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Abstract

If the energy spread of a beam is larger then the Pierce
parameter, the FEL gain length increases dramatically and
the FEL output gets suppressed. We show that if the en-
ergy distribution of such a beam is made oscillatory on a
small scale, the gain length can be considerably decreased.
Such an oscillatory energy distribution is generated by first
modulating the beam energy with a laser via the mecha-
nism of inverse FEL, and then sending it through a strong
chicane. We show that this approach also works for the op-
tical klystron enhancement scheme. Our analytical results
are corroborated by numerical simulations.

INTRODUCTION

If the energy spread of a beam is larger then the Pierce
parameter, the FEL gain length rapidly increases with the
rms energy spread. This can be easily illustrated with a 1D
model [1]
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whereV (�) is the distribution function of the beam over
the energy normalized by unity,

∫

V (�)d� = 1, � is the di-
mensionless energy deviation relative to the nominal one,
� = (
 − 
0)/�
0, 
 is the Lorentz factor,
0 is the nomi-
nal beam energy in units ofmc2, � is the Pierce parameter,
ku = 2�/�u with �u the undulator period, and� is the rel-
ative frequency detuning. The parameter� is the complex
growth rate of the radiation field in the undulator measured
in units2�ku.

For a Gaussian distribution function
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where�� is the rms energy spread of the beam in dimen-
sionless energy units. It is easy to find that in the limit
�� → 0 (that is for f = �(�)) the optimal detuning is
� = 0 and� ≈ �0 = (−1 + i

√
3)/2 = −0.5 + 0.87i. For

�� = 1 and an optimized detuning,Im� = 0.44. In the
limit of large��, the growth rateIm� becomes small, and
the imaginary part of the integral in (1) is approximately
given by the residue of the integral taken at� = Re�,

Im� = � df
d�
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. Noting that the real part of� can be

varied by changing detuning� in (1) we conclude that the
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maximum value ofIm� is given by [2]
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As numerical calculations show, this asymptotic depen-
dence ofmax Im� gives a good approximation to the exact
value when�� ≳ 2.

In this paper we show that even when the energy spread
of the beam is large, the gain length for the FEL instabil-
ity can be considerably decreased if the energy distribution
function is made oscillatory over energy. As we show in
the next section, this kind of energy distribution function
can be created using a laser beam with a tuned undulator,
and a strong chicane.

GENERATING OSCILLATORY
DISTRIBUTION FUNCTION

A system that creates an oscillatory energy distribution
function is shown in Fig. 1: it consists of an undulator and a
laser beam, which are synchronized with the electron beam

beam

laser, ω

dispersive section, R56

Figure 1: An undulator followed by a chicane. The beam
energy is modulated in the undulator due to interaction with
a laser beam.

in such a way that the electron beam energy becomes mod-
ulated over energy after the passage through the modula-
tor. Typically, the bunch length is much larger than the
laser wavelength�L, and one can locally consider a longi-
tudinally uniform beam, neglecting variation of the beam
current over the distance of several laser wavelength. The
undulator is followed by a chicane whose strength is char-
acterized by the parameterR56.

Assuming a Gaussian distribution function (2) before the
undulator, the distribution function after the chicane is (see,
e.g., [3])

f(�, �) =
1√
2���

e
−
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2�2
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, (4)

whereA = Δ
/�
0, B = R56q�, � = qz, Δ
 is
the amplitude of the energy modulation in unitsmc2, and
q = 2�/�L is the wave number of the laser. Note that

SLAC-PUB-13820



normalization of energy and the strength of the chicane in-
volves the Pierce parameter�.

We consider an example of a large initial energy spread
�� = 4 and modulate the beam withA = 4. After passing
through the chicane, the energy distribution function of the
beam becomes oscillatory as shown in Fig. 2 for the case
B = 2. Note that the distribution function depends on
the longitudinal coordinate� in the beam being a periodic
function of z with the period�L. In Fig. 2 we show two
plots corresponding to locations� = 0 and� = 0.5�L.
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Figure 2: Distribution functions of the beam after the chi-
cane atz = 0.5�L (blue solid line) andz = 0 (red line) for
B = 2. For comparison, the dashed line shows the original
Gaussian with�� = 4.

The number of oscillations in energy is proportional to
the dimensionless strength of the chicaneB, and the width
of the fine structure on the energy distribution is inversely
proportional toB. Note also that modulation of the beam
energy increases the rms energy spread in the beam from

�� to
√

�2
� + A2/2. In the above example this means that

the energy spread of the beam is increased from the initial
�� = 4 to the rms value4.9.

GAIN LENGTH FOR OSCILLATORY
BEAM DISTRIBUTION

Using Eq. (1) we numerically calculated the parameter
Im� for the distribution functions corresponding to the chi-
cane strengthsB = 1, 2, and 4.5. The results of such cal-
culations for the caseB = 2 are shown in Fig. 3.

For a smooth gaussian distribution function, as it fol-
lows from Eq. (3) for�� = 4, the inverse growth length
is Im� = 0.047. One can see from Fig. 3 that the maxi-
mum value ofIm� increases (from≈ 0.05) to 0.22, more
than 4 times. Calculations carried out forB = 1 and 4.5
give the maximum values ofIm� equal to0.17, and0.25,
respectively.

It is important to emphasize that, as seen from Fig. 3,
the position of the maximum growth rate varies with the
coordinatez in the beam (it is a periodic function ofz with
the period�L). Due to the slippage of radiation relative
to the beam, if the slippage length is not small compared
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Figure 3: Plot ofIm� versus detuning� for z = 0 (blue
solid line) andz = 0.5�L, for B = 2.

with �L, this can lead to a detuning of the radiation field
in the process of its exponential growth. The effect of the
slippage can be estimated in the following way. One can
see from Fig. 3 that, for a given detuning�, a shift in z
by half a laser wavelength changes the growth rate from its
maximum to almost zero. If this shift happens on the gain
lengthLg, it will strongly suppress the FEL process. Hence
the condition, when the slippage can be neglected is

�r
Lg

�u
≪ 1

2
�L , (5)

where�r is the wavelength of the radiation, and on the left
we have an estimate of the slippage on the gain length.

To compare with our analytical theory, we perform 1D
FEL simulations using the following parameters: electron
energy is 1.2 GeV, peak current is 2 kA, the normalized
emittance is 1�m, undulator period is 3 cm and the beta
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Figure 4: Results of 1D simulations. FEL power as a func-
tion of distancez from the entrance to the undulator for
two cases: a Gaussian beam with an initial energy spread
of �� = 2 (blue line) and the same beam after passing
through the system shown in Fig. 1 withA = 3 andB = 3
(red line).

function in the undulator is 4 m. We choose the energy
modulator laser wavelength to be 2.4�m, and the final ra-
diation wavelength to be about 5 nm. With these parame-
ters, we have� = 2.2× 10−3 and choose the beam energy
spread�� = 2� = 4.4× 10−3 for the simulation. We also
useA = 3 andB = 3 for the modulated case. As shown



in Fig. 4, the beam with the oscillatory energy distribution
has a gain length of about 3 m, while the beam with the
Gaussian distribution has a gain length of about 5 m. Note
that the above 1D theory predicts about a factor of 2 en-
hancement in gain length using these parameters. The gain
enhancement effect is slightly reduced in these simulations
presumably due to slippage effect not taken into account in
the theory.

3D COMPUTER SIMULATIONS

We used the three dimensional (3D) FEL simulation
code Genesis 1.3 [4] to check the gain enhancement effect
for a beam with an oscillatory energy distribution. The pa-
rameters of the beam and the undulators were chosen close
to the LCLS soft x-ray (1.5 nm) parameters, with undulator
period 3 cm, K = 3.5, electron energy 4.3 GeV, and an nor-
malized emittance of 0.4�m. With these parameters, we
have� = 1.6× 10−3. With an initial energy spread�� = 1
(corresponding to the rms energy spread of 6.9 MeV with
real parameters), Genesis simulations give a gain length of
about 3.4 m (see Fig. 5).

To generate an oscillatory energy distribution of the elec-
trons, we choose a4 �m wavelength laser to interact with
the electron beam in the modulator. This laser wavelength
satisfies the condition in Eq. (5). The amplitude of the en-
ergy modulation is equal toA = 3. The chicane is set
at B = 3. After passing through the chicane, the energy
distribution of the electron beam becomes oscillatory with
the rms energy spread increased to�� = 2.34 (correspond-
ing to 16.1 MeV). This oscillatory-distribution beam is then
read into Genesis for FEL simulations. The results of the
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Espread=1ρ, un−modulated beam, Lg=3.4m
Espread=1 ρ, A=3,B=3, Lg=2.5m

Figure 5: FEL power as a function of distancez from the
entrance to the undulator for two cases: a Gaussian beam
with an initial energy spread of�� = 1 (blue dashed line)
and the same beam after passing through the system shown
in Fig. 1 withA = 3 andB = 3 (red solid line).

simulations are shown in Fig. 5: the gain length is equal
to 2.5 m in this case. The gain enhancement is about 1.36
compared with the Gaussian beam. Shown in Fig. 6 is the
longitudinal phase space distribution of the particles at the
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Figure 6: Particle distribution at the entrance of the undu-
lator and atz = 40 m, for the case of the oscillatory distri-
bution function of the beam. The horizontal coordinate� is
the longitudinal position normalized by�r/2�.

entrance of the undulator and right after saturation (z = 40
m) point for the modulated case.

We also performed Genesis simulation for another case
with two times larger initial energy spread of�� = 2 and
the same parametersA = 3 andB = 3. The results of
that simulation which show the gain enhancement for the
oscillatory case of about 1.6, are shown in Fig. 7.
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Espread=2ρ, un−modulated beam, Lg=9.8m
Espread=2 ρ, A=3,B=3, Lg=6.1m

Figure 7: FEL power as a function of distancez from the
entrance to the undulator for two cases: a Gaussian beam
with an initial energy spread of�� = 2 (blue dashed line)
and the same beam after passing through the system shown
in Fig. 1 withA = 3 andB = 3 (red solid line).

OPTICAL KLYSTRON FEL

As discussed earlier, if the beam energy spread is much
less than the FEL� parameter, the high gain FEL process is
not sensitive to the detailed energy distribution. However,
a high-gain optical klystron (OK) can take advantage of a
very small energy spread (much smaller than�) to speed up
the bunching process [5]. Here we investigate whether such
a scheme can benefit from a modulated energy spectrum.

The 1D theory for a high-gain optical klystron FEL in-
cluding SASE effects can be found in Ref. [6]. Here we



write down the OK enhancement factor to the radiation
field E� at the resonant frequency! = !r and neglect the
phase matching effect:

R ≡ EOK

Eno OK
=

1−
∫

d� dV (�)/(d�)
(�−�)2 e−iD�

1 + 2
∫

d� V (�)
(�−�)3

, (6)

whereD = R56kr�, and we use the same notation as in
Eq. (1).

Treating∣�∣ ≪ ∣�0∣ in Eq. (6) and integrating the numer-
ator by part, we have

R ≈ 1

3

[
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]
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The gain enhancement comes mainly from the last term
that is proportional to the dispersion strengthD:

R3 = − iD

3�2
0

∫

d�V (�)e−iD� . (8)

For an energy-modulated beam as described in Eq. (4),
the distribution function varies along the longitudinal posi-
tion z as shown in Fig. 2. Assuming the modulation wave-
length is much longer than the relevant slippage length
in the FEL undulator, we can choose a representativez-
location for the energy distribution as
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The last approximation was obtained by consideringA <
��. Putting this energy distribution into Eq. (8), we obtain

R3 = − iD
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�
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]

. (10)

The first term is the OK gain for a smooth Gaussian energy
distribution (i.e.,A = 0). Its amplitude is maximized when
D = ±1/��. The second and the third terms are maxi-
mized whenD = ±(1/�� + B) for a modulated energy
distribution. The ratio of the optimized second/third term
to the optimized first term is
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for AB ≫ 1. Thus, a modulated energy spectrum will
improve the OK gain factor compared to a smooth energy
distribution. This is true even when�� → 1.

We check our approximate analytical result with 1D FEL
simulations. The simulation is carried out in the SASE

mode at 5 nm radiation wavelength. In the simulation, we
take�� = 0.3 (in units of� = 1.5× 10−3). We then mod-
ulate the electron beam withA = 0.9 at�L = 2.4 �m and
pass the beam through a chicane withB = 15. After the
chicane, the modulated beam is sent through the FEL un-
dulator in the optical klystron configuration: after the beam
interacts with the radiation in the first part of the undulator,
a chicane is introduced to bunch the beam at 5 nm before
sending into the second part of the undulator. The bunch-
ing gain factor vs the dispersion strength at the beginning
of the second undulator is shown in Fig. 8. The bunching
maximizes atD ≈ 16, which is in reasonable agreement
with the expected optimalD = 1/�� +B = 18.
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Figure 8: Bunching gain factor as a function of dispersion
strengthD.

CONCLUSIONS

In this paper we demonstrated that an oscillatory energy
distribution function of an electron beam exhibits a shorter
FEL gain length than a smooth Gaussian distribution. An
oscillatory distribution function can be obtained by means
of a laser beam interacting with the electron beam in an
undulator-modulator followed by a chicane. The proposed
method of shortening of the gain length might be useful, in
particular, for FELs based on electron beams generated in
a laser-plasma wakefield accelerators which are character-
ized by relatively large energy spread [7].
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