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ABSTRACT

We consider parton showers based on radiation from QCD dipoles or
‘antennae’. These showers are built from 2 → 3 parton splitting processes.
The question then arises of what functions replace the Altarelli-Parisi
splitting functions in this approach. We give a detailed answer to this
question, applicable to antenna showers in which partons carry definite
helicity, and to both initial- and final-state emissions.
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1 Introduction

In the studies that are now being done to prepare for physics at the LHC, many
new approaches have been proposed to the old problem of generating parton showers.
The workhorse event generators PYTHIA [1] and HERWIG [2] generate parton show-
ers by successive radiations from individual partons. The ‘splitting functions’ that
defines the radiation pattern are taken to be the kernels in the Altarelli-Parisi equa-
tion [3,4]. This guarantees that the radiation pattern is correct in the region in which
two partons become collinear. Marchesini and Webber pointed out that it is also
important to include color interference between emissions from different partons [5].
In the workhorse generators, this is implemented by angular ordering of emissions.

The program ARIADNE, by Andersson, Gustafson, Lönnblad, and Pettersson,
took a different approach, implementing color coherence by considering the QCD
dipole to be the basic object that radiates a parton [6,7]. The basic branching pro-
cess in a parton shower is then a splitting in which two partons forming a color dipole
radiate a third parton. This approach has been taken up recently by a number of
authors. It is the basis for the VINCIA shower by Giele, Kosower, and Skands [8] and
the parton shower implementation in SHERPA by Krauss and Winter [9]. We are
also developing a parton shower based on this approach [10]. In the years between
ARIADNE and the newer works, the term ‘dipole’ has been applied in QCD to a
different strategy based on 1 → 2 splittings with recoil taken up by a third parti-
cle [11]. To avoid confusion, we will follow [8] in calling the initial two-parton state
an ‘antenna’ and a branching process with 2 → 3 splittings an ‘antenna shower’.

Central to the antenna shower is the 2 → 3 splitting function, the function that
gives the relative branching probabilities as a function of the final momenta. The
original ARIADNE program used an ad hoc proposal satisfying the basic consistency
requirements. It would be better to have a prescription that can be directly derived
from QCD. Splitting to three partons has been studied in great detail in the QCD
literature, but not for this application. Collinear systems of three partons are a part
of the infrared structure of QCD at next-to-next-to-leading order. and calculations
that reach this level need an explicit prescription for treating this set of infrared
singularities. Kosower [12] defined the ‘antenna function’ as a basic starting point for
the analysis of this problem. Many authors have computed antenna functions [13–15].
Quite recently, Gehrmann-De Ridder, Gehrmann, and Glover have built a complete
formalism of ‘antenna subtraction’ for NNLO calculations [16]. The kernel in their
theory can be interpreted as a 2 → 3 splitting function, and it has been used to
perform 2 → 3 splitting in the VINCIA shower [8].

In this paper, we will take a much more direct route to the construction of 2 → 3
splitting functions. We will compute these functions by writing local operators that
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create two-parton final states and computing their 3-parton matrix elements. These
calculations are very straightforward. They can be used to treat individually all
possible sets of polarized initial and final partons.

This paper is organized as follows: In Section 2, we will present our complete set
of polarized 2 → 3 splitting functions. In Section 3, we will give the derivation for
the cases with total spin zero. In Sections 4 and 5, we will give the derivation for the
cases with nonzero total spin.

All of these derivations will be done in the kinematics of final-state radiation.
This is the easiest situation to visualize and understand. However, the same splitting
functions can be used, after crossing, to describe parton emissions that involve initial-
state particles. We will explain how to use our expressions for initial-state showers in
Section 6.

The 1 → 2 Altarelli-Parisi splitting functions are universal in the sense that they
result from a well-defined singular limit of QCD amplitudes. For 2 → 3 splitting func-
tions there is no such universality. The collinear and soft limits must agree with the
known universal values, but away from these limits there is no unique prescription.
Earlier in this introduction, we made reference to a number of previous proposals for
the spin-averaged antenna splitting functions. All of these, including the ARIADNE
splitting functions, have the correct soft and collinear limits and so satisfy the basic
requirements. In Section 7, we will give a detailed comparison of the 2 → 3 split-
ting functions obtained using our method to previous proposals for these splitting
functions.

2 Proposal for the 2 → 3 splitting functions

We begin by defining variables for 2 → 3 splitting. There are three cases of
splittings that are needed for antenna showers: the final-final (FF) splitting, in which
a third particle is created by coherent radiation from a two-particle system in the final
state; the initial-final (IF) splitting, in which a third particle is created by coherent
radiation from an initial- and a final-state particle; and initial-initial (II) splitting, in
which a third particle is created by coherent radiation from two initial-state particles.
It is easiest to understand the kinematics of antenna splitting for the FF case. In
this section, we will explain this kinematics and give a precise prescription for the
splitting functions. In Section 6, we will extend our prescription to the IF and II
cases, in such a way that the same splitting functions can be used in those cases.

Consider, then, a two-parton final-state system (A,B) that splits to a 3-parton
system (a, c, b), conserving momentum, as shown in Fig. 1(a). Let sij = (ki + kj)

2,
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Figure 1: (a) Kinematics of 2 → 3 splitting in the final state (FF) case. (b) Phase space
for 2 → 3 splitting in the FF case. The six regions corresponding to different orderings of
sab, sac, sbc are shown. The region that should be well described by an antenna splitting
AB → acb is shaded.

and let Q = kA + kB = ka + kb + kc.

The fractional invariant masses in the final state are

yab =
sab

sAB

, yac =
sac

sAB

, ybc =
sbc

sAB

. (1)

The momentum fractions of the three particles in the (AB) frame are

za =
2Q · ka

sAB

, zb =
2Q · kb

sAB

, zc =
2Q · kc

sAB

. (2)

These obey the identities

yab = (1− zc) , yac = (1− zb) , ybc = (1− za) . (3)

and
yab + yac + ybc = 1 , za + zb + zc = 2 . (4)

The FF phase space covers the triangle za ≤ 1, zb ≤ 1, za + zb ≥ 1. We can
divide this phase space into six triangles, each of which has a different ordering of
the three quantities yab, yac, ybc, as shown in Fig. 1(b). An antenna shower should
give an accurate description of the dynamics in the two regions yac < ybc < yab,
ybc < yac < yab that are shaded in the figure.

Radiation from different QCD antenna is strictly indepedent and non-interfering
only in the limit of a large number of colors in QCD, Nc � 1. Keeping only terms
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leading in Nc is known to be a good approximation to full QCD in many circum-
stances. In particular, parton shower algorithms are correct only to leading order in
Nc. In this paper, we will explicitly work only to the leading order for large Nc.

In this context, the rate for a 2 → 3 splitting is given by a formula of the form

Nc
αs

4π

∫
dzadzb · S(za, zb, zc) (5)

For example, in e+e− → q−g+q+,

1

σ0

dσ

dzadzb

= Nc
αs

4π

z2
a

(1− za)(1− zb)
, (6)

where (a, c, b) are the (q, g, q), respectively, − and + denote left- and right-handed
helicity, and σ0 is the cross section for e+e− → q−q+ [17]. Eq. (5) will be our basic
formula of reference. Using this notation, we can write the various 2 → 3 splitting
functions as

S =
N (za, zb, zc)

yabyacybc

, (7)

where the numerator is a simple function of the zi. For example, for the splitting
q−q+ → q−g+q+ given above,

N = yabz
2
a = (1− zc)z

2
a . (8)

In Table 1, we give our proposal for the numerator functions for all possible cases
of massless quark and gluon splittings. The expressions are all monomials in the yij

and zj.

In the FF kinematics, S(za, zb, zc) in (7) is always positive. In IF and II kinematics,
as we will explain in Section 6, the situation is more subtle. First, the yij may be
negative, leading to a negative value of (7). This happens in cases where a fermion
is crossed from the final to the initial state. Combining the minus sign from crossing
with (7), the splitting functions become positive in all cases. However, further out
in the IF region, za or zb may become negative, leading to a negative value for some
cases in (7). We suggest that the splitting functions in those cases should be set to
zero in this region. We will discuss this point further in Sections 6 and 7.

The splitting functions S must give the correct universal behavior in the soft and
collinear limits. In the soft limit, zc → 0, the numerators must go to 1 if the flavor
and helicity of the final partons a and b match those of the initial partons A and B;
otherwise, the numerators must go to 0. It is easy to check that this test is satisfied.

In the collinear limits, we will insist that each antenna has the collinear behavior
required in QCD. One often hears the following statement about soft and collinear
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+ + + + +− +−+ −+ + −−+ −+− +−− −−−
g+g+ → ggg 1 y4

ac y4
ab y4

bc 0 0 0 0
g−g+ → ggg 0 0 y4

bc z4
a z4

b y4
ac 0 0

g+g+ → qqg - - y3
abybc yaby

3
bc - 0 0 -

g−g+ → qqg - - yaby
3
bcz

2
b z2

az
2
byabybc - 0 0 -

q−q+ → qgq - - - yabz
2
a yabz

2
b - - -

q−q− → qgq - - - - - y3
ab - yab

q−g− → qgg - - - 0 y4
ac y3

abzb - za

q−g+ → qgg - - - z3
a yabz

3
b y4

ac - 0
q−g− → qqq - - - - yaby

3
ac y2

abyaczb - -
q−g+ → qqq - - - - zayabyacz

2
b zayaby

3
ac - -

Table 1: Numerator functions N (za, zb, zc) for the polarized 2 → 3 splitting functions
AB → acb: S = N/(yabyacybc). Each line gives a choice of AB. The labels denote the
polarization of the three final particles with the radiated particle c in the center: (ha, hc, hb).
The empty columns are forbidden by quark chiral symmetry. By the P and C invariance of
QCD, the same expressions apply after exchanging − ↔ +, q ↔ q, or ABacb ↔ BAbca.

limits: In dipole splitting (1 → 2 emission), each dipole has the correct collinear
behavior but the correct soft behavior is obtained by combining neighboring dipoles.
In antenna splitting (2 → 3 emission), each antenna has the correct soft limit but the
correct collinear behavior is obtained by combining neighboring antennae. However,
in the large Nc limit, which we take to guide our intuition, different antennae are
independent radiators with different, non-interfering, colors flowing in them. Thus,
we conclude that each antenna, separately, must give collinear radiation of the form
predicted by QCD. A radiating gluon belongs to two antennae, and so the total
radiation collinear with that gluon will be the sum of two contributions. However,
these two contributions will be identical and will simply give a factor 2 for the total
emission rate. This philosophy differs from that of the ARIADNE group [6,7] and of
[9]. We will discuss this point further when we compare with their results in Section
7.

To make this criterion precise, consider the limit in which c becomes collinear with
a. In this limit,

zc → z , za → (1− z) , zb → 1 , yac → 0 . (9)

The 2 → 3 splitting function must reduce to

S → 1

yac

P (z) , (10)

here P (z) is the relevant polarized Altarelli-Parisi splitting function. These were
presented in the original Altarelli-Parisi paper [3] and are reviewed in Table 2. The
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++ −+ +− −−
g+ → gg : 1/z(1− z) (1− z)3/z z3/(1− z) 0
g+ → qq : - (1− z)2 z2 -
q− → gq : - - (1− z)2/z 1/z
q− → qg : - z2/(1− z) - 1/(1− z)

Table 2: Polarized Altarelli-Parisi splitting functions P (z) for splittings B → cb. The labels
denote the polarization of the two final particles with the radiated particle first: (hc, hb).
The empty columns are forbidden by quark chiral symmetry. By the P and C invariance of
QCD, the same expressions apply after exchanging − ↔ + or q ↔ q.

functions are normalized as in (5), and as described in the previous paragraph: We
take the large Nc limit and divide by 2 where necessary to give the contribution from
one QCD antenna. The denominator of (7) tends to yacz(1− z) in this limit. Then it
is easy to check that the numerators match correctly in all cases. The limit in which
c becomes collinear with b can be checked in the same way.

When the collinear limits and the soft limit are all nonzero, there is a unique
monomial of the y’s and z’s that gives all limits correctly. In the other cases, there is
some ambiguity. In all cases, it would be desirable if the results in Table 1 could be
derived directly by simple Feynman diagram computations. In the next few sections,
we will present those derivations.

3 Spin-0 case

To compute the 2 → 3 splitting functions, we will use the following method: Write
an operator that, at the leading order, creates a 2-parton state with definite helicity.
Then, compute the 3-particle matrix element. This realizes in a very simple way the
splitting process illustrated in Fig. 1.

To create massless quarks and antiquarks of definite helicity, we will use the ap-
propriate chiral fermion fields. To create gluons of definite helicity, we will use the
operators

σ · F =
1

2
σmσnFmn , σ · F =

1

2
σmσnFmn , (11)

where σm, σm are the 2× 2 matrix entries of the Dirac matrices in a chiral basis and
Fmn is the gluon field strength tensor. At leading order, σ · F creates a + helicity
gluon, and σ · F creates a − helicity gluon.

The 2-parton state g+g+ in the first line of Table 1 can be created from the spin-0
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Figure 2: Feynman diagrams for the computation of the gg → ggg splitting functions.

operator

O =
1

2
tr[(σ · F )2] . (12)

We can then compute the splitting function for this polarized initial state explicitly
from the definition

S(za, zc, zb) = Q2

∣∣∣∣∣M(O → acb)

M(O → AB)

∣∣∣∣∣
2

(13)

In the next few sections, we will compute all of the splitting functions in Table 1
using this formula, with a different choice of the operator O for each line of the table.

To evaluate (13), we need to compute the matrix elements of O, with total mo-
mentum Q injected, to 3-gluon final states. The result can be expressed in terms
of color-ordered amplitudes. We identify the color-ordered amplitude that multiplies
the color structure tr[T aT cT b] with the splitting function. To carry out these compu-
tations, we will use the spinor product formalism. That is, instead of working with
4-vectors, we will use as our basic objects the spinor products

〈ij〉 = u−(i)u+(j) , [ij] = u+(i)u−(j) . (14)

These objects obey
|〈ij〉|2 = |[ij]|2 = sij . (15)

Methods for QCD computations with spinor products and color-ordering are ex-
plained in [18,19]. In this notation, the matrix element for O to create a g+g+ final
state is

〈g+g+| O |0〉 = [12]2 . (16)

The three-gluon matrix elements of the operator (12) are given by the diagrams in
Fig. 2. These diagrams have already been analyzed by Dixon, Glover, and Khoze as
a part of their analysis of the coupling of the Higgs boson to multi-gluon states [20].
They find

A(O → g+g+g+) =
s2

AB

〈ac〉〈cb〉〈ba〉
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A(O → g+g+g−) =
[ac]4

[ac][cb][ba]

A(O → g+g−g+) =
[ab]4

[ac][cb][ba]

A(O → g−g+g+) =
[bc]4

[ac][cb][ba]

(17)

and zero for the other four cases. After squaring, using (15), and dividing by the
square of (16), we obtain the first line of Table 1.

One of the major points of [20] is that the results (17) belong to series of Maximally
Helicity Violating (MHV) amplitudes that have a simple form for any number of
gluons emitted. Actually, all of the amplitudes that we will compute in this paper
are similarly simple and belong to MHV series. The use of MHV amplitudes to study
antenna splitting is explored for higher-order processes in [15].

In principle, the initial state g+g+ could also have been created by an operator of
spin 2, or some higher spin. This would have led to a more complicated expression
for the 2 → 3 splitting function, with, however, the same soft and collinear limits.
This illustrates the ambiguity in the definitions of 2 → 3 splitting functions refered to
in the introduction. The simplest results are obtained using the operator of minimal
spin, and we will make that choice in all of the examples to follow.

The diagram shown in Fig. 3 gives the splitting of the two-gluon initial state to
qqg. We find

A(O → q+q−g+) =
[ab]2

[ac]

A(O → q−q+g+) =
[cb]2

[ac]
(18)

There is no splitting to a final g−. This gives the result in the third line of the table.

The initial state q−q− can also be created by a spin 0 operator

O = qLqR . (19)

The matrix element for this operator to create a q−q− final state is〈
q−q−

∣∣∣O |0〉 = 〈AB〉 . (20)

A straightforward calculation gives

A(O → q−g+q−) =
〈ab〉2

〈ac〉〈cb〉
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Figure 3: Feynman diagram for the computation of the gg → qqg splitting functions.

A(O → q−g−q−) =
sAB

[ac][cb]
(21)

These give the results shown in the sixth line of the table.

4 Spin-1 and spin-2 case

In [6], the 2 → 3 splitting function for qq → qgq was derived from the cross section
for e+e− → qgq. From the point of view of the previous section, this corresponds to
creating the 2- and 3-parton final states using the operator

O = qLγ
mqL . (22)

To obtain a definite matrix element, we must contract this operator with a polariza-
tion vector. A convenient choice is to introduce two new massless vectors 1 and 2,
such that k1 +k2 = kA +kB, and to choose the polarization vector to be εµ = 〈1|γµ|2].
This is effectively the procedure of decaying the massive vector that couples to the op-
erator (22) into a pair of massless vectors to facilitate the analysis; this is a standard
method in spinor product calculations [21]. We then recast

O =
1

2
qLγ

mqL 〈1|γm|2] . (23)

The matrix elements of (23) to a q−q+ state is〈
q−q+

∣∣∣O |0〉 = −〈1A〉[2B] . (24)

The direction of the 1-2 system chooses the helicity of the final partons. In this case,
there is only one choice, and so the amplitude vanishes when 1 is parallel to A or 2 is
parallel to B. This will not always be true in our later examples. But, we will always
be able to choose the desired helicity of A and B by choosing 1 parallel to B and 2
parallel to A.
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The matrix elements for the operator (23) to create 3-parton final states are

A(O → q−g+q+) =
〈1a〉2[12]

〈ac〉〈cb〉

A(O → q−g−q+) =
[2b]2〈12〉
[ac][cb]

. (25)

To compute the results in the fifth line of the table, we must essentially divide (25)
by (24) and square the result. To do this, we need a prescription for treating the
expressions 〈1a〉 and [2b] in the numerators. A treatment that is simple and becomes
exact in the collinear and soft limits is to approximate a collinear with A and b
collinear with B. Then identifying 1 with B and 2 with A gives

|〈1a〉|2 = sBa → zasAB , |〈1b〉|2 → 0 , |〈2a〉|2 → 0 , |〈2b〉|2 = sAb → zbsAB , (26)

and similarly for the conjugate products. Using this prescription, one obtains the
fifth line of the table. This is a more formal version of the argument for these entries
already given in Section 2.

In our calculations, we will encounter two more numerator objects that depend
on 1 or 2, namely, 〈1c〉 and 〈2c〉. The prescription above gives

|〈1c〉|2 = sBc → (ybc/zb)sAB , |〈2c〉|2 = sAc → (yac/za)sAB . (27)

However, it is potentially dangerous to write factors of za, zb in the denominator.
We will see in Section 6 that such factors would create unphysical singularities when
continued to the IF kinematics. Fortunately, we will see that 〈1c〉 arises only in
situations where there is no collinear singularity with c parallel to b. In such cases,
the remaining universal singular terms—the collinear singularity with c parallel to
a and the soft singularity—correspond to kinematic limits with zb → 1. A similar
consideration applies to 〈2c〉. Thus, we choose, instead of using (27), to evaluate
these quantities as

|〈1c〉|2 = sBc → ybcsAB , |〈2c〉|2 = sAc → yacsAB . (28)

This gives an incorrect shape in a region where a and b are collinear, but, hopefully,
we will not use the AB → acb splitting function to evaluate the rate to fill this region
of phase space.

Another choice for evaluating 〈1c〉 and 〈2c〉 is to replace both expressions by zc.
However, the spinor product 〈1c〉 vanishes in the bc collinear limit but not in the
ac collinear limit, and conversely for 〈2c〉, so this choice does not give the universal
singularities correctly.
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We now apply this formalism to compute the second and fourth lines of Table 1,
associated with the g−g+ antenna. This antenna is created by the spin-2 operator
tr[γm(σ · F )γn(σ · F )]. To make a definite calculation, we need a spin-2 polarization
vector. An appropriate choice can be found by introducing the massless vectors 1
and 2 as above and writing

εmn = 〈1|γm|2] 〈1|γn|2] . (29)

This effectively decays the masive spin-2 particle into two massless spinors. This
method was introduced in [22] to compute the relevant amplitudes for the emission
of massive gravitons at high-energy colliders.

With this prescription, we generate the g−g+ antenna using the operator

O =
1

4
tr[γm(σ · F )γn(σ · F )]〈1|γm|2]〈1|γn|2] (30)

The matrix element of this operator that creates the 2-parton dipole is

〈g−g+| O |0〉 = 〈1A〉2[2B]2 . (31)

To obtain the correct initial polarizations, we take 1 = B, 2 = A as before. The
matrix elements to the possible 3-parton final states are

A(O → g+g+g+) = 0

A(O → g+g+g−) =
〈1b〉4[12]2

〈ab〉〈ac〉〈cb〉

A(O → g+g−g+) =
〈1c〉4[12]2

〈ab〉〈ac〉〈cb〉

A(O → g−g+g+) =
〈1a〉4[12]2

〈ab〉〈ac〉〈cb〉
, (32)

and the conjugates with 1 ↔ 2 for the other four combinations. Applying the
reductions (26), (27), we find the results given in the second line of the table.

The nonzero matrix elements of this operator to qqg final states are

A(O → q+q−g+) =
〈1c〉2[2b]2

[ac]

A(O → q−q+g+) =
〈1a〉2[2b]2

[ac]
. (33)

The same reduction process gives the results in the fourth line of the table.
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Figure 4: Feynman diagrams for the computation of the qg → qgg splitting functions.

5 Spin-1
2 and spin-3

2 cases

The cases of quark-gluon antennae can be treated in the same way. There is one
additional subtlety. In QCD, quarks are color triplets and gluons are color octets,
so a quark-gluon operator carries net color. This means that the matrix element for
gluon emission from a quark-gluon operator is not gauge-invariant unless we allow the
gluon also to be emitted from the initial state. This makes it unclear how to define
a quark-gluon antenna.

We resolve this problem with the following prescription: We consider the quarks
to be color octet particles like the gluons. Then, as in the previous sections, we
extract the color-ordered contribution corresponding to emission from the antenna.
In the limit of large Nc, the various antennae in a process radiate independently. The
diagrams contributing to a quark-gluon antenna in this prescription are shown in
Fig. 4. The third diagram, with an intermediate quark line, does not appear in QCD.
However, it does nicely provide the missing piece that makes this sum of digrams
gauge-invariant without radiation from the initial state.

With this understanding, we proceed as above. We can generate the q−g− antenna
using the operator qL(σ · F ). The polarization spinor can be built by introducing
massless spinors 1 and 2 as above and taking |2〉 to be this spinor. Then

O = −iqL(σ · F ) |2〉 . (34)

The matrix element of this operator that creates the 2-parton dipole is

〈q−g−| O |0〉 = 〈AB〉[B2] . (35)

To obtain the correct initial polarizations, we take 1 = B, 2 = A.

The matrix elements to the possible 3-parton final states are

A(O → q−g+g+) = 0

12



A(O → q−g−g+) =
〈ac〉3〈2c〉
〈ab〉〈ac〉〈cb〉

A(O → q−g+g−) =
〈ab〉3〈2b〉
〈ab〉〈ac〉〈cb〉

A(O → q−g−g−) =
sAB〈12〉[1a]
[ab][ac][cb]

. (36)

Applying the reductions (26), (27), we find the results given in the seventh line of
the table.

The nonzero matrix elements of this operator to qqq final states are

A(O → q−q−q+) =
〈ac〉〈2c〉
〈cb〉

A(O → q−q+q−) = −〈ab〉〈2b〉
〈cb〉

. (37)

The same reduction process gives the results in the ninth line of the table.

We generate the q−g+ antenna using the spin-3
2

operator qLγ
m(σ · F ). This is es-

sentially the supersymmetry current of the system of gluons and color octet fermions.
The polarization spinor can be built by introducing massless spinors 1 and 2 as above:

O = iqLγ
m(σ · F ) 2]〈1|γm|2] . (38)

The matrix element of this operator that creates the 2-parton dipole is

〈q−g+| O |0〉 = 〈1A〉[2B]2 . (39)

To obtain the correct initial polarizations, we again take 1 = B, 2 = A.

The matrix elements to the possible 3-parton final states are

A(O → q−g+g+) =
〈1a〉3[12]2

〈ab〉〈ac〉〈cb〉

A(O → q−g−g+) =
〈ab〉[2b]3〈12〉
[ab][ac][cb]

A(O → q−g+g−) =
〈ac〉[2c]3〈12〉
[ab][ac][cb]

A(O → q−g−g−) = 0 . (40)

Applying the reductions (26), (27), we find the results given in the eighth line of the
table.
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The nonzero matrix elements of this operator to qqq final states are

A(O → q−q−q+) =
〈1a〉[2b]2

[cb]

A(O → q−q+q−) = −〈1a〉[2c]
2

[cb]
. (41)

The same reduction process gives the results in the tenth line of the table.

6 Initial-state showers

The Feynman diagram computations that we have done to find the antenna split-
ting functions for FF splittings can also be applied, by crossing, to IF and II split-
tings. The expressions in Table 1 are given in terms of invariant quantities that are
unchanged under crossing. Thus, we can use the expressions in this table directly in
other channels. At worst, a change of the overall sign is required in some cases. In
this section, we will clarify this statement by analyzing the kinematics of IF and II
splittings in the same variables as those used in Section 2 for FF splittings. In all
cases, the kinematics is done for all massless partons only. The kinematic discussion
in this section is similar to that presented in [23].

To begin, we will formalize some of the results quoted in Section 2 for the FF
region. The cross section for a process X → acb is

σ(X → acb) =
1

ΦX

s

128π3

∫
dzadzb|M(X → acb)|2 , (42)

where ΦX is the flux factor. Polarization and color indices have been suppressed. The
left-hand side has been integrated over the orientation of the final state system but
is otherwise exact. To write an expression involving the antenna splitting function,
we approximate

M(X → acb) ≈M(X → AB) · gT · M(O → acb)

M(O → AB)
, (43)

where O is the operator used in Sections 3–5 to represent the state AB. The factor
gT is the QCD coupling and color matrix; after squaring and summing over colors,
this becomes 4παsNc. The splitting function is defined by (13),

S(za, zc, zb) = sAB

∣∣∣∣∣M(O → acb)

M(O → AB)

∣∣∣∣∣
2

(44)
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Then

σ(X → acb) ≈ σ(X → AB) · αsNc

4π

∫
dzadzbS(za, zc, zb) . (45)

It is important to note that, in this formula or in (43), the vectors kA and kB are
introduced as part of the approximation. They can be defined in any way that is
consistent with the requirements that kA and kB are lightlike, kA + kB = Q, and kA

and kB become parallel to ka and kb, respectively, in the soft and collinear limits.

The logic of this derivation extends straightforwardly to the IF and II regions.
The major change is that, in these cases, we need to introduce initial hadrons from
which the initial partons are extracted.

Consider first the IF case. The cross section for a proton of momentum P to
scatter from a color-singlet system X transferring momentum Q to create a 2-parton
system cb is

σ(pX → cb) =
∫
dxaf(xa)

1

ΦaX

1

16π

∫
d cos θ∗ |M(aX → cb)|2 , (46)

where cos θ∗ is the scattering angle in the cb center of mass system. We will approxi-
mate this formula using the expression analogous to (43)

M(aX → cb) ≈M(AX → B) · gT · M(aO → cb)

M(AO → B)
. (47)

Then the splitting function is defined by the same expression S as in (44), but now
analytically continued into the new kinematic region. If a fermion line is crossed from
the final to the initial state, an extra factor (-1) should be included.

The decomposition of the amplitude is illustrated in Fig. 5(a). The kinematics
can be described by variables yij and zi obeying the relations (1) to (4). However, the
vectors kA, ka now have negative timelike component, and the vector Q = kA + kB =
ka + kb + kc is spacelike, Q2 = sAB < 0. The phase space for this region covers the
quadrilateral shown in Fig. 5(b). The region of integration is infinite, since za can
become very large, but the integral is cut of at large za by the parton distribution
function. The line za > 1, zb = 1 corresponds to the region of initial state radiation,
c parallel to a. The line za = 1, 0 < zb < 1 corresponds to the region of final
state radiation, c parallel to b. The line za + zb = 1 corresponds to b parallel to a,
that is, b as initial state radiation from the primary a. An antenna shower should
give an accurate description of the dynamics in the two regions |yac| < |ybc| < 1,
|ybc| < |yac| < |yab| that are shaded in the figure. The new constraint |ybc| < 1 is just
|sbc| < |Q2|, which is stronger than the constraint that this invariant is less than |sab|.

To decompose (46) into an appropriate form, we choose pA and pB and then change
variables. Let pA be chosen in the direction of pa, so that pa = zapA, za > 1. Then
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Figure 5: (a) Kinematics of 2 → 3 splitting in the initial-final (IF) case. (b) Phase space
for 2 → 3 splitting in the IF case. The eight regions corresponding to different orderings
of |sab|, |sac|, sbc, |Q2| are shown. The region that should be well described by an antenna
splitting AB → acb is shaded.

pB = Q− pA. We have

pa = xaP , pA = xAP , so xa = zaxA , (48)

with xA having the definite value xA = −Q2/2P · Q associated with scattering a
massless particle from a local current. For the reaction aQ→ bc, s + t + u = Q2, so
t+ u = Q2 − s = Q2za. Then

t = Q2(1− zb) =
1

2
Q2za(1− cos θ∗) (49)

Using these formulae, we can change variables from (xa, cos θ∗) to (za, zb). The Jaco-
bian of this transformation is

J =
∂(xa, cos θ∗)

∂(za, zb)
=

2xA

za

(50)

Thus,

σ(pX → cb) =
∫ dza

z2
a

∫
dzb

∫
dxAxAf(zaxA) δ(xA +Q2/2P ·Q)

· 1

ΦAX

1

8π
|M(aX → cb)|2 . (51)

This is an exact rewriting of (46). Now apply the approximation (47) and group
terms to form

σ(AX → B) =
1

ΦAX

2πδ(Q2 + xA2P ·Q)|M(AX → B)|2 . (52)
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Then

σ(pX → cb) ≈
∫ dza

z2
a

∫
dzb

∫
dxAf(zaxA)σ(AX → B) · αsNc

4π
S(za, zc, zb) . (53)

As an example, consider using this formula to describe initial-state gluon radiation
in deep inelastic scattering from a quark. The total gluon emission is given by the
sum of the two polarized splitting functions in the fifth line of Table 1, equal to

∑
S =

∣∣∣∣∣z2
a + z2

b

yacycb

∣∣∣∣∣ , (54)

We have supplied an extra minus sign because we cross a fermion. In the region of
initial state radiation, za = 1/w, zb ≈ 1, yac = (1−zb), ybc = (1−1/w). Then, setting∫

dzb
1

1− zb

= log
Q2

µ2
, (55)

we obtain

σ(pX → cb) ≈
∫
dxA

∫ dw

w
f(
xA

w
)σ(AX → B) · αsNc

4π

1 + w2

(1− w)
log

Q2

µ2
, (56)

which is correct.

For the II case, we begin from the formula for two protons of momentum PA, PB

to produce a color-singlet system of momentum Q plus a massless parton c,

σ(pp→ cX) =
∫
dxa

∫
dxbf(xa)f(xb)

1

2sab

1

16π

∫
d cos θ∗

2p∗√
sab

|M(ab→ cX)|2 ,

(57)
where cos θ∗ and p∗ are the scattering angle and the momentum in the cX center of
mass frame.

The decomposition of the amplitude is illustrated in Fig. 6(a). The kinematics
can again be described by variables yij and zi obeying the relations (1) to (4). Now
the vectors kA, ka kB, kb have negative timelike component, and the vector Q =
kA + kB = ka + kb + kc is also negative timelike, with Q2 > 0. The phase space
for this region covers the quadrant shown in Fig. 5(b), with za, zb > 1. Again, the
region of integration is infinite, but the integral is cut off by the behavior of the
parton distribution functions. The line za > 1, zb = 1 corresponds to the region of
initial state radiation with c parallel to a. The line za = 1, zb > 1 corresponds to
the region of initial state radiation with c parallel to b. An antenna shower should
give an accurate description of the dynamics in the two regions |yac| < |ybc| < 1,
|ybc| < |yac| < 1 that are shaded in the figure. Again, the limit 1 here corresponds to
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Figure 6: (a) Kinematics of 2 → 3 splitting in the initial state (II) case. (b) Phase space
for 2 → 3 splitting in the II case. The six regions corresponding to different orderings of
|sac|, |sbc|, |Q2| are shown. The region that should be well described by an antenna splitting
AB → acb is shaded.

constraints |sac|, |sbc| < |Q2|, which are stronger than the constraints that these two
invariants are less than |sab|.

In the ab→ cX process, the system X must recoil with some nonzero transverse
momentum. Thus, it is not possible to choose kA and kB to be parallel to ka, kb.
The invariants for the ab → cX scattering process satisfy s + t + u = Q2. Since
t = Q2(1 − zb), u = Q2(1 − za), this means that s = Q2(za + zb − 1). Alternatively,
s = xaxb · 2PA · PB. We would like to choose the longitudinal fractions of A and B,
xA and xB, to satisfy the relation

xAxB · 2PA · PB = Q2 . (58)

To make this possible, we must write

xa = zaxAC , xb = zbxBC , (59)

with [24]

C2 =
za + zb − 1

zazb

(60)

The function C(za, zb) approaches 1 when either za or zb goes to 1; that is C ≈ 1 in
both collinear regions.

Also, t+ u = Q2(2− za − zb) = Q2zc, so

t = Q2(1− zb) =
1

2
Q2zc(1− cos θ∗) . (61)
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We can now use (59) and (61) to change variables from (xa, xb, cos θ∗) to (xA, za, zb),
holding xB fixed at the value xB = Q2/xA2PA ·PB. The Jacobian of this transforma-
tion is

J =
∂(xa, xb, cos θ∗)

∂(xA, za, zb)
=

2xB

zc

= xB
Q2

sab

√
sab

p∗
. (62)

Then

σ(pp→ cX) =
∫ dza

z2
a

dzb

z2
b

1

C4

∫
dxAdxB f(zaxAC)f(zbxBC) xBδ(xB −Q2/xA2PA · PB)

· 1

sAB

1

8π
|M(aX → cb)|2 . (63)

This is an exact rewriting of (57). Now apply the approximation analogous to (43)
or (47) and group terms to form

σ(AB → X) =
1

2sAB

2πδ(Q2 − xAxB2PA · PB)|M(AX → B)|2 . (64)

This gives, finally,

σ(pp→ cX) ≈
∫ dza

z2
a

dzb

z2
b

1

C4

∫
dxAdxB f(zaxAC)f(zbxBC)σ(AB → X)·αsNc

4π
S(za, zc, zb) .

(65)

To test this formula, consider the case of qq annihilation with the emission of a
gluon collinear with the quark a. The sum of polarized splitting functions for this
case is again (54). In the collinear region of interest, za = 1/w, zb ≈ 1. Repeating
the step that led to (56), we find

σ(pp→ cX) ≈
∫
dxAdxB

∫ dw

w
f(
xA

w
)f(xB)σ(AB → X) · αsNc

4π

1 + w2

(1− w)
log

Q2

µ2
,

(66)
which is the correct limit.

7 Comparison to previous results

In the Introduction, we made reference to a number of previous definitions of the
antenna splitting functions. We noted that these definitions agree, as they must, in
the singular soft and collinear limits. However, these prescriptions differ widely away
from the boundaries of phase space. In this section, we will compare our prescription
to those of ARIADNE [6,7] and Gehrmann-De Ridder, et al. [16].
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We will make this comparison over the natural phase space discussed in the pre-
vious section–the entire (za, zb) plane above the line za + zb = 1. In order to describe
antenna showers for initial- as well as final-state emissions, the splitting functions
should extend into the region za, zb > 1. Depending on the details of how the shower
is constructed, their use might be restricted to a polygon around za = zb = 1, or the
expressions might be used for arbitrarily large values of za and zb.

We note again that the IF regions include the lines za = 0 and zb = 0. Expressions
for the splitting functions that are well-behaved near za = zb = 1 can possibly have
a singularity on this line, though such a singularity in the middle of the phase space
would be unphysical. We used this criterion in Section 4 to exclude factors of 1/za

and 1/zb from appearing in (28). The antenna functions of Duhr and Maltoni [15]
are typically singular along this line and so cannot be used in parton shower models
in all regions.

The ARIADNE and Gehrmann-De Ridder antenna functions give expressions
summed over final polarizations. To compare our splitting functions to these, we
must sum over a row in Table 1. Our summed expressions are independent of the ini-
tial polarization in the soft and collinear limits, but they depend on the polarizations
of A and B in the interior of the (za, zb) space. The comparison to our expressions
thus also reveals where this dependence on polarization is an important effect.

There is another issue when comparing our results to those of ARIADNE and
Gehrmann-De Ridder, et al., that must be resolved. Our antenna functions are defined
for processes with definite helicity. We wish to interpret them as probabilities over all
of phase space. In particular, this means that the antenna functions must be positive.
In the FF region of phase space, our functions are manifestly positive. In the IF and
II regions in the vicinity of the point za = zb = 1, the expression (7) can be negative in
some cases, but the minus sign is always compensated by a minus sign from crossing
a fermion from the final to the initial state. In these cases, it suffices to define the
splitting function as the absolute value of (7). However, some of our expressions also
change sign in the IF region as one crosses the line where za or zb equals zero. We
regard this behavior as unphysical, and we will resolve the problem by setting the
antenna functions for the specific helicities in which it occurs to zero on the far side
of the lines za = 0 or zb = 0. The expressions for the remaining helicities generally
give a positive continuation of the splitting function to the regions where za or zb are
negative. We note that the regions where za and zb are negative lie outside the part
of the IF regions most important for a parton shower as indicated in Fig. 5.

For the ARIADNE and Gehrmann-De Ridder antenna functions, the expressions
given are summed over spins, and the individual pieces are not independent of one
another. The full terms, with their appropriate signs after analytic continuation,
are needed to reproduce the Altarelli-Parisi limits. If, as sometimes happens, these

20



expressions become negative, this must be fixed in the expression as a whole.

The first antenna splitting functions were put forward by the ARIADNE group [6].
Their approach started from the spin-averaged cross section for the simple splitting
process qq → qgq in e+e− annihilation. They then guessed the expressions for the
qg → qgg and gg → ggg splittings, so that these would have a similar form to the
qq → qgq case,

S =
zna

a + znb
b

yacybc

, (67)

where na, nb = 2 for emission from a quark and 3 for emission from a gluon.

Our philosophy, explained in Section 2, is that each individual antenna should
reproduce the collinear limit predicted by QCD. These expressions are symmetric
under interchange of identical particles, while (67) does not have this property, so we
would obtain the complete splitting function by symmetrizing (67). This gives

qq antenna: S =
z2

a + z2
b

yacybc

,

gg antenna: S =
z3

a + z3
b

yacybc

+
z3

a + z3
c

yabybc

+
z3

b + z3
c

yabyac

,

qg antenna: S =
z2

a + z3
b

yacybc

+
z2

a + z3
c

yabybc

. (68)

The summed terms are each positive in the FF kinematic region. To obtain the
ARIADNE splitting functions in the other regions, we analytically continue these
formulae into the regions where za or zb is greater than 1.

We are now in a position to compare the ARIADNE function to our proposal.
For the qq antenna, the expression above coincides with the sum of row 5 of Table
1. For the gg and gq cases, the ratio of the above ARIADNE functions to those
defined in Table 1 are illustrated in Figs. 7, 8, and 9. The notation in the figures is
the following: Each figure represents the ratio of the ARIADNE splitting function
to our results for a specific initial set of polarized partons, summed over final state
polarizations. The ratio goes to 1 on the lines za = 1 and zb = 1, which correspond
to the collinear limits. Away from these lines, the contours on which the ratios are
1.2, 1.5, 2.0, 3.0, and 5.0 (toward the + symbol), and the inverses of these numbers
(toward the − symbol) are shown. The qg antenna function are asymmetric between
partons a and b. The IF region in the lower right is that in which the quark is in the
intial state and the gluon is in the final state. The IF region in the upper left is that
in which the gluon is in the initial state and the quark remains in the final state.

The ARIADNE authors gave a different interpretation to the formulae (68). They
took the philosophy that the collinear limit need not result from a single antenna but
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Figure 7: Visualization of the ratio of the ARIADNE antenna function to our antenna
functions for the processes gg → ggg. The figures on the left and right are the comparison
of the ARIADNE antenna function to our spin-summed antenna functions from row 1 and
row 2 in Table 1, respectively. The boundaries of phase space for the different kinematic
regions are marked in blue. The contours are plotted at ratios of 1.2, 1.5, 2.0, 3.0, and 5.0,
with + indicating a region in which the ratio is greater than 1.
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Figure 8: Visualization of the ratio of the ARIADNE antenna function to our antenna
function for the process q−q− → qgq. Our antenna function for the process q−q+ → qgq
coincides with the ARIADNE result and so is not included. The notation is as in Fig. 7.

Figure 9: Visualization of the ratio of the ARIADNE antenna function to our antenna
functions for the processes qg → qgg. The figures on the left and right are the comparison
of the ARIADNE antenna function to our spin-summed antenna functions from row 7 and
row 8 in Table 1, respectively. The notation is as in Fig. 7.
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rather should be the result of summing over the possible antennae that would lead
to a specific final state. A three gluon final state could result from any pair of the
gluons radiating the third and so should be the sum of three antennae. Then the
second line of (68) would be interpretated as the sum over these three antennae. This
is a reasonable point of view for the FF kinematics considered in [6]. However, in the
IF and II regions, at least one of the zi will be negative and so some of the terms
in the last two lines of (68) will become negative. Such terms cannot be interpreted
as independent radiators, each emittting a gluon with positive probability. It is
tempting to revise the formula in (68) by taking the absolute values of the negative
terms. However, one can readily check that no such prescription gives the correct
Altarelli-Parisi limit along the lines za = 1 and zb = 1 at the boundaries of the IF and
II regions. Thus, we believe, the ARIADNE formulae can be used in the IF and II
regions only by using the formulae (68) as written and accepting that some negative
signs will appear [25].

Gehrmann-De Ridder, Gehrmann and Glover [16] studied 2 → 3 splitting from
Feynman diagrams to develop an antenna subtraction program for NNLO calcula-
tions. In doing so, they were able to extract unpolarized antenna functions for the
processes gg → ggg, qg → qgg and qg → qqq. To calculate the gluon-gluon antenna
function, they used the effective Higgs coupling to gluons

L = −λ
4
hF µνFµν . (69)

This is essentially the same procedure that we used in Section 3, and it yields the
same result as the sum of row 1 in Table 1. In our language, their antenna function
for the gluon-gluon dipole is [26]

S =
y2

ac + y2
bc + y2

ab + y2
acy

2
bc + y2

aby
2
bc + y2

aby
2
ac

yabyacybc

+ 4 . (70)

The comparison of this antenna function to the sum of row 2 of Table 1 is illustrated
in Fig. 10.

This splitting function for gg → ggg is, however, not precisely the form of the
splitting function that is used in the VINCIA parton shower [8]. They use the ‘global’
form of the Gehrmann-De Ridder antenna function, which in our language is

S =
1

2

[
2y2

ab + y2
aby

2
ac + y2

aby
2
bc

yabyacybc

+
8

3

]
. (71)

To implement this antenna function, a similar procedure is used as with the ARI-
ADNE antenna functions. That is, emissions from overlapping antenna are summed.
When the three antennae contributing to gg → ggg are summed together, one recov-
ers the result (70). This prescription. works well in the FF kinematics. However, as
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in the ARIADNE case, it might require negative splitting functions for some antennae
in the IF and II kinematics.

To construct the antenna functions involving quarks, Gerhmann-De Ridder, et al.,
calculated the decay of a neutralino χ to a gluon and a gluino ψ through the effective
operator

L = iηψσµνχFµν + h.c. (72)

This is a similar procedure to the one that we used in Section 4 in that octet fermions
were utilized to eliminate any color in the initial state. However, due to our choices
(26) and (28) for handling ambiguous momentum products, our antenna functions
differ from theirs. In our language, their antenna functions involving quarks are

qg → qgg : S =
2y2

ab + 2y2
ac + yaby

2
bc + yacy

2
bc + 2y2

acy
2
ab

yabyacybc

+ 2 + 2yac + 2yab ,

qg → qqq : S =
(yac + yab)

2yacyab − 2y2
acy

2
ab

yabyacybc

+ yab + yac . (73)

The comparison to our antenna functions is illustrated in Figs. 11 and 12.

We see in the figures that our antenna functions have a substantial dependence on
the initial-state helicities that is not captured in the Gehrmann-De Ridder functions.
This dependence is actually strongest in the FF region, though it is present in all
regions. As with the ARIADNE antenna functions, the Gehrmann-De Ridder func-
tions can become negative in some regions. In fact, the functions involving quarks
are negative in a substantial part of the left-hand IF kinematic region. These regions
are not directly visible in the comparison plots Figs. 11 and 12, since our contours
take only positive values. On the other hand, our expressions also have problems in
this region. Our prescription of setting negative splitting functions equal to zero sets
the entire splitting function to zero to the left of the za = 0 axis in the right-hand
plot in Fig. 12.

In summary, we have shown that the antenna splitting functions represented by
(7) and Table 1 give a physically sensible prescription for the construction of antenna
showers. These splitting functions can be used with the formulae (45), (53), (65) to
generate antenna splittings in all three relevant kinematic regions. We hope that this
formalism will provide a firm foundation for the construction of new parton showers
based on the antenna concept.
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Figure 10: Visualization of the ratio of the Gehrmann-De Ridder antenna function to
our antenna function for the process g−g+ → ggg. The antenna function for the process
g+g+ → ggg coincides with the Gehrmann-De Ridder result and so is not included. The
notation is as in Fig. 7.

Figure 11: Visualization of the ratio of the Gehrmann-De Ridder antenna functions to
our antenna functions for the processes qg → qgg. The figures on the left and right are
the comparison of the Gehrmann-De Ridder antenna function to our spin-summed antenna
functions from row 7 and row 8 in Table 1, respectively. The notation is as in Fig. 7.
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Figure 12: Visualization of the ratio of the Gehrmann-De Ridder antenna functions to
our antenna functions for the processes qg → qqq. The figures on the left and right are
the comparison of the Gehrmann-De Ridder antenna function to our spin-summed antenna
functions from row 9 and row 10 in Table 1, respectively. The notation is as in Fig. 7.
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