
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

Absolute bunch length measurements by incoherent radiation fluctuation analysis

F. Sannibale,1, ∗ G. V. Stupakov,2 M. S. Zolotorev,1 D. Filippetto,3 and L. Jägerhofer4
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By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle
in the incoherent part of the spectrum, it is possible to extract information about the spatial
distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National
Laboratory, we have developed and successfully tested a simple scheme based on this principle that
allows for the absolute measurement of the rms bunch length. A description of the method and the
experimental results are presented.
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I. INTRODUCTION

Charged particle beams can radiate in many ways, by
synchrotron radiation, Cerenkov radiation, transition ra-
diation, etc. In all radiating processes the presence of
incoherent radiation is due to the fact that the particles
are randomly distributed along the beam.

For example, in the case of an ideal coasting beam com-
posed of a large number of particles equally separated by
a longitudinal distance d and moving along a circular tra-
jectory, there is no synchrotron radiation emission apart
at those wavelengths where λ = nd, with n being an in-
teger. For those wavelengths the radiation from different
particles is in phase and the emission is fully coherent.
For all other wavelengths, the interference between the
radiation emitted by the evenly distributed electrons will
produce a vanishing net radiation field.

In a more realistic coasting beam, the same particles
are instead randomly distributed along the orbit caus-
ing a small modulation of the beam distribution. The
effect of such a random modulation is that the interfer-
ence is not fully destructive and a net nonzero radiation
field shows up. Let us now assume that at some fixed az-
imuthal position along the trajectory and synchronously
with the revolution period of the particles, we measure
the radiation emitted by the beam during a fixed time
window. If the position of the particles along the beam
does not change from turn to turn, then the intensity
and the spectrum of the collected radiation will be con-
stant turn to turn. If instead, as in the real case, the
mutual position of particles in the bunch changes, due
for instance to longitudinal dispersion or to path length
dependence on transverse position, then the modulation
changes as well, and the energy radiated in a single pass
and its spectrum fluctuate turn by turn. In this last
case, by measuring the radiation over multiple passages,
we would observe that for a sufficiently large number of
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samples, the measured average spectrum converges to
the characteristic incoherent spectrum of the radiation
process under observation (synchrotron radiation from a
dipole in our example).

The passage from the coasting to the bunched beam
case introduces a strong coherent emission at those wave-
lengths comparable to or longer than the bunch length,
but does not modify the short wavelength part of the
spectrum.

It has been shown [1] for the case of a bunched beam,
that by measuring the pulse to pulse spectrum fluctua-
tion of the radiation emitted by the beam in a region of
the spectrum where no coherent emission is present, it is
possible to perform absolute measurements of the bunch
length. Schemes exploiting such a technique and us-
ing high resolution spectrometers or interferometers have
been proposed and already proved experimentally [2–5].

At the Lawrence Berkeley National Laboratory
(LBNL), we have developed a remarkably simpler new
version that does not require complex and expensive in-
strumentation and that allows for accurate absolute mea-
surements of the rms bunch length. In such a scheme the
radiation intensity emitted during a single beam passage
is measured within a fixed bandwidth ∆ω in the incoher-
ent part of the spectrum. The bunch length information
is then extracted by the analysis of the turn by turn in-
tensity fluctuation. The technique can use any kind of
radiating process as long as ∆ω is much smaller than the
spectral width of the radiating process, and the electron
beam angular spread is much smaller than the radiation
angular distribution width at the wavelength of interest.
It is worth remarking that the two conditions above can
be easily matched in most of the cases. The method
is applicable to both circular and linear accelerators in-
cluding cases where the very short length of the bunches
makes difficult the use of other techniques. The measure-
ment requires multiple intensity acquisitions, and if the
bunch length changes during the measure, the fluctuation
analysis will give the average bunch length over the data
taking period. Shot to shot charge variations, typical of
linac accelerators for example, can be properly handled
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by a simple modification of the system as explained in
the last section of this paper.

A bunch length monitor based on such scheme and us-
ing visible synchrotron radiation from a dipole magnet
was developed and successfully tested at the Advanced
Light Source (ALS), the LBNL third generation light
source [6]. In this paper, the measurement theory is pre-
sented and the results are then used for explaining the
bunch length measurements performed on the ALS beam.

II. THEORY

We assume that each particle in a bunched beam radi-
ates an electromagnetic pulse in the direction character-
ized by the angles θx and θy, with the electric field given
by a function e(t, θ) where t is time and θ = (θx, θy) the
angle respect to the direction of motion of the beam. The
exact expression for this function depends on the radia-
tion process involved and is not essential for our calcula-
tions. We also assume that we are interested in radiation
at small angles with respect to the direction of motion of
the beam, |θx|, |θy| ≪ 1. Note that using the same an-
gular distribution for the radiation field in the function
e(t, θ) we neglect the angular spread of the electrons in
the beam [7]. This is justified if the angular spread of
electrons is much smaller than the characteristic angles
of the radiation at the wavelength of interest, which is
generally satisfied in the experiment type described in
this paper.

The total electric field of the radiation of the beam
is a sum of the fields radiated by each electron. If the
longitudinal position of k-th particle within the bunch
is marked by the time variable tk, and the transverse
coordinates are xk and yk, the total radiated field E(t, θ)
propagating at angles θx and θy is:

E(t, θ) =

N
∑

k=1

e

(

t − tk − 1

c
rk · θ, θ

)

, (1)

where N is the total number of particles in the bunch. In
this equation we introduced the two-dimensional vectors
rk = (xk, yk) defining the transverse position of the k-
th particle. The first argument in the function e takes
into account that the path length for the radiation field,
and hence the delay time, depends on the position rk

and the arrival time tk of particle k, as well as on the
observation angles θx and θy. We assume that tk are
random numbers, with the probability to find tk between
t and t + dt equal to ft(t)dt, where ft(t) is the bunch
distribution function (normalized so that

∫∞

−∞
ft(t)dt =

1). Analogously, the transverse position of a particle is
defined by the distribution functions F (r) (where r =
(x, y)) normalized in such a way that

∫

F (r)dxdy = 1.
In the context of a bunched beam with a given beam
current I(t), the longitudinal distribution function can

be understood as a normalized function I

ft(t) = I(t)

(
∫ ∞

−∞

I(t)dt

)−1

. (2)

For a Gaussian distribution, ft(t) = (2πσ2
t )−1/2e−t2/2σ2

t ,
where σt is the rms bunch length in units of time. Sim-
ilarly, for transverse Gaussian distributions σx and σy

define the rms transverse sizes of the bunch. We also
assume that positions of different particles in the bunch,
k and i for k 6= i, are uncorrelated: 〈tkti〉 = 〈tk〉〈ti〉,
〈xkxi〉 = 〈xk〉〈xi〉, and 〈ykyi〉 = 〈yk〉〈yi〉, with the angu-
lar brackets denoting the averaging.

The spectral properties of the radiation are related to
the Fourier transform Ê(ω, θ) of the field:

Ê(ω, θ) =

∫ ∞

−∞

E(t, θ)eiωtdt

= ê(ω, θ)

N
∑

k=1

eiωtk+iωrk·θ/c , (3)

where ê(ω, θ) =
∫∞

−∞
e(t, θ)eiωtdt.

In the experiment, the spectrum of the radiation
P (ω, θ), which is proportional to |Ê(ω, θ)|2 is the point
of interest. A limiting aperture of the diagnostic sys-
tem introduces an additional factor, which we denote by
S(θ), into the measured intensity. Taking into account
this aperture function and a bandpass filter with an in-
tensity transmission function R(ω), the spectral intensity
reaching the detector can be written as:

P (ω, θ) = S(θ)R(ω)|Ê(ω, θ)|2 . (4)

Using the notation

T (ω, θ) = S(θ)R(ω)|ê(ω, θ)|2 , (5)

we find from Eq. (3)

P (ω, θ) = T (ω, θ)

N
∑

k,l=1

eiω[tk−tl+(rk−rl)·θ/c] . (6)

To find the average spectral intensity, we integrate
Eq. (6) with the distribution functions

〈P (ω,θ)〉 = T (ω, θ)

×
N
∑

k,l=1

∫ ∞

−∞

∫ ∞

−∞

dtkdtlft(tk)ft(tl)e
iω(tk−tl)

×
∫ ∫

d2rkd2rlF (rk)F (rl)e
iω(rk−rl)·θ/c

= NT (ω, θ)(1 + N |f̂t(ω)|2|F̂ (κθ)|2) , (7)

where κ = ω/c, f̂t(ω) =
∫∞

−∞
ft(t)e

iωtdt, F̂ (a) =
∫∞

−∞
F (r)eia·rdxdy, are the Fourier transforms of the dis-

tribution functions (for the Gaussian distribution men-

tioned above, f̂t(ω) = e−ω2/2σ2

t ), and we set N − 1 ≈ N .
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The first term in Eq. (7) is incoherent radiation propor-
tional to the number of particles in the bunch. The sec-
ond term is the coherent radiation that scales quadrat-
ically with N . The coherent radiation term carries in-
formation about the distribution function of the beam
but only at relatively low frequencies of the order of

ω . σ−1
t , where f̂t(ω) is not zero. At high frequencies,

where N |f̂t(ω)|2 ≪ 1, the coherent radiation is negligible
in comparison with the incoherent one. In this case Eq.
(7) becomes:

〈P (ω, θ)〉 = NT (ω, θ) . (8)

However, the original, unaveraged expression for the
spectral power, Eq. (6), shows that the properties of
the radiation even at high frequencies carry informa-
tion about the longitudinal distribution function. In-
deed, each term eiω(tk−tl), considered separately, oscil-
lates as a function of frequency, with the period ∆ω =
2π/(tk − tl) ∼ 2π/σt. Because the distribution of parti-
cles in the bunch randomly changes from bunch to bunch,
in the case of a linear accelerator, or from turn to turn
in the case of a circular accelerator, the sum in Eq. (6)
fluctuates randomly as well, and statistical properties of
these fluctuations depend on the distribution function of
the bunch.

To obtain a quantitative characteristic of the fluctua-
tion, we first calculate, as an intermediate step, the av-
erage value of the product P (ω, θ)P (ω′, θ′):

〈P (ω, θ)P (ω′, θ′)〉 = T (ω, θ)T (ω′, θ′)

×
N
∑

k,l,m,n=1

〈eiω(tk−tl)+iω′(tm−tn)〉

×
N
∑

k,l,m,n=1

〈eiκθ·(rk−rl)+iκ′
θ
′(rm−rn)〉 . (9)

Assuming that N |f(ω)|2, N |f(ω′)|2 ≪ 1 (which means
that we can neglect the coherent radiation), it is straight-
forward to find:

〈P (ω, θ)P (ω′, θ′)〉 = N2T (ω, θ)T (ω′, θ′)

× (1 + |f̂t(ω − ω′)|2|F̂ (κθ − κ′
θ
′)|2) , (10)

where the contribution to the final result comes from
terms with k = l, m = n, k 6= m and k = n, l = m, k 6= l.

Equation (10) will be later used for calculation of the
radiated energy E , which is given by:

E =

∫ ∞

−∞

P (ω, θ)dωdθxdθy , (11)

with the average value:

〈E〉 =

∫ ∞

−∞

〈P (ω, θ)〉dωdθxdθy . (12)

To calculate the fluctuation of the radiated energy ∆E =
E − 〈E〉 we will compute the quantity

δ2 =
〈∆E2〉
〈E〉2 = 〈E〉−2

×
∫ ∞

−∞

〈[P − 〈P 〉] [P ′ − 〈P ′〉]〉dωdθxdθydω′dθ′xdθ′y

= 〈E〉−2

∫ ∞

−∞

[〈PP ′〉 − 〈P 〉〈P ′〉] dωdθxdθydω′dθ′xdθ′y ,

(13)

where we used the notation P = P (ω, θ) and P ′ =
P (ω′, θ′). We now use Eqs. (8) and (10) for the average
power 〈P 〉 and the averaged product 〈PP ′〉 and obtain

δ2 =

(
∫ ∞

−∞

Tdωdθxdθy

)−2

×
∫ ∞

−∞

TT ′|f̂t(ω − ω′)|2|F̂ (κθ − κ′
θ
′)|2

× dωdθxdθydω′dθ′xdθ′y . (14)

The integrals in Eq. (14) can be easily calculated if we as-
sume for the beam Gaussian distribution functions with
the rms bunch length σt and the rms transverse sizes σx

and σy ,

f̂t(ω) = e−ω2/2σ2

t , F̂ (κθ) = e−κ2θ2

xσ2

x/2−κ2θ2

xσ2

y/2 , (15)

and also assume Gaussian profiles for the function T

T (ω, θ) = T0e
−(ω−ω0)

2/2σ2

ω−θ2

x/2σ2

θx
−θ2

y/2σ2

θy , (16)

where ω0 and σω are respectively the central frequency
of the spectrum and its rms width, and σθx

and σθy
are

the rms angular spreads of the radiation reaching the de-
tector, and where we have assumed that the filter band-
width σω is much smaller than the spectral width of the
radiation.

We will also assume that the width of the spectral win-
dow is small so that the following two conditions are sat-
isfied: σω ≪ c/σxσθx

and σω ≪ c/σyσθy
. In this case,

we can approximately replace κθ − κ′
θ
′ → κ0(θ − θ

′)
in Eq. (14), with κ0 = ω0/c. Then the integration over
angles decouples from the integration over the frequency
and the result is:

δ2 =
1

√

1 + 4σ2
ωσ2

t

√

1 + 4κ2
0σ

2
θx

σ2
x

√

1 + 4κ2
0σ

2
θy

σ2
y

.

(17)

A more general case of arbitrary angular and spectral
distributions as well as arbitrary beam distribution func-
tions is considered in Appendix A.

III. PHYSICAL INTERPRETATION AND

POSSIBLE APPLICATION

Expression (17) shows the potential of fluctuation anal-
ysis for measuring the absolute length of a bunch. For



4

FIG. 1: Schematic diagram of the setup used for the experi-
ment at the ALS

the moment, let us assume that the transverse size of the
beam is small enough so that Eq. (17) can be written as:

δ2 ≃ 1
√

1 + 4σ2
ωσ2

t

. (18)

If we use a bandpass filter to define the frequency accep-
tance of the system, then σω is known, and by measuring
δ, it is possible to derive the absolute value of the rms
bunch length. For σt ≫ 1/(2σω), we have that Eq. (18)
becomes δ2 ≃ 1/(2σωσt), and using the fact that the lon-
gitudinal coherence length of an electromagnetic mode
with frequency content σω is σtc = 1/(2σω) [12], we can
write:

δ2 ≃ σtc

σt
=

1

M
, (19)

where M is the number of modes contained in the bunch.
Equation (19) leads to the physical interpretation that
the intensity fluctuation is due to M independent lon-
gitudinal modes radiating randomly within the bunch.
Indeed, the radiation from a single mode is a stochastic
Poisson process whose intensity shows 100% fluctuation
[8, 9]. When M independent modes radiate in a com-
bined way, the resulting fluctuation scales as described
by Eq. (19).

Equation (19) also shows that for a fixed σω , a shorter
bunch yields larger fluctuation δ2. In other words,
shorter bunches are easier to measure and there is no
limit on how short the bunch can be as long as no coher-
ent radiation component is present within the frequency
bandwidth used in the measurement.

For the more general case of a finite transverse beam
size, we can define the transverse coherence lengths as
σxc = 1/(2k0σθx

) and σyc = 1/(2k0σθy
) analogously to

the longitudinal case. Using these quantities, Eq. (17)

assumes the shape:

δ2 =
1

√

1 + σ2
t /σ2

tc

√

1 + σ2
x/σ2

xc

√

1 + σ2
y/σ2

yc

=
1

√
1 + M2

√

1 + M2
x

√

1 + M2
y

, (20)

where we have indicated with Mx and My the number
of transverse modes in the horizontal and vertical planes
respectively. Equation (20) shows that the effect of finite
transverse planes is to add additional modes radiating in-
dependently. The transverse coherence sizes are defined
by the wavelength of the photons and by the properties of
the radiation process used in the measurement and must
include diffraction effects due to limiting apertures. For
simple cases analytical expressions for σxc and σyc can be
derived and for more complex cases radiation wavefront
calculation codes as SRW [10], for example, can be used.

The elegant and simple shape of Eq. (20) has been
obtained assuming Gaussian distributions for the beam
sizes and for the radiation distribution. For nongaus-
sian distributions Eq. (14) needs to be integrated numer-
ically. However, it can be shown that the longitudinal
term in Eq. (20) can still be used with a few percent ac-
curacy for most of the beam distributions, as long as they
are represented by their rms length and do not include
microstructures with characteristic length much smaller
than the bunch length. Additionally, in the typical beam-
line case where the photon fan is defined by an aperture,
the angular photon distribution is mainly shaped by the
diffraction through the aperture. In this situation, the
transverse mode coherent profiles are described with very
good approximation by the [sin(ξ)/ξ]2 function typical of
a plane wave diffracting through a finite aperture. Cal-
culations show that, in this case, it is still possible to use
the two transverse terms in Eq. (20) if one fits the cen-
tral peak of the [sin(ξ)/ξ]2 function with a Gaussian, and
uses for the angular distribution width the rms width of
the fit divided by

√
2. In other words, Eq. (20) can be

used in a large number of nongaussian cases of practical
interest still maintaining a few percent accuracy.

IV. EXPERIMENTAL CONSIDERATIONS AND

THE ADVANCED LIGHT SOURCE

MEASUREMENTS

Figure 1 shows the experimental setup for the measure-
ments performed at the IR-visible branch-line of beam-
line BL 7.2 of the ALS. Such a beamline collects the syn-
chrotron radiation from a dipole magnet and has a total
angular acceptance of 5.5 mrad and 2.8 mrad for the
horizontal and vertical planes respectively (represented
in Fig. 1 by the limiting aperture). As required by the
measurement theory, such values are much larger than
the rms angular spread of the electron beam at the BL
7.2 source point. Indeed, accounting for the ALS emit-
tance and optical functions, such a spread was always
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FIG. 2: Oscilloscope window showing the single passage track
of a typical signal from the photodetector and the histogram
of ∼ 5000 measured values of the signal area between points A
and B. Another histogram (not shown) of the value of the sig-
nal area between points C and D was calculated as well. The
analysis of such histograms allows the distinction between the
fluctuation contribution due to the bunch distribution from
that due to other sources of noise (see text).

smaller than ≈ 50 µrad for all measurement conditions.
The radiation spectrum at this branch-line is limited by
design within a frequency interval ranging from the far-
infrared up to the visible. In our application we used
visible light because it is in the incoherent part of the
spectrum, as required, and also because of the large va-
riety and relatively inexpensive optical components and
detectors readily available for such a frequency range. A
1 m focal length lens was used to focus, through a flat
mirror, the beam on the photocathode plane of a streak
camera (Hamamatsu C5680). The mirror could be re-
tracted in order to allow the light to go into another
branch for the fluctuation measurement. An interfero-
metric filter (Melles Griot) with Gaussian transmission
curve centered at 632.8 nm and with peak transmission
of 55% selected the photons within a bandwidth of 1 nm
FWHM. The much smaller bandwidth of the filter with
respect to the spectral amplitude of the light at BL 7.2
conforms to the other measurement theory requirement.
The first lens focal length was chosen for keeping the
angle between the incoming photon trajectories and the
normal to the filter plane small enough to avoid broaden-
ing of the filter bandwidth. Downstream of the filter the
transmitted photons were finally focused by a microscope
objective (Edmund DIN 10, F 0.25) on the 0.2mm2 sensi-
tive area of a silicon avalanche photodiode (APD) (Perkin
Elmer C30902S, gain 250, 600 MHz bandwidth, 60%
quantum efficiency at 632.8 nm). Such APD has a break-
down voltage of -225 V and was typically operated with
a bias of -238 V. The signal from the photodiode was am-
plified (Hamamatsu C5594, 50k-1.5G Hz bandwidth, 36
dB gain) and sent to a digital oscilloscope (LeCroy Wave-
pro 7300 A, 3 GHz bandwidth and 20 Gsamples/sec) for
data recording and analysis. The oscilloscope was trig-
gered with the ∼1.5 MHz revolution clock of the ALS.

Figure 2 shows the typical signal visible at the scope
when measuring the light from a single passage of a sin-
gle ALS bunch. The rms length of the electron beam is
expected to be ∼ 25 ps so that the shape of the pulse

in Fig. 2 is totally defined by the bandwidth of the mea-
surement system. The oscilloscope was set in order to
measure the areas SAB of the signal between points A
and B, and SCD between points C and D in Fig. 2. SAB

is proportional to the number of photons impinging on
the detector plus the contribution due to the noise in the
signal, while SCD is a measure of this noise contribution.
The lengths of the segments AB and CD were set to be
equal.

The statistical error in a variance measurement when
NS samples are collected is given by:

σδ2/δ2 =
√

2/(NS − 1) . (21)

The scope was set to calculate the average values for
SAB and SCD and their standard deviations over 5000
samples per bunch length measurement in order to keep
the statistical error at ∼ 2% according to Eq. (21). In
this configuration, the average energy 〈E〉 radiated per
passage by the electron beam is proportional to 〈SAB〉 −
〈SCD〉, while its variance σ2

E
is proportional to σ2

SAB
−

σ2
SCD

. As an example, the amplitudes of such quantities
for the case shown in Fig. 2 were: 〈SAB〉 ∼= 120 pV s,
σSAB

∼= 10.2 pV s, 〈SCD〉 ∼= 0.4 pV s and σSCD

∼= 1.8 pV
s for a bunch current of ∼= 3 mA (∼= 2 nC).

By comparing different amplitude signals, we also ver-
ified that the shape of the signal itself did not depend on
the amplitude.

The collection of the 5000 samples required ∼ 1
minute. This value was dominated by the time required
for the digital scope to perform the signal acquisition and
the data analysis. While very useful and flexible during
this proof of principle experiment, there is no real need
for such a complex and expensive instrument in a real
operational configuration of the monitor. In fact, com-
mercial gated charge to digital converters can operate at
several hundred kHz repetition rates, and by using such
components the time per measurement can be reduced
by at least three orders of magnitude.

BL 7.2 belongs to the previously described category of
beamlines, where the radiation angular distribution can
be well represented by the [sin(ξ)/ξ]2 function. Follow-
ing the indications at the end of the previous section we
obtained, for λ0 = 632.8 nm and for the acceptances of
BL7.2, σxc ≃ 29.8 µm and σyc ≃ 59.5 µm. The mea-
surements were performed at the two beam energies of
1.2 and 1.9 GeV. The rms beam sizes at BL 7.2 source
point were σx ≃ 64.8 µm and σy ≃ 6.3 µm at 1.2 GeV
and σx ≃ 103.0 µm and σy ≃ 10.0 µm at 1.9 GeV.

Equations (14) and (17) were derived in a purely clas-
sical field theory framework. In the case where the num-
ber of photons per pulse Np is not sufficiently large, the
proper quantum treatment requires the addition to the
right hand side of equations (14) and (17) of another
fluctuation term 1/〈Np〉 due to the shot noise contribu-
tion, with 〈Np〉 the average number of photons imping-
ing on the detector. Moreover, photodiodes, avalanche
photodiodes and photomultipliers all exploit stochastic
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phenomena for the photon-electron conversion and am-
plification. This must be accounted for by using a mod-
ified shot noise term ς2/〈Np〉 = F/(Q

E
〈Np〉), where F

is the excess noise factor, a quantity ≥ 1 related to the
amplification process in photomultipliers and avalanche
photodiodes, that depends on the detector gain and on
the operation frequency, and Q

E
is the detector quantum

efficiency at the operation frequency.
Accounting for this contribution and indicating with

δ2
M the measured fluctuation variance, Eq. (20) can be

modified to finally give the rms length of the bunch:

σ2
t =

1

4σ2
ω

×





(

δ2
M − ς2

〈Np〉

)−2(

1 +
σ2

x

σ2
xc

)−1
(

1 +
σ2

y

σ2
yc

)−1

− 1



 .

(22)

The ς2 term can be easily measured by performing two or
more measurements of δ2

M for the same bunch length but
for different numbers of photons impinging on the detec-
tor (using neutral density filters for instance). During the
measurements, all the terms on both sides of (22) remain
the same with the exception of the shot noise term. From
that, and considering that 〈Np〉 ∝ (〈SAB〉 − 〈SCD〉), ς2

can be evaluated. The described ς2 measurement needs
to be performed only once during the characterization of
the experimental setup.

Figure 3 shows two examples of measurements per-
formed for different beam conditions. The bunch length
as a function of the current in the bunch was measured
by the fluctuation monitor at 1.2 and 1.9 GeV. For each
current value, streak camera measurements were also per-
formed right after the fluctuation measurement. The
agreement between the two sets of data is remarkably
good, especially considering that no parameter has been
adjusted to match the data. All measurements show the
increase of the beam size as the current per bunch in-
creases due to the collective effects acting on the bunch.
The typical rms difference between the streak camera and
the fluctuation data was ∼ 4%. This is larger than the
2% statistical component calculated by (21). The extra
contribution is partially due to the experimental error
in the streak camera measurements and also to the fact
that the shot noise term during our measurements was
comparable to δ2.

In the measurements shown in Fig. 3, the bunch length
ranges from ≃ 20 to 30 ps rms, and the single bunch cur-
rent ranges from ≃ 3 to 7.5 mA (≃ 2 to 5 nC per bunch).
The bunch length of the ALS at the normal 1.9 GeV
operation energy depends weakly on the bunch current,
and the particular ALS lattice does not allow an easy use
of the momentum compaction for controlling the bunch
length. For that reason, we used the beam energy and,
by lowering it down to 1.2 GeV, we were able to decrease
the bunch length down to ≃ 20 ps. Lower energies with
stable beam conditions are difficult to obtain at the ALS.

FIG. 3: Examples of fluctuation and streak camera bunch
length measurements at the ALS for different beam parame-
ters.

Figure 2 shows the APD signal for the 3 mA case,
the lowest single bunch current measured. The signal to
noise ratio was still large and did not limit the capabil-
ity of measuring lower currents. On the other hand, the
shot noise term in Eq. (22) approached the magnitude of
the fluctuation term due to the bunch distribution. For
lower bunch charges the shot noise contribution becomes
stronger and would start affecting the experimental ac-
curacy of the measurement.

We will now show how this limitation depends on the
particular choice of the photodetector used for the mea-
surements. For a good measurement accuracy, we prefer
the fluctuation term due to the bunch distribution to be
larger than the shot noise term:

δ2 &
ς2

〈Np〉
=

F (G, ω0)

Q
E
(ω0)

1

〈Np〉
, (23)

where ω0 is the frequency of operation and G is the de-
tector gain. The average number of electrons impinging
on the detector can be written as:

〈Np〉 = a(ω0)Nσωη
BL

, (24)

where N is the number of electrons per bunch, η
BL

the
experimental setup transmission efficiency (filters, beam-
line viewports, ...), and a(ω0) is a quantity defined by

a(ω0) =
∫

ΩBL

∂Np(Ω,ω0)
∂Ω∂ω dΩ, where ΩBL is the solid angle



7

acceptance of the experimental setup and
∂Np(Ω,ω0)

∂Ω∂ω is the
photon distribution for the radiation from a single elec-
tron calculated at ω0. Equation (24) has been derived

assuming that
∂Np

∂Ω∂ω is a slow-varying function of ω over
the interval σω around ω0.

Let T = (1 + σ2
x/σ2

xc)
−1/2(1 + σ2

y/σ2
yc)

−1/2. As pre-
viously shown, T represents the transverse contribution
to the fluctuations, and depends on the beam size at
the source point, the radiation process, the beamline ac-
ceptance, but does not depend on the detector charac-
teristics. The quantity T , whose value ranges between
0 and 1, implicitly depends on ω0 through the quanti-
ties σxc and σyc, and for whatever radiation process and
beamline aperture configuration, smaller ω0 values al-
ways lead to smaller T values. Using the T definition in
conjunction with σ2

tc = 1/(2σω) in Eq. (20), we obtain
δ2 = T (1 + 4σ2

ωσ2
t )−1/2.

By using this last results, jointly to Eq. (24), in
Eq. (23), we finally obtain a criterion for the detector
choice:

F (G, ω0)

Q
E
(ω0)

.
a(ω0)NTσωη

BL
√

1 + 4σ2
ωσ2

t

≃ a(ω0)NTη
BL

2σt
, (25)

where the approximation in the last term holds when
4σ2

ωσ2
t ≫ 1.

We now give an approximate expression for Eq. (25)
where the dependence of a(ω0) on ω0) is made explicit.
Using the Weizsäcker-Williams method of the virtual
photons [11], it can be derived that the number of pho-
tons radiated by a single electron within a bandwidth σω

at the frequency ω0 is ∼ α σω/ω0, with α ≃ 1/137 the
fine structure constant. Using this last result and the pre-
vious definitions, we obtain that 〈Np〉 ∼ αNη

BL
σω/ω0,

which allows to rewrite criterion (25) as:

F (G, ω0)

Q
E
(ω0)

.
αNTσωη

BL

ω0

√

1 + 4σ2
ωσ2

t

≃ αNTη
BL

2ω0σt
. (26)

Equations (25) and (26) show: a weak (typically negli-
gible) dependence on the filter bandwidth σω; that pho-
todetectors with a small excess noise to quantum effi-
ciency ratio are preferred; and also that shorter bunches
are less demanding in terms of photodetectors. Equa-
tion (26) also show that the operation frequency ω0 plays
a significant role in the detector choice. Indeed, account-
ing for the explicit ω−1

0 dependence, as well as for above
mentioned implicit dependence of T on ω0, smaller fre-
quencies are preferred, with the condition that a detector
with a reasonably small F/Q

E
ratio can be found at those

frequencies. Of course in the selection process, other de-
tector parameters, such as gain and speed, need to be
considered as well. For example, higher gains are usually
preferable, but the excess noise factor F increases with
increasing gains, so the proper tradeoff must be found.

The APD selected for the ALS measurements repre-
sents a reasonable tradeoff between, gain, excess noise,
quantum efficiency and speed, that properly conforms to

the ALS bunch length range and photon number avail-
able at BL 7.2 within the selected photon bandwidth.
With this detector, at the wavelength and gain of op-
eration, we had F/Q

E
∼ 6/0.6 = 10. Using this value

and the ALS numbers in criteria (25) and (26), we ob-
tain that below a single bunch current of ∼ 1−2 mA, the
shot noise term starts to become dominant, in reasonable
agreement with what we observed experimentally.

Different accelerator applications may require a dif-
ferent detector choice (for example, photo-multipliers or
different photodiodes), depending on the bunch length to
be measured, the number of available photons, etc. For
example, for shorter bunches (as in FEL and ERL linear
accelerator applications) the requirements on the excess
noise to quantum efficiency ratio can be relaxed, or if the
same detector is used, then smaller bunch charges can
be measured. The bandwidth of the filter can be used
instead for controlling the requirements on the detector
gain. Indeed, a lager σω allows for more photons and
requires less detector gain with a beneficial reduction on
the excess noise factor.

V. POSSIBLE UPGRADES AND

CONCLUSIONS

By splitting the light from the source in two paths feed-
ing two measurement systems with different bandpass fil-
ters, it is in principle possible to discriminate between the
transverse and longitudinal components in Eq. (20). In
fact, the longitudinal term in the equation depends only
on the bandwidth of the filter while the transverse terms
depend only on its central wavelength. For example,
using filters with same central wavelength but different
bandwidth and comparing the measurement results from
the two branches, the dependence on the transverse plane
can be removed. Such a feature can be useful when the
transverse beam size changes during the accelerator oper-
ation, for example. Conversely, if the two branches have
filters with different central frequency but same band-
width, then the dependence from the longitudinal term
can be removed.

We also started to test a configuration where the light
from the source is coupled to the system by an optical
fiber. In those cases where the light is not readily avail-
able outside the accelerator vault, the use of the fiber will
allow to transport the light to the measurement setup in
a safe and accessible area outside the accelerator vault.

The technique described in this paper can still be used
when the charge fluctuates shot to shot, if for each ac-
quisition, the beam charge is measured and the value
is used to normalize the fluctuation measurement. The
charge measurement can be done within the system it-
self by simply taking a fraction of the light upstream of
the band-pass filter, and by measuring its intensity with
a photo-detector. The broadband spectrum of the light
at this position ensures that the intensity fluctuations
due to the bunch distribution are negligible and that the



8

measured intensity represents an accurate relative mea-
surement of the bunch charge. In a particularly effective
implementation of such a scheme, a commercial low cost
dichroic beam splitter can be used to separate a por-
tion of the spectrum different from the one used by the
fluctuation measurement. In this way the bunch charge
measurement can be performed without attenuating the
light used in the fluctuation branch and thus avoiding an
undesired increase of the shot noise contribution.

In summary, we have demonstrated an absolute bunch
length measurement technique based on the analysis of

the fluctuations in the incoherent part of the radiation
emitted by a particle beam. The scheme that can use
any kind of radiation process, shows a remarkable sim-
plicity and can be applied to both circular and linear
accelerators including cases where the very short length
of the bunches makes difficult the use of other techniques.

The authors want to thank J. Byrd, S. De Santis, J.
Frisch and R. Shelton-Mottsmith for their contributions.

This work was supported by the Director, Office of
Science, of the U.S. Department of Energy under contract
DE-AC02-05CH11231.

[1] M. Zolotorev and G. Stupakov, SLAC PUB 7132 (1996).
[2] M. Zolotorev and G. Stupakov, Proceedings of 1997 Par-

ticle Accelerator Conference, Vancouver, B.C., Canada,
p. 2180 (1997).

[3] J. Krzywinski, E. L. Saldin, E. A. Schneidmiller and
M. V. Yurkov, DESY Report TESLA-FEL1997-06, p. 47
(1997).

[4] P. Catravas, et al., Phys. Rev. Lett. 82, 5261 (1999).
[5] V.Sajaev, et al., Proceedings of the 2000 European Par-

ticle Accelerator Conference, Vienna, Austria, p. 1806
(2000).

[6] F. Sannibale, M. Zolotorev, D. Filipetto and G. Stu-
pakov, Proceedings of 2007 Particle Accelerator Confer-
ence, Albuquerque, New Mexico, USA, p. 2261 (2007).

[7] Kwang-Je Kim, ‘Characteristic of Synchrotron Radia-
tion’, in AIP Conference Proceedings 184, p. 622 (1989).

[8] See for example Chapter 3 of R. Loudon, ‘The Quantum
Theory of Light’, Oxford Science Publication, second edi-
tion, (1983).

[9] T. Tanabe, M. C. Teich, T. C. Marshall and J. Galayda,
Nuclear Instr. and Methods in Phys. Research A 304, 77
(1991).

[10] SRW code, http://www.esrf.eu/Accelerators/Groups/
InsertionDevices/Software/SRW.

[11] See for example Chapter 15, section 4 of J. D. Jackson,
‘Calssical Electrodynamics’, John Wiley & Sons, INC.,
third edition, (1999).

[12] from the uncertainty principle that requires for a Gaus-
sian distribution σωσt = 1/2

APPENDIX A

Let us now assume that the beam distribution func-
tions are not Gaussian, and also assume arbitrary angu-
lar and frequency distributions of the radiation on the
detector. At the same time we assume that the function
T (see Eq. (16)) is still factorized as

T (ω, θ) = T0H(ω)G(θ) , (A1)

where H and G are positive real functions normalized by
unity,

∫ ∞

−∞

H(ω)dω = 1 ,

∫

G(θ)dθxdθy = 1 . (A2)

We will also assume a narrow bandpass filter and re-
place k and k′ in Eq. (14) by k0 (see explanation in the
text after Eq. (16)).

In this case, it is useful to transform the numerator on
the right hand side of Eq. (14) in terms of the original
distribution functions in the beam. For example, the
frequency dependent factor in Eq. (14) becomes

∫ ∞

−∞

H(ω)H(ω′)|f̂t(ω − ω′)|2dωdω′

=

∫ ∞

−∞

H(ω)H(ω′)ft(t)ft(t
′)ei(ω−ω′)t−i(ω−ω′)t′dωdω′dtdt′

=

∫ ∞

−∞

|Ĥ(t − t′)|2ft(t)ft(t
′)dtdt′ , (A3)

where Ĥ(t) is the Fourier transform of H(ω):

Ĥ(t) =

∫ ∞

−∞

H(ω)eiωtdω . (A4)

Similarly, introducing the Fourier transform of the func-
tion G

Ĝ(r) =

∫

G(θ)eik0θ·rdθxdθy (A5)

and expressing the spacial part in terms of Ĝ one finds

δ2 =

∫ ∞

−∞

|Ĥ(t − t′)|2ft(t)ft(t
′)dtdt′

×
∫

|Ĝ(r − r
′)|2F (r)F (r′)d2rd2r′ . (A6)

This equation can be further simplified in some limiting
cases. For a wide filter, when the characteristic width σω

of the function H(ω) satisfies the condition σωσt ≫ 1 one

can replace |Ĥ(t− t′)|2 by a delta function, |Ĥ(t− t′)|2 =
Aδ(t − t′), with A = 2π

∫∞

−∞
|H(ω)|2dω, which gives

∫ ∞

−∞

|Ĥ(t − t′)|2ft(t)ft(t
′)dtdt′

≈ 2π

∫ ∞

−∞

|H(ω)|2dω

∫ ∞

−∞

ft(t)
2dt . (A7)
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In the opposite limit, σωσt ≪ 1, we have

∫ ∞

−∞

|Ĥ(t − t′)|2ft(t)ft(t
′)dtdt′

≈
∫ ∞

−∞

|Ĥ(0)|2ft(t)ft(t
′)dtdt′ ≈ 1 , (A8)

where we used the condition Ĥ(0) = 1 which follows from

the normalization (A2), and also took into account the
normalization of the distribution function ft.

A similar approach can be used to simplify the spacial
part in Eq. (A6), if the angular spread of the limiting
aperture ∆θ is much larger, or much smaller than σ⊥k0,
where σ⊥ is the characteristic transverse size of the beam.


