2/ξ2

b

+
1

ΞU
m − π2 p2/ξ2

b

)
×

× sin
[
πp
2

]
sin

[
πm′′

2

] (
1 − eiqU

mpl
)

eĩqU
m′ p(s−l)

(
−πp

b
πp
ξb
αU

m|m′α
U∗
m|m′′

)
×

× i
k

2√
ab

sin
[
πp
b

(
b
2

+ y
)]

sin
[
πm′

a

(a
2

+ x
)]
,

and

ÊV
s (x, y, s) =

q
c

8π√
ξaξb

∑

p,m,m′,m′′

(
1

π2m′′2/ξ2
a + π2 p2/ξ2

b

+
1

ΞV
m − π2 p2/ξ2

b

)
×

× sin
[
πp
2

]
sin

[
πm′′

2

] (
1 − eiqV

mpl
)

eĩqV
m′ p(s−l)

(
−πm′

a
πm′′

ξa
αV

m|m′α
V∗
m|m′′

)
×

× i
k

2√
ab

sin
[
πp
b

(
b
2

+ y
)]

sin
[
πm′

a

(a
2

+ x
)]
.

The wake field at the particle trajectory is equal to

Ês(0, 0, s) = −16πiq
ωab

∑

m

∑′

p,m′,m′′
(−1)(m′−1)/2(−1)(m′′−1)/2×

×
[
p2A2αU

m|m′α
U∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞU
mξ

2
a/π

2 − p2A2

) (
1 − eiqU

mpl
)

eĩqU
m′ p(s−l)

+

+ m′m′′αV
m|m′α

V∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞV
mξ

2
a/π

2 − p2A2

) (
1 − eiqV

mpl
)

eĩqV
m′ p(s−l)

]
, (C8)

where A = a/b and the sum
∑′ stands for summation over odd positive numbers. Since Ξm ≈

−π2m2/ξ2
a and αm|m′ ≈ δmm′ for large m and m′, it is expected that the sum (C8) converges fast

enough.
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APPENDIX D: INTEGRATED FIELD FOR A TOROIDAL SECTION

It is easy to derive an expression for the longitudinal field integrated over distance s from the

entrance to the toroid s = 0 to its end s = l and then over the straight pipe from s = l to infinity.

We use Eq. (C8) to carry out this integration.

We start with integration from s = l to infinity using the explicit dependence versus s of the

right side of the equation. Integration of these s dependent factor for Ex mode gives
∫ ∞

s=l
ds eĩqV

m′ p(s−l)
= − 1

ĩqV
m′p
, (D1)

where for convergence as s→ ∞ we formally assumed that q̃V
m′p has infinitesimally small positive

imaginary part, which is responsible for damping of the waves as they propagates along the straight

pipe. Hence in the integrated field the factor eĩqV
m′ p(s−l) should be replaced by the expression (D1).

To integrate the field inside the toroid, we first set s = l = l′. Then Eq. (C8) gives the field at a

distance l′ from the entrance to the toroid, and we need to integrate it over l′ from l′ = 0 to l′ = l.

This is trivial using the relations
∫ l

l′=0
dl′

(
1 − eiqV

mpl′
)

= l − 1
iqV

mp

(
eiqV

mpl −1
)
. (D2)

Now combining both integrals we arrive at the following result

l + i
(
1 − eiqV

mpl
) 

1
q̃V

m′p
− 1

qV
mp

 . (D3)

Similar expression is obtained for Ey mode, which gives the following formula

∫ ∞

s=0
ds Ês(0, 0, s) = −16πiq

ωab

∑

m

∑′

p,m′,m′′
(−1)(m′−1)/2(−1)(m′′−1)/2×

×
[
p2A2αU

m|m′α
U∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞU
mξ

2
a/π

2 − p2A2

) l + i
(
1 − eiqU

mpl
) 

1
q̃U

m′p
− 1

qU
mp


 +

+ m′m′′αV
m|m′α

V∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞV
mξ

2
a/π

2 − p2A2

) l + i
(
1 − eiqV

mpl
) 

1
q̃V

m′p
− 1

qV
mp



]

(D4)
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for the integrated field. For the numerical algorithm we rewrite this formula as

∫ ∞

s=0
ds Ês(0, 0, s) = −16πiq

ωab

∑

m

∑′

p,m′,m′′
(−1)(m′−1)/2(−1)(m′′−1)/2×

×
[
p2A2αU

m|m′α
U∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞU
mξ

2
a/π

2 − p2A2

)
×

×
l −

i
qU

mp

(
1 − eiqU

mpl
)

+
i

q̃U
m′p

(
1 − eiqU

mpl
) +

+ m′m′′αV
m|m′α

V∗
m|m′′

(
1

m′′2 + p2A2 +
1

ΞV
mξ

2
a/π

2 − p2A2

)
×

×
l −

i
qV

mp

(
1 − eiqV

mpl
)

+
i

q̃V
m′p

(
1 − eiqV

mpl
)

]
. (D5)


