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Abstract

Motivated by recent models proposing a hidden sector with ∼ GeV scale force carriers, we present
a search for a narrow dilepton resonance in 4 lepton final states using 536 fb−1 collected by the
BABAR detector. We search for the reaction, e+e− → W ′W ′ → (l+l−)(l′+l′−), where the leptons
carry the full 4-momentum and the two dilepton pair invariant masses are equal. We do not observe
a significant signal and we set 90% upper limits of σ(e+e− → W ′W ′ → e+e−e+e−) < (15− 70) ab,
σ(e+e− → W ′W ′ → e+e−μ+μ−) < (15 − 40) ab, and σ(e+e− → W ′W ′ → μ+μ−μ+μ−) < (11 −
17) ab in the W ′ mass range between 0.24 and 5.3GeV/c2. Under the assumption that the W ′

coupling to electrons and muons is the same, we obtain a combined upper limit of σ(e+e− →
W ′W ′ → l+l−l′+l′−) < (25 − 60) ab. Using these limits, we constrain the product of the SM-dark
sector mixing and the dark coupling constant in the case of a non-Abelian Higgsed dark sector.
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P. Biassoniab, A. Lazzaroab, V. Lombardoa, F. Palomboab, S. Strackaab

INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanob, I-20133 Milano, Italy

L. Cremaldi, R. Godang,5 R. Kroeger, P. Sonnek, D. J. Summers, H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA

X. Nguyen, M. Simard, P. Taras
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H. Nicholson

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

G. De Nardoab, L. Listaa, D. Monorchioab, G. Onoratoab, C. Sciaccaab

INFN Sezione di Napolia; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIb, I-80126
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1 Introduction

Recent cosmic ray measurements of the electron and positron flux from ATIC[1], FERMI[2], and
PAMELA[3] have spectra which are not well described by galactic cosmic ray models such as
GALPROP[4]. For instance, PAMELA shows an increase in the positron/electron fraction with
increasing energy. No corresponding increase in the antiproton spectrum is observed. There have
been two main approaches attempting to explain these features: astrophysical sources (particularly
from undetected, nearby pulsars)[5] and annihilating or decaying dark matter.

Arkani-Hamed et al.[6] have introduced a class of theories containing a new “dark force” and
a light, hidden sector. In this model, the ATIC and PAMELA signals are due to dark matter
particles with mass ∼ 400 − 800GeV/c2 annihilating into the gauge boson force carrier with mass
∼ 1GeV/c2, which they dub the φ, which subsequently decays to Standard Model particles. If
the φ mass is below twice the proton mass, decays to pp are kinematically forbidden allowing only
decays to states like e+e−, μ+μ−, and ππ. If the dark force is non-Abelian, this theory can also
accommodate the 511 keV signal found by the INTEGRAL satellite [7] and the DAMA modulation
data [8].

The dark sector couples to the Standard Model through kinetic mixing with the photon. Thus
low-energy/high luminosity e+e− experiments like BABAR are in excellent position to probe these
theories. Recent papers by Batell et al. [9] and Essig et al. [10] have discussed the prospects
for finding evidence for the dark sector at the B-Factories in the Abelian and non-Abelian cases,
respectively. In the Abelian case, the signatures would be e+e− → γφ → γl+l− or e+e− →
φh′ → 3(l+l−) (where h′ is a “dark Higgs”). There are actually two non-Abelian scenarios: the
Higgsed case and the confined case (“dark QCD”). In the Higgsed case there are at least three
dark particles in play: A′ which mixes with the photon, another gauge boson W ′, and the dark
Higgs h′. In this regime, signatures are e+e− → W ′W ′ → l+l−l+l− (via a virtual A′) and e+e− →
γA′(→ W ′W ′) → γl+l−l+l−, plus “Higgs′-strahlung” processes which may lead to missing energy.
Finally, the confined case could lead to a proliferation of “dark mesons”, whose lowest mass states
decay to leptons. Depending on the scenario and the coupling between the Standard Model and
dark sectors, cross sections could be as large as a few femtobarns at BABAR which would translate
to hundreds of events observed in the detector.

In this note we describe a search for the W ′ in the reaction e+e− → W ′W ′ → l+l−l+l− in
exclusive 4-lepton final states, where we require that the four leptons carry the full center of mass
energy and that the two dilepton pairs have the same invariant mass.

2 The BABAR Detector and Dataset

The data used in this analysis were collected with the BABAR detector at the PEP-II asymmetric
energy e+e− storage rings between 1999 and 2008 and correspond to an integrated luminosity of
536 fb−1. This data was mostly at the Υ (4S) peak but it also includes collisions at the Υ (2S) and
Υ (3S) as well as off-resonant data.

To study signal efficiency and resolution, e+e− → W ′W ′ → l+l−l+l− Monte Carlo (MC)
samples were generated (where l=e or μ) for different values of W ′ mass using the MadGraph
event generator[11]. There were 104 events generated at each mass value of: 0.3, 0.4, 0.5, 0.7, 1.0,
1.5, 2.0, 3.0, 4.0, and 5.0 GeV/c2. To study backgrounds, we have inspected BB (∼3x luminosity),
uds, cc, and ττ MC samples (each ∼1x luminosity). In addition we created 4-lepton QED samples
using the diag36 event generator[12].
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A detailed description of the BABAR detector is given in [13]. Charged-particle trajectories are
measured by a five-layer, double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber
(DCH) coaxial with a 1.5 T magnetic field. Charged-particle identification is achieved by combining
the information from a ring-imaging Cherenkov device (DIRC) with the ionization energy loss
(dE/dx) measurements from the DCH and SVT. Photons are detected in a CsI(Tl) electromagnetic
calorimeter (EMC) inside the coil. Muon candidates are identified in the instrumented flux return
(IFR) of the superconducting solenoid. We use GEANT4-based [14] software to simulate the
detector response and account for the varying beam and environmental conditions.

3 Event Selection

We search for the exclusive pair production of a narrow resonance, consistent with the detector
resolution, decaying to leptons and with a mass in the range between 240MeV/c2 to

√
s/2. The

signature is 4 leptons with zero total charge carrying the full beam momentum where the two
dilepton invariant masses are equal. This topology, particularly the equal invariant masses, is quite
unique and the only backgrounds are from 4-lepton QED processes. The full selection criteria are
described below. We used 10% of the data as a test (blind) sample to choose our selection and
signal extraction procedures before looking at the full dataset.

We begin by selecting events with:

• 4 charged tracks

• two leptons with pCM > 1.5GeV/c

• sum of the absolute value of momentum of all tracks> 6GeV/c2 or the total visible energy
(lab)> 8GeV/c2

We reconstruct 4-lepton candidates from combinations of two W ′ → l+l− candidates. The
lepton candidates are chosen by their signitures in the EMC and IFR. The W ′ candidates are
formed from e+e− or μ+μ− pairs. We then select events which satisfy the following criteria:

• [Ne, Nμ] = [4, 0], [2, 2], or [0, 4]

• M4lepton > 10GeV/c2

• the helicity angle of a lepton pair, defined as the angle between the positive lepton and the
lepton-pair flight direction, is required to be |cos(θH)| < 0.95 for each pair

• to reduce background from photon converstions, we require the flight significance, defined as
the W ′ candidates decay length from the interaction point divided by the error, is < 4σ for
each pair

• to reduce background from radiative Bhabha events, we require the angle between the decay
planes of the lepton pairs, φDPN > 0.2

The 4-lepton candidate is then fit constraining the four-momentum to the total beam momentum
and the vertex to the interaction point.

At this point, we can exploit the fact that both dilepton pairs for our signal events have the
same invariant mass. The 2-dimensional distributions of dilepton masses for each final state after

9
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Figure 1: The dilepton invariant mass distributions from data for (left to right) e+e−e+e−,
e+e−μ+μ−, and μ+μ−μ+μ− after all other cuts. The solid lines denotes m1 = m2.

all of the above cuts for the blinding sample is shown in Figure 1. We define the transformed
masses:

m = (m1 + m2) /2 (1)
Δm = |m1 − m2| (2)

where m1 and m2 are the dilepton invariant masses. The distribution of events for these variables
is shown in Figure 2. We impose a cut on Δm (shown as the solid line in Figure 2) of Δm <
0.25GeV/c2 for m < 1.0GeV/c2 and Δm < 0.50GeV/c2 for m > 1.0GeV/c2. Because of the
threshold effects in μ+μ−μ+μ−, we tighten the Δm cut in a linear fashion below m < 4 × M(μ).

In the case of the e+e−e+e− and μ+μ−μ+μ− final state, there are two possible l+l− pair
combinations. If both pairings pass all cuts, the pair with the smallest value of Δm is used. For
data, we see two pairings passing all cuts except the Δm cut for 25% of e+e−e+e− events and for
44% of the μ+μ−μ+μ− events. Table 1 shows the progressive and total efficiencies for the three
different final states of W ′W ′ → l+l−l+l− (assuming the mass of the W ′ is 1GeV/c2) as well as
the progressive efficiency for the data. As shown in the table, the loose cut on Δm is extremely
powerful at reducing the background while not affecting the signal efficiency. After all selection,
there are 28303 events remaining in our data sample; of these 16531 are e+e−e+e− events, 9592
are e+e−μ+μ− events, and 2180 are μ+μ−μ+μ− events.

4 Signal Extraction

Our aim is to perform a search for a narrow peak in the m range from 240MeV/c2 up to
√

s/2.
After the selection described in the previous section, the expected backgrounds are quite low and
we have decided to perform a cut-and-count analysis in bins of m, using the the Δm variable to
define the signal and background regions. The number of observed signal events in a m bin is then:

Nsig = Nsignal region − Nbkg region × Asignal

Abackground
(3)

where Asignal (Abackground) is the area of the signal (background) Δm region.
In this section, we will discuss the signal efficiency, Δm shapes (including the definition of signal

and background regions) and background rates as a function of m and the method we plan to use
in extracting the signal yields and setting limits.
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Figure 2: The transformed mass distributions,Δm vs m, from data for (left to right) e+e−e+e−,
e+e−μ+μ−, and μ+μ−μ+μ− after all other cuts. The solid lines denotes the Δm cut value.

4.1 Efficiency and Δm resolution dependence on the W ′ mass

The efficiency for different generated values of the W ′ mass is shown in Figure 3. The efficiency
decreases from ∼ 45% at 1GeV to 25−30% at high masses depending on the decay mode. There is
a dip in efficiency for mass pairs around 500MeV/c2 which is due to the opening angle of the lepton
pair at this mass coinciding with the bending angle at the EMC, precluding us from identifying the
two particles for a fraction of the events. The Δm resolution also varies significantly as a function
of W ′ mass. Figure 4 shows the distributions of Δm for four different mass values. The resolution
of Δm increases with increasing W ′ mass. Since the background Δm distribution is basically flat
and roughly constant in m (see Section 4.2), the effect is to reduce the sensitivity at higher masses.

Figure 5 shows the values of the Δm cut which retains 90% of the signal as a function of m.
We use this cut value to define the signal (Δm < cutV al) and background (dm > cutV al) regions
for the cut-and-count signal extraction. Recall that the maximum value of Δm is 0.25(0.5)GeV/c2

for m < (>)1.0GeV/c2. The solid line is the result of a 4th-order polynomial fit which we use to
extrapolate between m points.

4.2 Background composition

While we ultimately use the Δm sidebands to determine our background level, we have also used
MC to study the composition of the background. In generic qq, B0B

0, B+B−, and τ+τ− samples
we find only a single event passing the cuts (a qq event in the 4-electron final state). From this we
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Table 1: Selection efficiencies relative to the previous cut with binomial errors for the three signal
decay modes assuming M(W ′) = 1GeV/c2 and for onpeak data.

Cuts Relative Efficiencies (%)
εW ′W ′→4e εW ′W ′→2e2μ εW ′W ′→4μ εdata

Preselection 61.4 ± 0.5 68.2 ± 0.5 73.4 ± 0.4 −−−−−
N(tracks)=4 93.3 ± 0.3 95.5 ± 0.3 97.1 ± 0.2 83.7 ± 0.0
N(leptons) 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 98.7 ± 0.0
M(4l) > 10GeV 87.2 ± 0.5 93.2 ± 0.3 98.1 ± 0.2 66.2 ± 0.0
|cos(θH)| < 0.95 99.9 ± 0.1 99.6 ± 0.1 98.8 ± 0.1 18.2 ± 0.0
flt. sig.< 4σ 97.2 ± 0.2 96.5 ± 0.4 99.1 ± 0.1 54.6 ± 0.1
μ PID 100.0 ± 0.0 81.9 ± 0.6 70.3 ± 0.6 74.2 ± 0.1
φDPN > 0.2 92.4 ± 0.4 93.2 ± 0.4 93.6 ± 0.4 37.0 ± 0.1
Δ(m) 98.3 ± 0.2 99.8 ± 0.1 99.6 ± 0.1 3.8 ± 0.1
Total Efficiency 43.7 ± 0.5 44.5 ± 0.5 44.8 ± 0.5 −−−−−

)2 (GeV/cm
0 1 2 3 4 5

E
ff

ic
ie

n
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BABAR

preliminary

)2 (GeV/cm
0 1 2 3 4 5

E
ff

ic
ie

n
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BABAR

preliminary

)2 (GeV/cm
0 1 2 3 4 5

E
ff

ic
ie

n
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BABAR

preliminary

Figure 3: The signal efficiency versus W ′ mass for (left to right) W ′W ′ → e+e−e+e−, W ′W ′ →
e+e−μ+μ−, and W ′W ′ → μ+μ−μ+μ− after all cuts.

conclude that our background is dominated by QED processes.
We have generated e+e−μ+μ− and μ+μ−μ+μ− samples9 using the diag36 generator and com-

pared the MC to our selected dataset. We find good agreement both in the scale and shape between
data and the four-lepton QED MC. From the MC, we expect to observe 16241 ± 250 μ+μ−μ+μ−

events in the full dataset while we observe 15666 ± 125 (statistical errors only). For e+e−μ+μ− we
expect 219927 ± 3450 and observe 185499 ± 431 events.

The background distributions in Δm and m, after all selection, are shown in Figure 6. The
background Δm distributions were fit with a line in different slices of m, the slopes of which are
plotted for the three modes in Figure 7, and the slopes are consistent with 0. When extracting the
signal yields, we assume a uniform background distribution, and take into account the uncertainties
in the slope as a systematic error. We use the full dataset for the above plots; any signal present
would be completely washed out when projected onto the Δm or m axis.

9Due to the enormous e+e−e+e− QED cross-section, this mode is difficult to generate efficiently.
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Figure 4: The Δm distributions for four different W ′ mass values (left to right) W ′W ′ → e+e−e+e−,
W ′W ′ → e+e−μ+μ−, and W ′W ′ → μ+μ−μ+μ− after all cuts.
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Figure 5: The values of the cut on Δm keeping 90% of signal events as a function of W ′ mass for
(left to right) W ′W ′ → e+e−e+e−, W ′W ′ → e+e−μ+μ−, and W ′W ′ → μ+μ−μ+μ−. The line is a
fit to a fourth order polynomial. This cut defines our signal and background region.

4.3 Signal extraction and limit setting

In this analysis, our aim is to obtain a limit (or observe a signal) for e+e− → W ′W ′ as function
of the presumed W ′ mass. To this end, search for a signal in steps of the average dilepton mass
m. We have chosen the m bin size to be 20MeV/c2, which is a large enough range to fully contain
any signal. Figure 8 shows the RMS of m at the different mass points. We scan m in steps of
10MeV/c2, half the bin size, so that at least one bin will fully contain the signal. Thus, in the m
range from 0.24−5.3GeV/c2, there are 507 total bins. We define the signal and background regions
in Δm by cutting at a value of Δm so that the signal is 90% efficient, as discussed above.

With this framework, the number of background events in a given m bin is quite small. Except
at low m, the expected number of background events in the entire Δm range is typically below 100
events in a m bin, particularly for the μ+μ−μ+μ− mode where it is below 5 events. Thus there will
be relatively large fluctuations in the background due to Poisson statistics and the limit setting
procedure must take this into account. We use a profile likelihood technique[15] to set limits in the
presence of nuisance parameters, such as the expected background yield. Using this technique, we
obtain a confidence level (CL) for the presence of signal defined as:

CL = Prob (−2 log(Ls=0) − 2 log(Lmax)) (4)

where Ls=0 is the value of the likelihood at 0 signal events and Lmax is the maximum value of the
likelihood.

Since in our dataset we will have 507 correlated measurements (204 independent measurements),
each at a different m, we need to determine a criteria for a signal observation. Simply asking whether
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Figure 6: The background (top) Δm and (bottom) m distributions for (left-to-right) e+e−e+e−,
e+e−μ+μ−, and μ+μ−μ+μ− from the full dataset. For the Δm plots, we have required m > 1GeV
to that all events have the same upper Δm value. The effect of the Δm cut increasing from
0.25GeV/c2 to 0.5GeV/c2 at m = 1.0GeV/c2 can be seen in the m plots.

an individual bin has an observed yield in it > 3σ above 0 is not enough since the probability to
observe at least 1 > 3σ fluctuation in one of the m bins is 0.3 (as determined from the simulation
described below). We need to redefine the Xσ levels for the new question “What is the chance
that I see a background fluctuation above Xσ in our 507 correlated trials?”. We have done this by
generating many simulated datasets (toys) with the expected m and Δm background distributions
with 0 signal and plotting the highest value of the signal confidence level observed over that dataset,
which we call CLmax. The results of these simulations are shown in Figure 9, plotting the more
convenient variable −ln(1 − CLmax). As a reference, the distribution of values −ln(1 − CL) from
a single bin (i.e. not the largest value in an m scan) is shown in Figure 10. Table 2 shows the
values of −ln(1 − CLmax) that correspond to 1-4σ fluctuations of the background (also displayed
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Figure 7: The slope of the background Δm distributions for (left-to-right) e+e−e+e−, e+e−μ+μ−,
and μ+μ−μ+μ− as a function of m. The mean values of the slopes are: −0.11 ± 0.06, 0.07 ± 0.08,
and −0.02 ± 0.19.
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Figure 8: The m RMS versus W ′ mass for (left to right) W ′W ′ → e+e−e+e−, W ′W ′ → e+e−μ+μ−,
and W ′W ′ → μ+μ−μ+μ−.

on the plot). Although the background levels are different, the values are consistent between the
three modes.

Additionally, we calculate the combined max confidence level, defined as:

(1 − CLmax,C) = (1 − CLmax,4e)(1 − CLmax,2e2μ)(1 − CLmax,4μ) (5)

whose distribution for background-only toys is shown in the bottom right plot of Figure 9. If
lepton universality holds, this limit is potentially more sensitive than the individual confidence
levels and allows us to catch a signal that is not significant in any single final state. Our criteria to
claim evidence of a signal is to observe the largest value of −ln(1 − CLmax) in any of e+e−e+e−,
e+e−μ+μ−, μ+μ−μ+μ− or in the combined confidence level that is greater than the 3σ values given
in Table 2.

Table 2: Values of the 1-,2-,3-,4-σ limits for −ln(1 − CLmax) in the three final states.

Signif. P (CLmax) < X −ln(1 − CLmax)
e+e−e+e− e+e−μ+μ− μ+μ−μ+μ− Combined

1σ 0.84135 7.2 7.1 7.0 10.2
2σ 0.97725 9.3 9.2 9.0 12.4
3σ 0.99865 12.2 12.1 11.6 15.8
4σ 0.99997 16.3 16.1 14.5 19.2

5 Systematic Errors

There are two types of systematic errors in this analysis: systematics that effect both the yield and
cross-section upper limits (e.g. errors due to uncertainties in the background shape) and systematics
that just affect the cross-section (e.g. tracking efficiency errors). The second type of error does not
effect the signal significance. Table 3 summarizes the values the systematic errors for the different
sources described below.

• Δm background shape: We assume that the background is uniform in Δm and with our
limited MC statistics but we have no a priori reason to expect this. While the background
Δm does look quite flat and does not appear to depend on m, see Figure 7), we still need
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Figure 9: The distribution of −ln(1−CLmax) from toy with the arrow showing the value of −ln(1−
CLmax) observed in data. The plots are (left to right, top to bottom) e+e−e+e−, e+e−μ+μ−,
μ+μ−μ+μ−, and the three modes combined.

to account for uncertainties. Consequently, we estimate the Δm background shape from the
data itself.

In order to estimate the size of this uncertainty, we have generated toy m scans (background
only) with a slope and calculated the signal yield assuming a slope of 0. The mean Δm slopes
are given in the caption of Figure 7. For this study, we shift the mean value of the slope (Bm)
by:

– for Bm < 0, we assign the slope to be Bm − σ

– for Bm > 0, we assign the slope to be −σ

where σm is the error on the mean. We only use the negative slope values because we are
primarily interested in how this biases us toward more signal. The results of this study are
shown in Figure 11 as the observed signal yield bias vs m for the three modes. The bias
depends on m because both the number of background events in the full Δm region and
because the Δm signal/background region definitions depend on m.

We incorporate this bias into a systematic error on the cross section by converting the bias
in the number of events into a cross section in m bins. The error is largest for the e+e−e+e−

mode where at high m is as large as ∼ 5 ab; for the other two modes this error is generally
< 1 ab.
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Figure 10: The distribution of values of −ln(1−CL) from (error bars) data and (solid histogram)
toy for (left to right) e+e−e+e−, e+e−μ+μ−, and μ+μ−μ+μ−.
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Figure 11: The positive signal yield bias due to the uncertainty in the background Δm slope as a
function of m for (left-to-right) e+e−e+e−, e+e−μ+μ−, and μ+μ−μ+μ−.

• Δm signal shape: We use MC at select mass values to interpolate the 90% efficiency Δm
cut value to cover all masses. The interpolation is done with a polynomial and we vary the
parameters of the polynomial within their errors to get the error in the Δm cut value. This
is then translated into an efficiency error. The magnitude of this error is ∼ 1% and depends
slightly on m.

• interpolation of total efficiency: We use MC at select mass values to interpolate the
total efficiency to all masses. The interpolation is done by interpolating the efficiency linearly
between the MC mass points. We propagate the errors in the efficiency points due to MC
statistics through the interpolation. In addition, we take the difference between a linear and
quadratic interpolation and assign the difference, added in quadrature with the statistical
error, as the systematic. The magnitude of this error is ∼ 3% and depends slightly on m.

• particle ID: we assign a 1% error per electron and 2% error per muon on the cross sections
to account for the systematic error in the PID efficiency. This is the dominant systematic
error.

• tracking efficiency: we assign 0.21% error per track on the cross sections to account for
the systematic error in the charged track reconstruction efficiency.

• luminosity: we assign a 1.1% error on the cross sections due to the uncertaintly in the total
luminosity.

We add these sources of systematic error in quadrature and scale the statistical 90% upper limit
by the fractional systematic error to obtain the final upper limit. This error depends slightly on
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m but is around 5% for e+e−e+e− (up to 10% for high m), 6.5% for e+e−μ+μ−, and 8.2% for
μ+μ−μ+μ−.

Table 3: Sources of systematic uncertainties and their contributions.

Source e+e−e+e− e+e−μ+μ− μ+μ−μ+μ−

Δm bkg shape 0.4-5.5 ab 0.1-0.7 ab 0.1-0.3 ab
Δm signal efficiency 1% 1% 1%
total signal efficiency 3% 3% 3%
particle ID 4% 6% 8%
tracking efficiency 0.8% 0.8% 0.8%
luminosity 1.1% 1.1% 1.1%

6 Results and Conclusions

The spectra for the entire dataset (including the 10% test sample) show no significant signal in
any of e+e−e+e−, e+e−μ+μ−, μ+μ−μ+μ− final states, or the combination of the three. The
summary of results is shown in Table 4. The distribution of observed signal events, after background
subtraction, for all bins in m is shown in Figure 12. The values of −ln(1−CL) versus m are shown
in Figure 13 and show no bins above the 3σ value, shown on the plots. The raw distribution of
−ln(1 − CL) compared to toy simulations with only background is shown in Figure 10 and is in
good agreement. The plots in Figure 9 compare the values of the −ln(1−CLmax) observed in data
with the distribution found in toy simulation.

Table 4: Summary of the −ln(1 − CLmax) observed in data.

−ln(1 − CLmax) mmax (GeV)

e+e−e+e− 5.88 5.27
e+e−μ+μ− 6.26 1.44
μ+μ−μ+μ− 6.94 2.23
Combined 7.15 1.66

Correcting for efficiency (Figure 3, using linear interpolation between points and including the
90% cut on Δm) and scaling by the luminosity, we obtain a 90% upper limit for the cross section as
shown in Figures 14 and 15. The points in these plots are the upper limit for each bin in m while
the solid lines are the averages of the upper limits in the m region shown. We set upper limits of
σ(e+e− → W ′W ′ → e+e−e+e−) < (15 − 70) ab, σ(e+e− → W ′W ′ → e+e−μ+μ−) < (15 − 40) ab,
and σ(e+e− → W ′W ′ → μ+μ−μ+μ−) < (11 − 17) ab depending on W ′ mass (taking the ranges
from the averaged limits).

Assuming lepton universality (BR(W ′ → e+e−) = BR(W ′ → μ+μ−)), we combine the three
modes to obtain upper limits for the reaction e+e− → W ′W ′ → l+l−l′+l′−. We obtain this limit
by combining the individual profile likelihood functions for the three decay modes as a function of
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Figure 12: The number of signal events after background subtraction versus m for (left to right)
e+e−e+e−, e+e−μ+μ−, and μ+μ−μ+μ−. The band structure evident in the μ+μ−μ+μ− plot is due
to the very low number of events in this mode.
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Figure 13: The value of −ln(1 − CL) versus m for (left to right) e+e−e+e−, e+e−μ+μ−, and
μ+μ−μ+μ−.

e+e− → W ′W ′ → l+l−l′+l′− cross section. The combined upper limit is shown in Figure 15; we set
upper limits for σ(e+e− → W ′W ′ → l+l−l′+l′− < (25 − 60) ab.

From the combined upper limit, we derive limits on the possible couplings between the Standard
Model and dark sectors. The cross section for e+e− → W ′W ′ has been calculated by Essig et al.[10].
For a dark photon A′ mass less than the center of mass energy, Ecm, the cross section is given by:

σ(e+e− → W ′W ′)low = Nc
4π
3

ε2αDα

E2
cm

√
1 − 4m2

W ′

E2
cm

(
1 +

2m2
W ′

E2
cm

)
(6)

while for an A′ mass larger than Ecm the cross section is:

σ(e+e− → W ′W ′)high = Nc
4π
3

ε2αDα

E2
cm

E4
cm

m4
A′

√
1 − 4m2

W ′

E2
cm

(
1 +

2m2
W ′

E2
cm

)
(7)

where Nc is the number of colors in the dark sector, ε is the mixing parameter between the SM and
the dark sector, and αD is the dark sector coupling constant. Figure 16 shows the upper limits we
obtain on ε2αD assuming low A′ mass, or on ε2αD

m4
A′

assuming large A′ mass. For most of the mass

range, we exclude values of ε2αD above 2 × 10−10 in the low A′ mass scenario or values of ε2αD

m4
A′

above 2 × 10−14 in the high A′ mass scenario. In the model of Ref [10], these limits exclude the
preferred parameter region for A′ masses above 1.0GeV/c2.

We would like to thank Rouven Essig, Philip Schuster, and Natalia Toro for useful discussions
and for generating the signal Monte Carlo samples. We are grateful for the extraordinary con-

19



tributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions
that have made this work possible. The success of this project also relies critically on the expertise
and dedication of the computing organizations that support BABAR. The collaborating institutions
wish to thank SLAC for its support and the kind hospitality extended to them. This work is sup-
ported by the US Department of Energy and National Science Foundation, the Natural Sciences
and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut
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Figure 14: The cross section 90% upper limit versus m for (top to bottom) e+e− → W ′W ′ →
e+e−e+e− and e+e− → W ′W ′ → e+e−μ+μ−. The points are the upper limit for each m bin while
the lines are the average of the limits over many bins.
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Figure 15: The cross section 90% upper limit versus m for (top to bottom) e+e− → W ′W ′ →
μ+μ−μ+μ− and the combined e+e− → W ′W ′ → l+l−l′+l′− assuming lepton universality. The
points are the upper limit for each m bin while the lines are the average of the limits over many
bins. The band structure evident in the μ+μ−μ+μ− plot is due to the very low number of events
in this mode.
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Figure 16: The 90% upper limit on ε2αD (left axis) or ε2αD

m4
A′

(right axis) versus m(W ′). The points

are the upper limit for each m(W ′) bin while the lines are the average of the limits over many bins.
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