Measurements of Time-Dependent CPAsymmetries in $b \rightarrow s$ Penguin Dominated Hadronic B Decays at B_AB_{AR}

Pietro Biassoni (On behalf of the *BABAR* Collaboration)

Università degli Studi and INFN Milano, via Celoria 16, I-20133 Milano, Italy

Abstract. We report measurements of Time-Dependent CP asymmetries in several $b \rightarrow s$ penguin dominated hadronic B decays, where New Physics contributions may appear. We find no significant discrepancies with respect to the Standard Model expectations.

Keywords: Charmless Hadronic *B* decays, Time-Dependent *CP* Violation, $\sin 2\beta$ Measurement. **PACS:** 13.25.Hw, 12.15.Hh, 11.30.Er, 13.66.Bc, 14.40.Cs, 13.25.Gv, 13.25.Jx, 13.20.Jf.

INTRODUCTION

The measurement of *CP* violation in *B* meson decays provides crucial tests of the Standard Model (SM) and of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism [1].

CKM-suppressed $b \to q\bar{q}$ s (q=u,d,s) processes are dominated by a single loop (penguin) amplitude, that, assuming penguin dominance and neglecting higher order contributions, is expected to have the same phase β of the CKM-favored $b \to c\bar{c}s$ transition [2]. In many extensions of the SM new heavy particles may appear in the loop [3], giving rise to deviations from this expectation. These deviations are expected to be channel dependent. The measurement of the phase difference between $B^0 \to K^*(892)^+\pi^-$ and $\overline{B}^0 \to K^*(892)^-\pi^+$ can be used to constrain the CKM parameters in the $(\bar{\rho}, \bar{\eta})$ plane [4].

TIME-DEPENDENT DECAY RATES

The CKM phase β is accessible experimentally through the interference between the decay of mixed and unmixed B meson into a CP eigenstate. This interference is observable through the time evolution of the decay.

In the studies reported in this presentation, one B^0 from $\Upsilon(4S) \to B^0\overline{B}^0$ is reconstructed in $\eta'K_S^0$, $\eta'K_L^0$, ωK_S^0 , or $K_S^0K_S^0K_S^0$ *CP* eigenstate, or in $\pi^+\pi^-K_S^0$ or $K^+K^-K_S^0$ non-*CP* eigenstate final state (B_{sig}) , and its vertex fitted using all charged daughter tracks. In K_S^0 K_S^0 mode, where no charged track is present at B^0 meson decay vertex, B_{sig} vertex is identified using the K_S^0 reconstructed flight directions and the knowledge of the average interaction point [5]. From the remaining particles in the event we reconstruct the decay vertex of the other B meson (B_{tag}) and identify its flavor, through the analysis of the decay product of B_{tag} [6].

The distribution of the difference $\Delta t \equiv t_{CP} - t_{\text{tag}}$ of the proper decay times of *B* mesons into *CP*-eigenstate final states is given by

$$f(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \pm \left[-\eta_f S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t) \right] \right\}$$
 (1)

where η_f is the *CP* eigenvalue of the final state f and τ is the B^0 meson lifetime. The upper (lower) sign denotes a decay accompanied by a $B^0(\overline{B}^0)$ tag, and Δm_d is the mixing frequency.

For three body non-*CP*-eigenstate final state, the *CP*-violating parameters are a function of the position over the Dalitz Plot (DP). In this case Eq. (1) is written as

$$f(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ |A|^2 + |\overline{A}|^2 \pm \left[\eta_f 2Im[\overline{A}A^*] \sin(\Delta m_d \Delta t) - (|A|^2 - |\overline{A}|^2) \cos(\Delta m_d \Delta t) \right] \right\}.$$
 (2)

Let the decay $B^0 \rightarrow X_1 X_2 X_3$ proceed through N intermediate states: the amplitude A depends only on the Mandelstam invariants s_{12} and s_{23} , and in the isobar approximation is

$$A(s_{12}, s_{23}) = \sum_{j=1}^{N} |c_j| e^{-i\phi_j} R_j(m_j) X_L(|\vec{p}*|r') X_L(|\vec{q}|r) T_j(L, \vec{p}, \vec{q})$$
(3)

where c_j and ϕ_j are the relative magnitude and phase of the decay mode j, $R_j(m)$ is the lineshape term, X_L are Blatt-Weisskopf barrier factors [7], T_j is the angular distribution, \vec{p} (\vec{q}) is the momentum of the prompt particle (one of the resonance daughters), L is the orbital angular momentum between \vec{p} and the resonance momentum, and asterisk denotes B rest frame. For a decay into a quasi-two-body CP eigenstate, one can extract the parameters $\beta_{eff} = \frac{1}{2} \arg(c_k \vec{c}_k^*)$ and $\mathscr{A}_{ch}(k) = [|\vec{c}_k|^2 - |c_k|^2]/[|\vec{c}_k|^2 + |c_k|^2]$. For a decay into quasi-two-body non-CP eigenstate, we measure the charge asymmetry and the phase between the two conjugate states $\Delta\Phi(k) = \arg(c_k \vec{c}_k^*)$.

A nonzero value of the parameter C_f or \mathscr{A}_{ch} would indicate direct CP violation. In these modes we expect $-\eta_f S_f \equiv -\eta_f \sin 2\beta_{eff} \approx \sin 2\beta$. Deviations $\Delta S_f = S_f - \sin 2\beta$ from this expectation may appear even within the SM [8, 9], and are estimated in several theoretical approaches [8, 10].

ANALYSIS TECHNIQUE

Analyses presented here are based on a sample of 465×10^6 $B\overline{B}$ pairs $(383 \times 10^6$ for $B^0 \rightarrow K_S^0 \pi^+ \pi^-)$, collected at a center-of-mass energy equal to the mass of the $\Upsilon(4S)$ resonance at the PEP-II asymmetric e^+e^- collider, at the SLAC National Accelerator Laboratory, and recorded by the *BABAR* detector [11]. The *B* meson is reconstructed into the above-mentioned *CP* eigenstates. The *B* meson is kinematically characterized by the variables $\Delta E \equiv E_B - \frac{1}{2}\sqrt{s}$ and $m_{\rm ES} \equiv \sqrt{s/4 - |\vec{p}_B|^2}$, where (E_B, \vec{p}_B) is the *B* four-momentum vector expressed in $\Upsilon(4S)$ rest frame.

Background arises primarily from random combinations of particles in $e^+e^- \rightarrow q\bar{q}$ events (q=u,d,s,c). We suppress this background with requirements on the event shape variables and on the energy, invariant mass and particle identification signature of the decay products. All events are required to have $|\Delta t| < 20$ ps and $\sigma_{\Delta t} < 2.5$ ps.

For each mode, results are obtained from an extended maximum likelihood fit with input variables ΔE , $m_{\rm ES}$, Δt , and the output of a multivariate discriminant combining different event shape variables. In ωK_s^0 decay we also use ω mass and angular variables into the fit. K_L^0 momentum is determined using a B mass constraint, hence $m_{\rm ES}$ is fully correlated to ΔE , and is not used into the fit in $\eta' K_L^0$ modes. The likelihood for a given event is the sum of the signal, continuum and the B-background components, weighted by their respective event yields. In $K_s^0 \pi^+ \pi^-$ and $K_s^0 K^+ K^-$ modes, a time-dependent DP analysis is performed. The DP model includes $f_0(980)$, $\rho^0(770)$, $K^{*\pm}(892)$, $(K\pi)_0^{*\pm}$, $f_2(1240)$, $f_x(1300)$, χ_{c0} ($f_0(980)$, $\phi(1020)$, $\chi(1550)$, $f_2(1270)$, χ_{c0} , D^\pm , D_s^\pm) and non resonant component for $K_s^0 \pi^+ \pi^-$ ($K_s^0 K^+ K^-$) decay mode. In $K_s^0 K^+ K^-$ analysis, the fit is first performed on the whole DP, and then in the low (high) mass region $m_{K^+K^-} < 1.1 \text{ GeV}/c^2$ ($m_{K^+K^-} > 1.1 \text{ GeV}/c^2$), fixing all the parameters to the values found in the whole DP fit, except the ones involving the $f_0(980)$ ($\phi(1020)$) resonance.

RESULTS

In Table 1 and 2 we report the results for CP-violating parameters in analyses of the decay of a B^0 meson into a CP eigenstates and a three body non-CP eigenstates final state (DP analyses), respectively [12]. Results for $K_S^0K^+K^-$ and $K_S^0K_S^0K_S^0$ are preliminary.

TABLE 1. Results of analyses of $b \rightarrow s$ decays into CP eigenstates. For each decay mode we report $-\eta_f S_f$ and C_f . The first error is statistical, the second systematic.

Decay Mode	$-\eta_f S_f$	C_f
$\eta' K^0$	$0.57 \pm 0.08 \pm 0.02$	$-0.08 \pm 0.06 \pm 0.02$
ωK_S^0	$0.55^{+0.26}_{-0.29} \pm 0.02$	$-0.52^{+0.22}_{-0.20} \pm 0.03$
$K_S^0 K_S^0 K_S^0$	$0.90^{+0.20+0.04}_{-0.18-0.03}$	$-0.16 \pm 0.17 \pm 0.03$

In K_s^0 $\pi^+\pi^-$ and $K_s^0K^+K^-$ low mass region, the likelihood function has two minima. In $B^0 \to f_0(980)K_s^0$ with $f_0(980) \to K^+K^-$, the second solution is disfavored by the result from $f_0(980) \to \pi^+\pi^-$. In K_s^0 $\pi^+\pi^-$ analysis we measure $\mathscr{A}_{ch}(K^*(892)^+\pi^-) = 0.20 \pm 0.10 \pm 0.02$, where the first (second) error is statistical (systematic). We also exclude $-137^\circ < \Delta\Phi(K^*(892)^+\pi^-) < -5^\circ$ at 95% confidence level.

CONCLUSIONS

We have reported the results of measurements of *CP*-violating parameters in several $b \rightarrow s$ hadronic *B* meson decays. All the results are consistent with the SM. Results are

in agreement with and supersede previous BABAR measurements.

TABLE 2. Results of DP $b \rightarrow s$ analyses. For each decay mode we report β_{eff} , and \mathcal{A}_{ch} , for both solutions. The first error is statistical, the second systematic.

Decay Mode	Solution I		Solution II	
	eta_{eff} (°)	\mathscr{A}_{ch}	eta_{eff} (°)	\mathscr{A}_{ch}
$K_{\scriptscriptstyle S}^0 \pi^+ \pi^-$				
$f_0(980)K_s^0$	$36.0 \pm 9.8 \pm 3.0$	$-0.08 \pm 0.19 \pm 0.05$	$56.2 \pm 10.4 \pm 3.0$	$-0.23 \pm 0.19 \pm 0.05$
$\rho^0(770)K_S^0$	$10.2 \pm 8.9 \pm 3.6$	$0.05 \pm 0.26 \pm 0.10$	$33.4 \pm 10.4 \pm 3.6$	$0.14 \pm 0.26 \pm 0.10$
$K_s^0K^+K^-$				
Whole DP	$25.2 \pm 4.0 \pm 1.1$	$0.03 \pm 0.07 \pm 0.02$	_	_
High Mass	$29.8 \pm 4.6 \pm 1.7$	$0.05 \pm 0.09 \pm 0.04$	_	_
ϕK_S^0	$7.4 \pm 7.4 \pm 1.1$	$0.14 \pm 0.19 \pm 0.02$	$8.0 \pm 8.0 \pm 1.1$	$0.13 \pm 0.18 \pm 0.02$
$f_0(980)K_S^0$	$8.6 \pm 7.4 \pm 1.7$	$0.01 \pm 0.26 \pm 0.07$	$197.1 \pm 10.9 \pm 1.7$	$-0.49 \pm 0.25 \pm 0.07$

ACKNOWLEDGMENTS

I'd like to thank all my BABAR colleagues for their support and in particular Fernando Palombo and Alfio Lazzaro.

REFERENCES

- N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- Belle Collaboration, K.-F. Chen *et al.*, Phys. Rev. Lett. **98**, 031802 (2007); *BABAR* Collaboration, B. Aubert *et al.*, Phys. Rev. D **79**, 072009 (2009).
- 3. Y. Grossman and M. P. Worah, Phys. Lett. B **395**, 241 (1997); D. Atwood and A. Soni, Phys. Lett. B **405**, 150 (1997); M. Ciuchini *et al.*, Phys. Rev. Lett. **79**, 978 (1997).
- 4. H. J. Lipkin *et al.*, Phys. Rev. D **44**, 1454 (1991); N. G. Deshpande, N. Shina, and R. Shina, Phys. Rev. Lett. **90**, 061802 (2003); M. Ciuchini, M. Pierini, and L. Silvestrini, Phys. Rev. D **74**, 051301(R) (2006); M. Gronau *et al.*, Phys. Rev. D **75**, 014002 (2007).
- 5. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131805 (2004).
- 6. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 94, 161803 (2005).
- 7. J. Blatt and V. E. Weisskopf, *Theoretical Nuclear Physics* (J. Wiley (New York), 1952).
- 8. Y. Grossman *et al.*, Phys. Rev. D **68**, 015004 (2003); C.-W. Chiang, M. Gronau, and J. L. Rosner, Phys. Rev. D **68**, 074012 (2003); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Lett. B **596**, 107 (2004); M. Beneke and M. Neubert, Nucl. Phys. B **675**, 333 (2003).
- 9. D. London and A. Soni, Phys. Lett. B **407**, 61 (1997).
- M. Beneke, Phys. Lett. B 620, 143 (2005); H. Y. Cheng, C-K. Chua, and A. Soni, Phys. Rev. D 72, 014006 (2005), Phys. Rev. D 71, 014030 (2005); S. Fajfer, T. N. Pham, and A. Prapotnik-Brdnik Phys. Rev. D 72, 114001 (2005); A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Rev. D 74, 093003 (2006).
- 11. BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
- 12. *BABAR* Collaboration, B. Aubert *et al.*, Phys. Rev. D **79**, 052003 (2009). *BABAR* Collaboration, B. Aubert *et al.*, arXiv:0905.3615v1 [hep-ex], submitted to Phys. Rev. D . *BABAR* Collaboration, B. Aubert *et al.*, arXiv:0808.0700v2 [hep-ex].