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ABSTRACT

We measure the logarithmic scatter in mass at fixed richness for clusters in the maxBCG cluster catalog, an
optically selected cluster sample drawn from SDSS imaging data. Our measurement is achieved by demanding
consistency between available weak lensing and X-ray measurements of the maxBCG clusters, and the X-ray
luminosity—mass relation inferred from the 400d X-ray cluster survey, a flux limited X-ray cluster survey. We
find 01w Ny = 0.45'929 (95% CL) atNo00 A~ 40, whereNzq is the number of red sequence galaxies in a cluster.

As a byproduct of our analysis, we also obtain a constraint on the correlation coefficient betlgeanth

InM at fixed richness, which is best expressed as a lower limjify > 0.85 (95% CL). This is the first
observational constraint placed on a correlation coefficient involving two different cluster mass tracers. We use
our results to produce a state of the art estimate of the halo mass funcier023 — the median redshift

of the maxBCG cluster sample — and find that it is consistent with the WMAP5 cosmology. Both the mass
function data and its covariance matrix are presented.

Subject headings: galaxies: clusters — X-rays: galaxies: clusters - cosmology: observation

1. INTRODUCTION X-ray emission, SZ decrements, weak lensing shear, or clus-

The space density of galaxy clusters as a function of clus-ter richness (a measure of the galaxy content of the cluster).

ter mass is a well-known cosmological probe (see e.g. HolderOf course, such mass estimators are noisy, meaning there can

et al. 2001; Haiman et al. 2001; Rozo et al. 2004; Lima & Hu P¢€ significant scatter between the observable mass tracer and
2004), and ranks among the best observational tools for con</USter mass. Since the mass function declines steeply with
strainingos, the normalization of the matter power spectrum Mass, up-scattering of low mass systems into high mass bins
in the low redshift universe (see e.g. Frenk et al. 1990; Henry ©n resultin a significant boost to the number of systems with
& Arnaud 1991; Schuecker et al. 2003; Gladders et al. 2007;2Pparently high mass (Lima & Hu 2005). If this effect is not
Rozo et al. 2007b}? The basic idea is this: in the high mass Properly modeled, the value o derived from such a cluster
limit, the cluster mass function falls off exponentially with Sample will be overestimated. .

mass, with the fall-off depending sensitively on the amplitude _©N€ approach for dealing with this difficulty is to employ

of the matter density fluctuations. Observing this exponen-Mass tracers that have minimal scatter, thereby reducing. the
tial cutoff can thus place tight constraints eg In practice, impact of said scatter on the recovered halo mass function.

however, the same exponential dependence that makes clud0" instance, Kravtsov et al. (2006) introduced a new X-ray
ter abundances a powerful cosmological probe also renders iﬂ]a_ss estimatoly = MgasTx, which n their simulations ex-
susceptible to an important systematic effect, namely uncer-1PitS an intrinsic scatter of only: 8%, independent of the
tainties in the estimated masses of clusters. dynamical state of the cluster. Use of a mass estimator with
Because mass is not a direct observable, cluster mass?@éﬂ]‘ )I(Ogysglit;?érSSTJ?\l/Jclac;/sle(g(ije:gag}%rtogf(jzoe(?f'rgg%?fg &
must be determined using observable mass tracers such ohringer 2002: Schuecker et al. 2003: Henry 2004: Stanek
1 Center for Cosmology and Astro-Particle Physics (CCAPP), The Ohio etal. 2006)-
State University, Columbus, OH 43210 Such tightly-correlated mass tracers are not always avail-
< ZtTAgA%GO ggggvg BPh_xésicHs |IID%Jarimgnt,bUnivce:rAsiE)y3 1OCI;GCaIifornia at able. In such cases, determination of the scatter in the mass-
anta barpara, rolaa Rall, santa barbara, i i 1t i i
3 Physics Department, University of Michigan, Ann Arbor, MI 48109 obse_rvable relation is critical to.accurately Inf.emng the mass
4 Astronomy Department, Universityof Michigan, AnnArbor, Ml 48109 function an.d thereby d.e.ter.mlnlng. CosmOIOglcal. parameters.
5 Michigan Center for Theoretical Physics, Ann Arbor, MI 48109 Of course, In practice, It is |mpo_s,3|ble to determm? this scat-
6 Department of Physics, The University of Chicago, Chicago, IL 60637 ter to arbitrary accuracy, but since the systematic boost to
7 Kavli Institute for Particle Astrophysics & Cosmology, Physics Depart- the mass function is proportional to the square of the scatter

ment, and Stanford Linear Accelerator Center, Stanford University, Stanford, (Lima & Hu 2005) (i.e. the Variance) even moderate con-
CA 94305 '

8 Department of Astronomy and Astrophysics, The University of Chicago, straints on the scatter can result in t'g@tconStramts'

Chicago, IL 60637 In this paper, we use optical and X-ray observations to
®Kavli Institute for Cosmological Physics, The University of Chicago, constrain the scatter in the mass-richness relation for the
Chicago, IL 60637 maxBCG cluster catalog presented in Koester et al. (2007a).

10 center for Cosmology and Particle Physics, Physics Department, New ifi ; i
vork University, New York NY 10003 Specifically, we use observational constraints on the mean

11 Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109m"’15.s_”chness re.latlon' and on the mean and .Scatter of the

12 Fermi National Accelerator Laboratory, P.O. Box500, Batavia, IL 60510 LX_”ChneSS relation, to 90”\_/6” 'nd‘?Pendem estimates Of_ the

13 5 is formally defined as the variance of the linear matter density aver- Scatter in theLx —M relation into estimates of the scatter in
aged over spheres with radiBs= 8 h™ Mpc. the mass—richness relation. An interesting byproduct of our
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analysis is a constraint on the correlation coefficient betweenout!* In addition, the weak lensing data presented in this
mass and X-ray luminosity at fixed richness. To our knowl- analysis assumed a flACDM cosmology with{,, = 0.27.
edge, this is the first time that a correlation coefficient involv- The recovered mass function has the standard hubble param-
ing multiple cluster mass tracers has been empirically deter-eter degeneracy.
mined.

The layout of the paper is as follows. In section 1.1 we 2. DATA SETS

lay out the notation and definitions used throughout the paper. |n this work we use the public maxBCG cluster catalog pre-
Section 2 presents the data sets used in our analysis. In segented in Koester et al. (2007a), which is an optically selected
tion 3 we present a pedagogical description of our method foryolume limited catalog of close to 1@00 clusters over the
constraining the scatter in the richness-mass relation, whileredshift rangez € [0.1,0.3]. These clusters were found in
section 4 formalizes the argument. Our results are found in;g5qq ded of imaging data from the Sloan Digital Sky Sur-
section 5, and we compare them to previous work in sectione (SDSS, York et al. 2000) using the maxBGG cluster find-
6. In section 7, we use our result to estimate the halo mas§ng aigorithm (Koester et al. 2007b). This algorithm identi-
function in the local universe &= 0.23, the median redshift  fie5 cjysters as overdensities of red sequence galaxies. All

of the maxBCG cluster sample, and we demonstrate that outg|sters are assigned a redshift based on the SDSS photomet-

recovered mass function is consistent with the latest COSMOYic data only, and these redshifts are known to be accurate to

logical constraints from WMAP (Dunkley et al. 2008). A de- ithin 5 dispersiom\z~ 0.01. Every cluster is also assigned
tailed cosmological analysis of our results will be presented in 4 richness measuMeoo, which is the number of red sequence
a forthcoming paper (Rozo et al., in preparation). Our SUm- gajaxies above a luminosity cut ofdl., and within a speci-

mary and conclusions are presented in section 8. fied scaled aperture, centered on the Brightest Cluster Galaxy
. . (BCG) of each cluster. Only clusters wiltpoo > 10 are in-
1.1. Notation and Conventions cluded in the final catalog. Interested readers are referred to

We summarize here the notation and conventions employed<oester et al. (2007a) and Koester et al. (2007b) for further
in this work. Given any three cluster mass tracers (possiblydetails. In the interest of economy of notation, from now on
including mass itselfX,Y, andZ, we make the standard as- we denote the maxBCG richness measure simpN.as

sumption that the probability distributioR(X,Y|Z) is a bi- The relationship between cluster richness and various well
variate lognormal. The paramete&g,z, Bx|z, andaxz are known mass tracers has been studied in large, homogeneous
defined such that samples, such as 2MASS (Dai et al. 2007) and SDSS (Becker
etal. 2007; Johnston et al. 2007; Rykoff et al. 2008b; Mandel-
(InX|Z)=Ax|z +axzInZ (1) baum et al. 2008b). Of particular interest to us are the weak
In(X|Z) =By z +axzInZ. (2) lensing measurements of the mean mass as a function of rich-

o ness, and the X-ray measurements of the mean and scatter of
Note the slopes of the mean and logarithmic mean are thethe X-ray luminosity as a function of richness. The former
same, as appropriate for a log-normal distribution. The scatteranalysis has been carried out by Johnston et al. (2007) based
inInX at fixedZ is denOted?x}_z, and the correlation coeffi-  on the weak lensing data presented in Sheldon et al. (2007),
cient between IX and InY at fixedZ is denoted'y yz. WWe and independently by Mandelbaum et al. (2008a). In short,
emphasize that all quoted scatters are the scatter in the nat- Sheldon et al. (2007) stacked maxBCG clusters within narrow
ural logarithm, not in dex. Note these parameters are simply richness bins, and measured the average weak lensing shear
the elements of the covariance matrix specifying the Gaussiamrofile of the clusters. These shear profiles were turned into
distributionP(InX,InY|InZ). Under our lognormal assump-  surface mass density contrast profiles using the redshift distri-
tion for P(X,Y|Z), the parameterBy ; andBy|; are related  pution of background sources estimated with the methods of
via Lima et al. (2008) and the neural net photometric redshift esti-
Byjz = Axz+ }U)Zqz- (3) mators described in Oyaizu et al. (2008). Then, Johnston et al.
2 (2007) fit the resulting profiles using a halo model scheme to
In this work, the quantities of interest are cluster mislss obtain tight constraints on the mean mass of maxBCG clusters
X-ray luminosity L, and cluster richnesl. Unless other- ~ for each of the richness bins under consideration. The Man-
wise specified, cluster mass is definedvagg, the mass con-  delbaum et al. (2008b) analysis is very similar in spirit to the
tained within an overdensity of 500 relative to criticaly one described above. The main differences are the way the
is the total luminosity in the rest-frame®-2.0 keV band, ~ Source redshift distribution is estimated, and the details of the
andN is the maxBCG richness measuXgyo, the number ~ Mmodelfitting use to recover the masses. The differencesin the
of red sequence galaxies with luminosity abow&L0 within results between these two analysis are discussed in appendix
an aperture such that the mean density within said radius isA-2, Where we use them to set priors on the mass—richness
on average, 200, times the mean galaxy density assuming refation. .
Om=0.3. Likewise, unless otherwise stated all parameters Thé measurement of the mean X-ray luminosity of
governing the relations betwedh Ly, andN assume thatl maxBCG clusters has been carried out by Rykoff et al.
is measured in units of #0M,, Lx is measured in units of ~ (2008D) following an approach similar to that pioneered in
10* ergy's, andN is measured in “units” of 40 galaxies. For Dai et al. (2007). The necessary X-ray data is readily avail-
instance, including units explicitly, the mean relation between able from the ROSAT All-Sky Survey (RASS, Voges et al.

cluster mass and richness reads 1999). In short, Rykoff et al. (2008b) stacked the RASS pho-
o ton maps (Moges et al. 2001) centered on maxBCG clusters
(MIN) _ ox N 4 in narrow richness bins. The background subtracted stacked
104 M, PBwmN) 0 : (4)

. 14 For other values dfi, our weak lensing masses scaldvasc h™ and the
A Hubble constant parametér= 0.71 is assumed through  X-ray luminosities agx o h2.
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photon counts within a 7587 kpc aperture were used to es-

timate the mean X-ray luminosityy in the Q1-2.4 keV rest 4 A

frame of the clusters. In addition, Rykoff et al. (2008b) mea- i . Q% o

sured the scatter in X-ray luminosity at fixed richness by indi- 0.95[ O% ES §
1

v T

©
>
®

vidually measurind.x for all maxBCG clusters witiN > 30. i Lo =
It is worth noting that due to the shallowness of RASS, many
of the maxBCG clusters are not X-ray luminous enough to
be detected individually. However, non-detection and upper .
limits for Ly for individual systems were properly taken into 085k
consideration using the Bayesian approach detailed in Kelly I
(2007), and the recovered mean X-ray luminosity from this

0.90F

"M,LIN

Baysian analysis was fully consistent with the stacked means. 0.801

In addition to the data sets above, we use the constraints I |
on thelLy —M relation from Vikhlinin et al. (2008). These 075l N
constraints are based on the 400d cluster X-ray survey, a flux 04 05 06 07 08
limited cluster survey based on ROSAT pointed observations Tun

with an effective sky coverage of 397 deBurenin et al.

2007). Briefly, Vikhlinin et al. (2008) measured both the to- F!G: 1.— Contours of constaii -M parameters. For each assumed value

tal soft band ),(-ra luminosity and the cluster mass for each of the scatteiyy and correlation coefficient parametgy |y, we predict

a . y y . e . the amplitude, slope, and scatter of the— M relation of a mass selected

cluster in the sample. X-ray Iumlnosmes are estimated from sample of clusters witM > 3 x 10*4 M. Contours of constant amplitude,

ROSAT data, and measure the luminosity in the rest-fram slope, and scatter are shown with the solid, dashed, and dotted lines respec-

0.5-2.0keV band, extrapolated to infinity assuming standard tively. The thicker lines correspond to the central values otthe M priors

B rofiles. Cluster masses are estimated based on the values giscussed in appendix A.4 and summarized in Table 1, while the the other two
proties. . contours enclose the 95% confidence region for each of the parameters. The

Yx derived from followup Chandfa obser\{atlons, though they second slope contour falls to outside the region of parameter space shown

note that the results they obtain using different mass tracersn the figure. The intersection of the three separate regions correspond to

such as X-ray temperature and total gas mass are very similarcceptable values for the two unknown parametgygy andry,|n-

The M —Yx relation is itself calibrated based on hydro-static _ S

mass estimates. Importantly, Vikhlinin et al. (2008) explic- InM and InLx. This probability distribution is completely

itly correct for the Malmquist bias expected for a flux limited specified by the mean and variance of bitlandLx at fixed

cluster sample, so tHg —M relation they derive can be inter-  richness, and by the correlation co_e_ff|C|ent betwigleandLy.

preted as the relation one would obtain using a mass limitedOf these, there are only two quantities that are not already ob-

cluster sample. servationally constrainedryy, the scatter in mass at fixed
For this work, we have repeated the analysis in Rykoff et al. richness, andy v, the correlation coefficient between mass

(2008b) with a slightly different definition foky. In par- andLy at fixed richness.

ticular, we measure the X-ray luminosity in the rest-frame  Suppose now that we guessed values for these two quan-

0.5-2.0 keV band within a h™Mpc aperture. The changein tities, so that the probability distributioP(M, Lx|N) is fully

band is tailored to match the energy band used by Vikhlinin specified. Given the abundance functiofN), we can use

et al. (2008) , which we used to place priors on the-M P(M,Lx|N) to randomly assign a mass and an X-ray lumi-

relation. It is worth noting that Vikhlinin et al. (2008) do not nosity to every cluster in the sample. We can then select

use a Ih™*Mpc aperture, as we do. We have, however, care-a mass limited sub-sample, and measure the corresponding

fully calibrated the scaling between duy definition and that ~ Lx —M relation, comparing it to thex —~M measurement from

of Vikhlinin et al. (2008) so as to be able to use their results in Vikhlinin et al. (2008). Since théx —M relation we predict

our analysis.end A detailed description of our measurementglepends on our assumptions abB(M, Lx|N), there should

can be found in appendix A.3. only be a small region in parameters space where our pre-
dictions are consistent with independent observational con-
3. RELATING CLUSTER MASS, X-RAY LUMINOSITY, AND straints on thé.x —M relation.
RICHNESS

Figure 1 illustrates this idea. To create the figure, we have
The problem we are confronted with is the following: we set every observed parameter of the distribuffgi, Lx |N)
have four pieces of observational data, namely to the central value of the priors described in appendix A and
. ~ summarized in table 1. We then defined a grid in the two
e The abundance of galaxy clusters as a function of rich- dimensional space Spanned bM N and TMLLINS and carried
ness. through the argument describeo‘ above. The resulting predic-
tions for the amplitude, slope, and scatter of tke-M rela-
tion as a function ofy andry, |y are shown in the figure.
We plot contours of constant amplitude, slope, and scatter of
theLx —M relation as solid, dashed, and dotted lines respec-
tively. The thicker curves correspond to the central values
e The mean and variance of the relation between clusterof the priors, while thinner curves demark the corresponding
X-ray luminosity and mass. 95% confidence limits. As we can see, all three contours in-
tersect in a finite region of parameter space, indicating good
From this data, we wish to determine the scatter in mass atagreement between our weak lensing and X-ray data, and the
fixed richness for the cluster sample under consideration.  independent determination of the —M relation. Based on
The basic idea behind our analysis is as follows. ConsiderFigure 1, we expect a detailed analysis should constrain our
the probabilityP(M, Lx|N), which we take to be Gaussian in  parameters toyy ~ 0.40, andry |y =~ 0.9. The rest of this

e The mean relation between cluster richness and mass.

e The mean and variance of the relation between cluster
richness and X-ray luminosity.
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paper is simply a way of formalizing the argument described 4.2. Implementation

above in order to place errors on beigy andry - We estimate the probability distributid{p) using a Monte
4. FORMALISM Carlo approach. Ignoring an overall normalization constant

We wish to formalize the above argument in order to place and setting deflx/or) = constant, we have

guantitative constraints on the scatter in mass at fixed rich- 1 Noras

ness. Details of how we go about doing so are presented be- P(p) = —— Z P(x(p,ai)) (9)
low. Readers interested only in our results can move directly Naraws <=

to section 5.

- whereq; for i = 1 throughNgaws are random draws of the nui-
4.1. Likelihood Model sance parametegg, drawn from the prior distributioRy(q;).
As we mentioned above, the key point in our analysis is e SetNaraws = 3000 as our default value (see below for fur-

our ability to compute the amplitude and slope of the mean ther discussion). _
relation(InLx|M), and the scatter about this mean, as a func- The prior distributions for our nuisance parameters are
tion of our two parameters of interest: the scatter in mass atcharacterized by a statistical and a systematic error. The for-
fixed richness and the correlation coefficient betwseand ~ Mer is modeled as Gaussian and the latter using a top-hat dis-
Lx at fixedN. Let us definex = {A j,aim,om}, and let tribution. Thus, given a prior of the form
P ={owmn,Im.Ln } denote our parameters of interest. Our pre- q=q+todd L o9 (10)
dictions for theLx —M relation as a function of our parameters ] ) d 47
of interest can be summarized simplyxdp). Now, adopting @ random draw is obtained by setting
a Bayesian framework, a set of priors»is simply a proba- = stat sys
bility distribution P,(x). Sincex is a function ofp, the priors Gi =q+AGT+AG (11)
immediately define a probability distribution oyegiven by where Ag® is drawn from a Gaussian of zero mean with a

P(p) = Px(x(p)) det@x/op). (5) povariance matrix defineo_l by thg statisti(_:al errors, Aru;}’S
Since we know how to compute boRy(x) andx(p), we can is drawn from a top hat distribution that is non-zero only for
find any confidence regions for our parameters of interest. |AGYS| < oS, . . .

The problem we are confronted with, however, is slightly = The probability distributiorB,(x(p, q)) used in equation 9

more complicated, in that the functionsdepend not only ~ is the product of the likelihoodB,(x(p,q)) for each of the
on p, but also on additional nuisance parametgrdndeed, Lx —M parameters € x = {A_ju, ajm. oLm }. The probability
our predictions for the observable parameters oflthe M for eachLx —M parameter is given by the convolution of the
relation depend on both the abundance function of clusterstop-hat and Gaussian distributions defined by the statistical
andP(M, Lx|N). The abundance function can be accurately and systematic errors af so that

described by a Schechter function (we explicitly checked a 1
Schechter function is statistically acceptable), R(x(p,q)) = 4—sys[erf(x+) —erf(x-)] (12)

n(N) oc N expN/N,). (6) o
Given a Schechter fit, our prediction for the —M relation ~ Where Lo — (x(p,q) - )
will also depend on the value of the parameterand N,. L= =X ’ (13)
Likewise, the distributiorP(M,Lx|N) also depends on the V2o
amplitude and slope of the meafM|N) and(Lx|N), aswell ~ Note that the above equations are appropriate only when the
as the scatter iy at fixedN. Allin all, we have six additional  \ariousLy —M parameters are uncorrelated, so it is important
nuisance parameteqs= {N., 7, Bun, amin, ALn; LN, OLN- to place the priors at the pivot point of thg —M relation

Letr ={p,q} denote the full set of parameters. The priors (M, = 3.9 x 104 M). This explains why Table 1 quotes
from theLx —M relation define a probability distribution over prior onAy jy +1.361ny jy + 1'5(GE|M ~0.40?) rather than on

r given by B ALy alone.
P(r) = B(x(r)) det©x/or). (7) We also need to specify how the functig(p,q) is eval-

Since we have a total of 8 parameters, and only three observyated. We do this using a Monte Carlo approach. Gipen
ables from thd_)( -M relation, it is obvious that the above and q, we generate\lcl = 1@ mock clusters in the richness
likelihood function will result in large degeneracies because rangeN € [10,200]. We then randomly draw mass and X-ray

the parameters are under-constrained. If one has f#%6u$  juminosity values for each of these clusters based on the dis-
in the nuisance parameters, however, the probability distribu-tripution P(M, Lx|N), and select a mass limited subsample of
tion P(p) in the parameters of interest is given by clusters using a mass oMt > Myin With Mpin = 3 x 10%M,,
P() = | da Pr(a)P.(x detOx/or). 8 (the reason for this particular value is explained below). Using
Q / A Po(@PR:(x(p, ) detx/or) ®) a least squares fitting routine, we find the best fit line between

This equation allows us to compuggp), and therefore place  InLx and InM. This defines botl® v (p,q) andayu(p,d).
constraints on our parameters of interest. In practice, we will The scattetr v (p, q) is defined as the root mean square fluc-
ignore the determinant term in the probability distribution de- tuation about the best fit line.

fined in equation 8. This is because the functign) is es- Using equation 9 and the functiot{p,q) defined above,
timated using a Monte Carlo approach, implying that accu- we evaluate the probability distributid?(p) along a grid of

rate numerical estimates of the Jacobiatior would be too points inoyn € [0.2,0.85] andr € [0.75,1.0] with 25 grid
computationally intensive to be performed. Fortunately, the points per axis. A full run of our code then requires we per-
determinant typically introduces only slight modulations of form 2% Monte Carlo integrals wittNg;aws = 3000 points in

the likelihood, so we do not expect our results to be adverselyeach integration. Each draw also requires us to evaluate the
affected by this. function x(p,q), which in turn requires generating a mock
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TABLE 1 100
SCALING RELATION AND CLUSTERABUNDANCE PRIORS r ]
Parameter Prior t E
NN, 3.66L0.10 (dtat) £ 0.01 (5y5) 0.95F R
T 2.61E£0.06 (dat) £ 0.05 (5y5) I 1
By 0.95E£0.07 &at) £0.10 (5y5) 1
oMIN 1.06 £ 0.08 &at) £ 0.08 (5y5) E ]
BLin 191+ 0.04 &at) £0.09 55 = YL ]
oUN 1.63£0.06 &at) £ 0.05 () 1
TN 0.83+0.03 (dat) £ 0.10 (sys) il
Al +1361a )y + 1507, ~040) | 245008 [at) £0.23 &5 0.851 N
Y 161£0.14 Gal) 1
oM 0.40E0.04 |at) ]
Priors on the abundance function parametéts énd 7), as well as those e P D PR PR I
from theM —N andLx —N relations are not taken directly f’rom any single work 0.2 0.5 0.4 0.5 0.6 0.7 0.8
in the literature, but are discussed in detail in Appendix A. Priors ohgheM OuMN
relation are taken from Vikhlinin et al. (2008). Overall, we believe these priors
are fair, that is, they are neither overly optimistic nor overly pessimistic. FiG. 2.— 68% and 95% confidence contours &fn andr yn. Solid

. lines show the results of our analysis. We find that X-ray luminosity and
catalog withNg = 10° clusters, so the procedure as a whole mass are correlated at fixed richness. The breadth of the degeneracy region
is computationally expensive. To increase computational effi- shown above is almost exclusively due to uncertainties irLthe M rela-
ciency, for each Monte Carlo evaluationl@@p) we generate tion parameters. Dashed contours demonstrate how our results would im-

. . ) o rove if theLx —M amplitude and slope were known to within an accurac
a single cluster catalog that is used to estimate the |Ike|lh00dgf AA = AXaL‘M = 0%5_ P Y

at every grid point. This correlates the valuesadlong our

grid, but does not otherwise adversely affect our results. and o3 is the systematic error. In all cases, we model sta-
Our Monte Carlo approach requires that both the number oftistical errors as Gaussian, and we include known covariances

clusters in the random catalodjlg and the number of times  between different parameters. Systematic errors are assumed

the likelihood function is evaluatedy s is sufficiently large  to follow top-hat distributions, and the final prior distribution

to achieve convergence. Our default valuesNgrandNaraws ~ is given by the convolution of these two functions.

were selected to ensure the recovered likelihood is accurate \We believe that the priors contained in table 1 are fair, that

to within a dispersion of- 1-2% inside high likelihood re- s, they are neither overly aggressive nor overly conservative.

gions. The error in the recovered likelihood increases with A detailed discussion of our priors can be found in appendix

decreasing likelihood, but even in the tails of the distributions A,

our estimates are accurate to about 10%. This was explic-

itly tested by running a coarse_grid with our.default values 5. RESULTS
for Ngraws andNq, and by repeating the analysis with both of  Figure 2 shows the 68% and 95% probability contours for
these parameters increased by a factor of two. the parametersyy andry n. The likelihood peak occurs

Finally, we emphasize that it is necessary to explicitly check atoyn = 0.46 andry |y = 0.90. The marginalized means are
whether our results are sensitive to the> 10 cut applied to {owp) = 0.45 and r';/l L) =091

glfng]sasxl?n?it% dcl;ﬁéir;mse}rengﬁlulgteprzrtﬁglﬁggg}gliiﬁ‘g'?ﬁ We wish to determine whether the breadth of the likelihood
e ple o ' 6Fegion in Figure 2 is limited by uncertainties in the scaling re-
the mass limitMmin be sufficiently large that the number of i< ¢ maxBCG clusters, or by uncertainties in tige-M
g?sﬁgrtf V‘g;g\él(ge éghi\ﬁg/lr %ul\r/lgaés ;QZ'POW'%a;;'Smhive relation. To do so, we repeat our analysis with two new sets
P )/ P n— of priors: for the first, we use a tight@b statistical prior on

?gbmlre 'Vé% t_(?]ur trhe:l;l:]salarsesr%bgsgotgrége :!ghnsgﬁs 2;% all nuisance parameters, but let the—M parameters float.
richnyesspcut :ngtead Weyfi:wdI that the Iikegllit:ogd Iegirﬁates inThe second set of priors uses a tighd® prior on each of
: the Lx —M parameters, but floats all other nuisance parame-

both cases are in agreement to within the expected accuracyers with the original priors. We find that using tight priors on

of our Monte Carlo approach. our nuisance parameters has negligible impact on the likeli-
4.3 Priors hood regions recovered from our analysis. On the other hand,
" the confidence regions obtained with the tight-M priors,
The priors used in our analysis are summarized in Table 1.shown in Figure 2 as dashed curves, are tighter than those de-
We follow the notation rived from our original analysis. Thus, the dominant source
— ~ - sat s of error in our analysis is the uncertainty in the values of the
q=00q" (stat) £ 03" (sys) (14) Lx —M parameters?/ This can be easilyyunderstood based on
whereq is the central valueg® is the 1 statistical error ~ Figure 1. We can see from the figure that the uncertainty in

on the parameteq marginalized over all other parameters, fmn iSlargely due tothe prior on the scatteiinat fixedM,
which is already tight and thus does not change between our

15 It is worth noting that in order to create Figure 1, one needs to generate fiducial prior and our tight priors. On the other hand, we can
cluster catalogs wittNg > 107 clusters in order for the contours to appear see that both the amplitude and slope priors cut-off regions
smooth by eye. Howevelg = 10° is a sufficient number of clusters for  with high scatter. Tightening these priors excludes a larger

our analysis, since we only require that the noise in the likelihood be much section of parameter space, and results in the tighter contours
smaller than the width of the priors. Since the latter are quite wide, even . .
relatively noisy estimates of the M relation are sufficient for constraining ~ OPS€rved in Figure 2.

the marginalized distribution. Figure 3 shows the marginalized probability distributions
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for opmn @andry n. The solid curves correspond to our origi-
nal analysis, while the dashed curves illustrate the results one 7F
expects assuming our hypothetical tight priors forlthe-M E
relation parameters. We find that the logarithmic scatter in
mass at fixed richness and the correlation coefficient between
InM and InLyx are

omn = 0457338 (95% CL) (15)
rmn > 0.85 (95% CL) (16)

Assuming our hypothetical tightc —M priors, the constraints
becomeoyy = 0.4233¢ andr_ v > 0.85 (95% CL). We
emphasize that these latter constraints are only meant as a
guide to the accuracy one could achieve with this method if
theLx —M relation were known to about 5% accuracy.

It is evident from our results that cluster richness is not as
effective a mass tracer as X-ray derived masses. Indeed, even
total (i.e. not core-core excluded) X-ray luminosity is a more
faithful mass tracer than the adopted richness measure of the
maxBCG catalog, as demonstrated both by the smaller scatter
and the very large correlation coefficient. Note that the latter
indicates that, at fixed richness, over-luminous clusters are al-
most guaranteed to also be more massive than average. This
is an important result which forms the basis for a concurrant
paper in which we improve our richness estimates by demand-
ing tighter correlations in thiex—richness relation (Rozo et al.
2008).

Probability Density

Probability Density
o
\

6. COMPARISON TO OTHER WORK

There are not many previous results against which our mea- 2r
surements of scatter in mass at fixed richness may be com- r ]
pared. One possible reference point is the upper limit based o S
on the error bar in the weak lensing mass estimates of John- 075 08 08 090 095 1.00
ston et al. (2007). More specifically, assuming that the er- i

rorf.m él\,/l\l|N> IICS”entII’eR/ duhe to thellntrrl]nsu: Scat.ter .M | FiG. 3.— Likelihood distributions foeyy andry n. The distributions
at fixe , It Tollows that the error in the mass Is simply are marginalized over all other parameters. Solid lines are the results of our

AM/(M|N) = AInM = UM\N/V n(N) where AM is the ob- analysis, while dashed lines are the results obtained assuming tight priors on
served error and(N) is the number of clusters with richness thelLx -M parameters Note the latter set of curves are presented only to give

N. For the richest bin, which provides the tightest constraint, & sense of _how our result would improve with better understanding of the
Johnston et al. (2007) fingM) = (8.1+1.3) x 104 M,,. The  -x~Mrelaton.

bin containg = 47 clusters, so an upper limit to the scatter in our analysis. As we can see, our scatter estimate appears to
mass at fixed richness igyn < /n(AM/(M)) = 1.10. Fig- be systematically lower than that of Becker et al. (2007), a
ure 3 shows that our results easily satisfy this upper limit on discrepancy first noted in Rykoff et al. (2008a, more on the
the scatter. relation between our work and theirs below).

The only other measurement of the scatter in mass at fixed Such a bias is not entirely unexpected, as we now know
richness for maxBCG clusters is that found in Becker et al. that a significant fraction of cluster have their BCGs miss-
(2007). These scatter estimates are obtained as follows: firstidentified, a problem that was not yet known — and was there-
Becker et al. (2007) select all maxBCG clusters whose centralfore unaccounted for — at the time the Becker et al. (2007)
galaxy has a spectroscopic redshift. They then bin the clustergesults came out. To get a better understanding of how
in richness, and compute the velocity relative to the BCG of our results and those of Becker et al. (2007) compare, we
every galaxy member with spectroscopic data. The recoveredtan use our results along with the miscentering probability
velocity distribution of galaxies is found to be non-Gaussian. model from Johnston et al. (2007) to predict the scatter that
Assuming that the velocity distribution of galaxies of halos Becker et al. (2007) observed given this miscentering sys-
of fixed mass is exactly Gaussian, and that the observed nontematic. We proceed as follows. First, we use our best fit
Gaussianity is entirely due to mass-mixing within a richness model for the abundance distribution to generate a mock cat-
bin, Becker et al. (2007) estimate the scatter in mass at fixedalog with 2x 10° clusters withN > 10. Each of these clus-
richness based on the observed non-Gaussianity of the velocters is assigned a mass by drawing from Bigi1|N) distribu-
ity distribution. tion defined by the values efy,y corresponding to the two

An updated version of the results from Becker et al. (2007) 95% confidence limits omry . These assigned masses are
can be seen in Figure 4. The only difference between thisthen turned into velocity dispersions using the scaling rela-
plot and the corresponding figure in Becker et al. (2007) is tion from Evrard et al. (2008).
that here we have made used of the additional spectroscopic At this point, we have a cluster catalog where each cluster
data from the SDSS Data Release 6 (Adelman-McCarthy et al.has a richness and a velocity dispersion. If a cluster is mis-
2008), which results in tighter error bars. Also shown in the centered, we expect that in most cases the new center will be
figure as a horizontal band is the 95% confidence region froma cluster galaxy. Assuming this is the case, and that BCGs are
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from X-ray surveys, it seems reasonable to suggest that a bet-

1.21 ] ter use of the lensing and X-ray data of maxBCG clusters is to
r ] use our knowledge of tHex —M relation to constrain the scat-
1.0 % b ter in mass at fixed richness and the corresponding correlation

r ] coefficient, as was done in this work.
08 7777 B S S Our work differs from the ideas presented in Rykoff et al.
- T . T 1 (2008a) in another significant way. While our analysis em-
So6F - T i ff, ? B ploys onlyP(Lx,M|N) andn(N), Rykoff et al. (2008a) used
k I S the halo mass functioin/dM and the probability distribution
0.4F % - P(Lx,N|M) to interpret their measurements. This has the im-
i | portant drawback that in doing so, one needs to assume a cos-
0oL 4 mological model in order to compute the halo mass function,
i 1 rendering their interpretation cosmology dependent. By fo-
0.0L ‘ ‘ . cusing on the quantities that are directly observablen(id)
10 100 andP(Lx,M|N), we are able to avoid this difficulty. The price
N we pay for this is that rather than constraining the scatter in

richness at fixed mass, which is the more directly relevant
FiG. 4.— Comparison of the scatter in mass at fixed richness estimated inquantity from a cosmological perspective, we constrain in-

this work (solid band) and that of Becker et al. (2007) (diamonds with error ; ; ; ; ;
bars). The dashed band shows how the scatter we measured is expected to t? ead the scatter in mass at fixed richness. While this makes

affected by miscentering, which allows us better compare our results to thoselMplementing such a constraint a little more cumbersome in a
of Becker et al. (2007). We find that, once miscentering is properly taken into cosmological analysis, the fact that the constraint itself is cos-

account, the two results appear to be in reasonable agreement. mo|ogy independent is obviously of paramount importance.
atrest at the center of a cluster, the velocity dispersion of clus- 7. COSMOLOGICAL CONSEQUENCES
ter galaxies relative to random satellites will be a factoy/@f As mentioned in the introduction, to obtain an unbiased es-

high than relative to the BCG. Using the miscentering model timate of the halo mass function based on the observed cluster
described in Johnston et al. (2007) fa(N), the probability richness function requires that we understand the scatter be-
that a cluster of richned¢ be correctly centered, we randomly tween cluster richness and halo mass. Given our lognormal
label clusters as properly centered or miscentered, and boosissumption, and the fact that the mean mass—richness relation
their "observed" velocity dispersion for those clusters labeledis already known from weak lensing, our measurement of the
as miscentered by the expected amount. The clusters are ascatter in this scaling relation fully determines the probability
signed a new mass based on their “observed” velocity dis-distributionP(M|N). Thus, we are now in a position to de-
persions, and the corresponding scatter inNheN relation termine the halo mass function of the local universe with the
is estimated. We repeat this proceduré fithes in order to  maxBCG cluster catalog.
compute the mean systematic correction due to miscentering. Let us define then; = n(M;) as the number of halos within
Our predictions for the scatter values observed by Beckera logarithmic mass bin of width InM centered abou;,
et al. (2007) are shown in Figure 4 with dashed lines, and cor- d
respond to the 95% confidence interval from our analysis. We n = _an
see that miscentering introduces a richness dependent correc- dinM |y,
tion that boosts the scatter in the recovered velocity dispersion

and places it in significantly better agreement with the dataGiVen our cluster catalog a'ﬂwN)' we construct an esti-
from Becker et al. (2007). matorny; for n; by randomly drawing a mass froR(M|N) for

The agreement with the Becker et al. (2007) data is an in_each halo in the cluster catalog, and then counting the number
teresting result. Perhaps the single most difficult systematicOf halos W'.th'n the logarithmic mass bin _centered atMut.
effect that had to be addressed in the Becker et al. (2007) anallNOt€ that since the mass of each cluster is a random variable,
ysis is the validity of the assumption that non-Gaussianities in 4" massdfuncnoln ,[G.’St'mat?f's itself a ranpllorg valg?b_le. Jge
the velocity distribution of stacked clusters are entirely due meﬁ_n an <|:t(_)r|re a 'Ol.n "g.a ”Xc?ﬁf- candea5| y be othalne Ity
to mass-mixing is a valid. The reasonable agreement betweef'3XINY me Ipt_e reafizations ah, and averaging the resuft-
our results and those of Becker et al. (2007) suggests that theil'9 Mass functions.

assumption is indeed justified, though a robust conclusionwill " Practice, we also need to marginalize our results over
have to wait until a more detailed analysis is performed, es. uncertainties ifP(M|N) and over uncertainties in the richness

pecially given the possibility of velocity bias of the galaxy functionn(N). To do so, we randomly draw the parameters

population (i.e. if satellite galaxies have a velocity dispersion 1BMIN: @n,omn }, and then resample of the cluster richness
different from that of the dark matter) function to obtain a new estimate mf The whole procedure

The analysis in this work is also very closely related to that 'S iterated 18 times, and the mean and covariance matrix of

of Rykoff et al. (2008a). Rykoff et al. (2008a) sought to con- the numkéleer counts in each of our logarithmic mass bins is
strain theLy —M relation of clusters by fitting the scaling of CCMPuted:. .

(Lx|N) with (M|N). However, as recognized in Rykoff et al. Figure 5 shows the mass function r_ecovered through our
(2008a), in order to fully interpret their result in terms of the analy3|s. J\?Mtx‘glsour nurrllber Cgumlfl mtota ?egg'(% We_t?]s-
traditional definition of the_x — M relation, i.e. the mean X- Ss)um_e() ;‘7 ih = gc;szmo o(gj;y ( Lmt ey te' al. 5 h'ft)’ wi
ray luminosity at fixed mass, one needs to know both the scat-""™ =~ andh = 0.7z, and a photometric redshift error
ter in mass at fixed richness, and the corresponding correla- ¢ . . .

. > . oo - We again checked explicitly that the mass Mgin = 3 x 10 M, is

tion coefficient withLy. Given that these two quantities are |arge enough for our resuits to be insensitive to the maxBCG richness cut
unknown, but that th&yx —M relation is already constrained N > 10.

AlnM. (17)



are consistent with those presented in Becker et al. (2007)
once miscentering of maxBCG clusters is taken into account.
Our lower limit on the correlation betwedl and Ly at
fixed richness constitutes the first observational constraint on
a correlation coefficient involving two different halo mass
tracers. Note that the large correlation betwégnand M
implies thatLy - even without core exclusion - is a signifi-
cantly better mass tracer than the maxBCG richness estimator
(i.e. at fixed richness, over-luminous cluster are nearly always
more massive). This is an important result, which we use in
a concurrent paper to help us define new richness estimators
that are better correlated with cluster mass (Rozo et al. 2008).
Using our results, and assumifiy, = 0.27 andh = 0.71,
we have estimated the halo mass functiom at0.23, corre-
sponding to the median redshift of the cluster sample. We

8 Rozo et al.
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Fic. 5.— The maxBCG mass function. Cluster counts were converted to
densities assumin@m = 0.27 andh = 0.71, the same cosmology assumed in

the lensing measurements (Johnston et al. 2007). The error bars shown ar
due to the scatter in the mass—richness relation, and are strongly correlated?®

For comparison, we have also plotted the Tinker et al. (2008) mass function
corresponding to the WMAPS5 95% confidence regionder0.724 < og <
0.868. All other parameters are held fixed to the central values reported in
Dunkley et al. (2008). Our data are consistent with the WMAPS5 results,
though they might suggest a slightly higher power spectrum normalization.

Az =0.01 (used for computing the effective volume of the
sample). The diamonds correspond to our estimated mean
and the error bars are the square root of the diagonal elemen
of the correlation matrix. We emphasize that the error bars

are heavily correlated. The mean and covariance matrix of
the recovered halo mass function can be found in Appendix

B.

Also shown in Figure 5 with dotted lines are the halo mass
functions atz= 0.23 predicted by WMAP5 assuming the Tin-
ker et al. (2008) mass function. For both curves, we set

find that our recovered mass function is in good agreement
with the mass function predicted by Tinker et al. (2008) for
the WMAP5 cosmology (Dunkley et al. 2008). A detailed
cosmological analysis will be presented in a forthcoming pa-
er (Rozo et al, in preparation).

Our work sheds new light on the interrelationship of bulk
properties of massive halos. We have used weak lensing, X-
ray luminosities, and optical richness estimates to constrain
the scatter in the richness-mass relation, which can lead to
improved cosmological constraints. In principle, one could
also turn this question around, and, assuming cosmology,

Swe could constrain the scatter in the richness-mass relation,
Shich would then allow us to place constraints on the am-

plitude, slope, and scatter of the —M relation. Such an
analysis would be interesting in that, by doing so, one could
compare the predicted amplitude of thge —M relation to

that derived from hydrostatic mass estimates, thereby directly
probing the amount of non-thermal pressure support in galaxy
clusters. Note that even though this question can also be di-
rectly addressed by comparing weak lensing and X-ray mass

all cosmological parameters to the central values reported iNagtimates of individual clusters, the analysis suggested here

Dunkley et al. (2008), except foig, which is set targ = 0.868

for the upper curve angg = 0.724 for the lower curve. These
two values define the 95% confidence intervaldégm Dunk-

ley et al. (2008). As we can see, the mass function recovere
from our analysis is fully consistent with the WMAPS5 cos-
mology, though it seems to push for valuessgfon the high
end of their allowed region. A detailed cosmological analysis

would benefit from having small uncertainties, whereas pro-
jection effects result in rather noisy weak lensing mass esti-

cinates for individual systems.

of our data will be presented in a subsequent paper (Rozo et

al, in preparation).

8. SUMMARY AND CONCLUSIONS
We have shown that by combining the information in the

maxBCG richness function, the mean richness-mass relation

the mean and scatter of the-richness relation, and the mean
and scatter of th&x —M relation, we can constrain both the
scatter in mass at fixed richness for maxBCG clusters, as wel
as the correlation coefficient between mass hpdat fixed
richness. We find

omn = 0457348 (95% CL) (18)

These constraints are dominated by uncertainties ihytheév

relation, and can be significantly tightened if our understand-

ing of theLx —M relation improves. We also found our results
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edges support from NSF grant AST-0708150. RHW was sup-
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APPENDIX
PRIORS

Abundance Priors

Our estimates of théx —M parameters depend on the abundance function of maxBCG clusters, which is observationally
determined, but not known to infinite precision. Here, we fit the observed abundance function using a Schechter function, such
that the mean number of clustgr®f richnesN is

H(N) = no(N/40) ™ exp(-N/N.). (A1)

The amplitudeng is chosen such that the total number of clusters exactly equals the observed number of clusters. We set this
normalization condition because we are interested only in the shape of the richness function, and not in its amplitude.

The fits are done by maximizing the likelihood of the observed distribution, binned in bins of &Wth 1. We assume that
the probability distribution of observatclusters in a bin of richnedd is Poisson, with

1(N)" exp(N))

n! '
For numerical purposes, we cut the distributiolNgik = 300, which is sufficiently large to not affect our fits. We emphasize that
we use the above likelihood only to define estimatordNoandr, since, as discussed below, both goodness of fit and errors in
the parameter estimation are obtained through Monte Carlo simulation.

The richness distribution is fit over the ranige> 10 by maximizing the log-likelihood function using an amoeba routine. To
estimate our errors, we follow a Monte Carlo approach and resample the observed richness fufitioeslOVe find that the
parameterd, andr are significantly correlated, with the probability distribution being Gaussianand InN,.. The best fit
parameters are

P(n) = (A2)

(InN,)=3.66+0.10 (A3)
(1)=2.61+0.06 (A4)

with a correlation coefficient
n, - =0.94. (A5)

To assess goodness of fit, we generafem@ck catalogs with as many clusters as the real data from the probability distribution
specified by(InN,.) and (7). We compute the likelihood for each of these mock catalogs, and compare the corresponding
likelihood distribution to that observed in the real data. We find that our fit is statistically acceptable.

The most significant systematic error affecting our measurements of the shape of the richness function are completeness anc
purity variations in the cluster catalog. Rozo et al. (2007a) have shown that the maxBCG catalog is over 90% pure and complete
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for N > 10. Here, we take a conservative approach, and consider the change in the best fit parameters assuming the observe:
counts are rescaled by a completeness/purity correction fagiven by

A =min{0.9+0.1In(N/10.0)/In(10.0)}. (AB)

This corresponds to a 10% decrease in the observed couts B0 while holding the counts &t = 100 constant. Upon refitting
the data after this correction we find systematic offsets

(AINN,)gs=0.01 (A7)
(A7)gs=0.05 (A8)

which we adopt as our systematic error. Note the systematic offsets are allowed to be both positive and negative, since the
correction multiplierA above could easily be larger than unity rather than smaller than unity.

M —=N Priors

Our priors on theM —N relation are based on the results presented in Johnston et al. (2007), Mandelbaum et al. (2008b),
and Mandelbaum et al. (2008a). To assign our priors, we first compare the results of these two works as a means of assessing
systematic uncertainties in the mass parameters. We then focus exclusively on the Johnston et al. (2007) results to place our fina
priors on theM —N relation. The latter choice reflects the fact that Johnston et al. (2007) report weak lensing mass estimates for
several mass definitions, among thbhy, the relevant quantity in thiex —M relation of Vikhlinin et al. (2008).

Let us then begin by discussing the Johnston et al. (2007) results first. While Johnston et al. (2007) quote a power-law fit for
the mean mass at fixg®1|N), this fit is based a non-public version of the maxBCG catalog that extends to a richiéss3of
(the catalog for clusters with < 10 is not public). Since the maxBCG catalog is only known to be highly complete and pure in
the rangeN > 10, we have refit the Johnston et al. (2007) masses restricting ourselves to thi rarfgé his slightly lower cut
is necessary due to the richness binning in Johnston et al. (2007). We find that thdmgasethin a 180 overdensity threshold
relative to mean matter density is

(M1gn|N)
10 h"IMg

with a correlation coefficient=-0.43 between the amplitude and slope parameters.
Mandelbaum et al. (2008a) preformed a similar but independent weak lensing analysis of the maxBCG clusters, though using
Maow a@s their mass variable. They find

(M2om|N)
10% hM,

To compare against the Johnston et al. (2007) values, we use the Hu & Kravtsov (2003) mass conversion formulae to find an
approximate power law relation betwebhog andMsgy over the range & 10 Mg < Moo < 10*° M. We find M1gg, =
1.022M500,, Which is only a 2% correction. Applying this correction, we find that the corresporidindl parameters from
Mandelbaum et al. (2008a) are

(M1g|N)

10% h 1M,

We find that the slopes of the Johnston et al. (2007) and Mandelbaum et al. (2008a) results are nearly identical, but that the
masses of Mandelbaum et al. (2008a) are systematically higherd®p6. This difference can be traced back to how the lensing
critical surface density for each of the two works is estimated.

In general, lensing masses are proportional to the quaryti(ﬁ;l}it) whereX.qi; is the lensing critical surface density, and
the average is to be computed over the source redshift distribution. Given multi-band photometrit fdataach galaxy,
one way to computéZg}iQ is to use a photometric redshift estimaiguo(m), and then assume that the true source redshift
distribution is identical to the photometric redshift distribution. Mandelbaum et al. (2008b) have shown that such a simple
approach typically results in biased lensing mass estimates, but they also demonstrate that it is possible to achieve unbiasec
results using the probability distributid?(zjm).

The weak lensing analysis in Sheldon et al. (2007), on which the results from Johnston et al. (2007) are based, falls somewhere
in between these two approaches. While Sheldon et al. (2007) does in fact make use of photometric redshifts, they do not
simply assume that the source redshift distribution is identical to the photometric redshift distribution. Rather, they construct a
probability distributionP(z|zpnet0), and use this probability to estima®;} ). As it turns out, evaluating®gh ) in this way leads
to results that are nearly identical to those obtained by simply settirmgnqo. Thus, even though the approach used in Sheldon
et al. (2007) is more sophisticated than the simple case considered in Mandelbaum et al. (2008b), we expect the Sheldon et al.
(2007) results to be biased but correctable as prescribed in Mandelbaum et al. (2008b). This correction amounts to a boost of the
lensing masses by a factor oftlB+ 0.02 (gat) +0.02 (sys). The statistical error bar in the correction is added in quadrature to
the statistical error bar from our fit, which results in

(Mig|N)
10 hIMg
These new values for the Johnston et al. (2007) data are in considerably better agreement with those of Mandelbaum et al. (2008a)

There remains, however, a systematic 5% difference between the two amplitudes, as well as a small diffeygaee0.028
between the two slopes.

= exp(025+ 0.07)(N/20)+18+0.09 (A9)

= exp(045+ 0.08)(N/20)-15£014 (A10)

=exp(047+0.07)(N/20)+15+014 (A11)

= exp[Q42+ 0.07 (stat) +0.02 (sys)] x (N/20)-18+009 (A12)
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A possible culprit for this systematic 5% offset is the difference in how miscentering is accounted for in the data models. The
word miscentering refers to the fact that when finding clusters, one will inevitably find clusters that are improperly centered, either
due to failures of the cluster finding algorithm, or simply because there is no obvious center of the cluster based on its optical
image. Such offsets between the true and assigned centers are problematic because if a cluster is miscentered, the correspondi
lensing signal is weakened, resulting in systematically low mass estimates.

To determine whether the remaining offset between Mandelbaum et al. (2008a) and Johnston et al. (2007) is consistent with
differences in the miscentering model, we refit our data assuming no errors on the miscentering corrections. We find

(M1g|N) = exp(Q42- 0.04)(N /20)-7+007, (A13)

with a correlation coefficient = —0.15. Note that these errors are smaller than the errors quoted before, as they should be,
given that this new fit does not marginalize over a wide range of miscentering models. By subtracting the two sets of errors in
quadrature, we find that the miscentering priors adopted in Johnston et al. (2007) correspond to ad4&iarthe amplitude

and Q05 in the slope. Thus, the Mandelbaum et al. (2008a) mass measurements are well within the centering error included in
the analysis of Johnston et al. (2007).

Nevertheless, it is unclear whether miscentering can in fact account for the difference between the Johnston et al. (2007) and
Mandelbaum et al. (2008b) results. More specifically, Mandelbaum et al. (2008a) also performed their analysis including the
Johnston et al. (2007) model for miscentering, and find after applying the centering correction theirMesgt fitN relation
becomes

(M1g|N) = exp(Q53 0.07)(N/20)-08+014, (A14)

Comparing this to equation A12, we find including a miscentering correction in the Mandelbaum et al. (2008a) analysis increases
the tension between the two results. Moreover, it suggests that the difference between the two results is due to some other form
of systematic difference between the two analysis pipelines. In light of this, we opt for introducing a systematic correction to the
Johnston et al. (2007) results+0.06 and-0.05 for the amplitude and slope respectively. We also introduce systematic errors of

the same magnitude as this systematic correction, so that our final result is

(M1g|N) = [exp(048+ 0.07 (tat) + 0.06 (sys))](N /20113009 ©a)+£0.05 &) (A15)

Note the central values of the original Johnston et al. (2007) analysis (corrected for photometric redshift bias) as well as the
Mandelbaum et al. (2008a) results both with and without miscentering corrections are all encompassed by our systematic error.
Now, in this work we are interested more in thigge: =N (henceforth simplyM —N) relation than in theMzoe. — N relation,
since it is the former mass which is accessible to X-ray studies. To constraih-ttirelation we use the quotédsoe. Mmass
measurements from Johnston et al. (2007), re-scaling Mhgix errors toMspq: by assuming the relative errors are constant. A
fit to the data results in
(MIN)

— 1.114+0.08
Lo - exp[068+ 0.07](N/40) (A16)

with a correlation coefficient= 0.45.

We now boost this expression by factot& due to the photometric redshift bias correction, and add the systematic corrections
+0.06 and-0.05 to the amplitude and slope respectively as per our discussion df#fe— N relation. We also include a
systematic error on the amplitudes and slopes of this same magnitude. We obtain

Byn =0.9140.07 (stat) +0.06 (sys) (A17)
ann = 1.06+0.08 (gat) + 0.05 (5yS). (A18)

The final systematics we consider here are the purity and completeness of the sample. Now, as long as the completeness i
not correlated with mass, completeness should not in any way bias the recovered parameteké -oNthelation, though it
obviously affects the error bars due to lower statistics.

The same cannot be said of purity. If only a fractipof the clusters are actually good matches to real halos in the universe,
then a fraction * p of the clusters will have a lensing signal that is significantly different from the mean signal. As an extreme
case, we can consider what happens if a fractiep df the clusters had no mass associated with them. In that case, the observed
mean mass is simpl¥lons = Mirue/ p Where M, e is the true mean, so one should boost the observed masses by a factor of
1/p to obtain an unbiased estimate. For 0.9, this amounts to an increaseBgyn of magnitudeAByy = 0.1. Now, Rozo
et al. (2006) showed that the purity of the maxBCG cluster sample is expected to be above 90% over the range or richnesses
considered here, and the increas@jsy quoted above is undoubtedly an overestimate of the necessary correction since even
false cluster detections will have excess mass associated with them. In light of this, we have adopted a one-sided systematic erro
bar AByn = 0.08 to take into account the impact of purity in the recoveveeN relation. The error bar is one sided since we
expect impurities will tend to decrease the observed mean mass. We can, however, turn this prior into a normal double-sided
prior by including a systematic correctiahByy = 0.04 to the central value, and setting the systematic error bar to the same
magnitude as the central value shift. We can also get a rough estimate for the systematic error on the purity by assuming that the
quoted systematic error in the amplitude should be made only in the limit of high or low richness. If that were the case, using the
fact the slope is measured over a decade of richness values, the corresponding slope would be

_ 1.06In(10)+0.08 _

In(10) 1.09 (A19)
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which amounts to a systematic offgety = 0.03. These systematic error bars are added linearly to our previous systematic error.
Our final set of priors for th&/ —N relation is
Bwn =0.95+0.07 (gat) + 0.10 (sys) (A20)
amn =1.0640.08 (stat) £ 0.08 (sys) (A21)
with a correlation coefficient= 0.45 between the two statistical errors.

Lx =N Priors

The priors in the_x —N relation come from repeating the analysis described in Rykoff et al. (2008b), butyvitefined as the
X-ray luminosity in the 0.5-2.0 keV band, and corrected for aperture effects. As in Rykoff et al. (2008b), we restrict this analysis
to clusters withN > 30. We begin by measuring the stacked megr N relation and scatter on a fixedi:Mpc scale

By = 1.69+ 0.04 (at) (A22)
ayny = 1.63+0.06 (gat) (A23)
o n=0.84+0.03 (dat) (A24)

where we have measurés in units of 13 ergsx s, with a pivot point ofN = 40. We emphasize that the scatter determined
above is the total scatter in the obsertgd-N relation that cannot be attributed to Poisson uncertainties in the ROSAT photon
counts. In particular, the quoted scatter is affected by possible point source contamination, AGN activity, cool cores, cluster
mergers, etc.

There are multiple systematic errors that can affect the derived parameters fgr-therelation. These include photometric
redshift errors, evolution of the richness paraméteuncorrelated point sources, cluster mis-centering, and cluster AGN and
cool cores. In addition, we need to account for the fraction of cluster flux lost due to our finite aperture and the RASS PSF, in
order to compare our results with the luminosity measurements of Vikhlinin et al. (2008). We shall now discuss each of these
possible systematic effects.

Rykoff et al. (2008b) find that the accuracy of the maxBCG photo-z estimates is high enough such that any biases are insignif-
icant relative to the statistical uncertainty of the parameter determinations, and can thus be safely ignored. However, Rykoff
et al. (2008b) did find significant redshift evolution in the—N relation, well above the expected self-similar evolution. Similar
redshift evolution is found in Becker et al. (2007); the reason for the systematic undercounting of cluster members at high redshift
is explained in Rozo et al. (2008). We have estimated the effect of this redshift evolution on our derived scatter parameter via a
simple Monte Carlo, and confirm that although the apparent evolution is strong, it is insignificant relative to the intrinsic scatter.
Therefore, we may also safely ignore this possible systematic effect.

We now take a combined approach to the systematic effects due to cluster mis-centering, a finite aperture, the RASS PSF anc
uncorrelated point sources. The first three effects are strongly related, in that they all tend to scatter cluster photons out of our
initial fixed 1h™*Mpc aperture, and these may affect the normalization, slope, and scatterlig ¢ relation. Uncorrelated
point sources should not affect the mean relation because the large number of stacked sources smooths out the foreground an
background. However, when uncorrelated point sources are aligned with individual clusters they may increase the measured
scatter by boosting the apparémt

We have estimated the effects of these systematics by running a Monte Carlo with simulated RASS data on top of random
backgrounds selected from the area of the RASS photon map that overlaps with the maxBCG mask. We first resample the
maxBCG richness function 100 times. Each cluster is given a redshift drawn from the maxBCG redshift distribution, as well as
a random postion on the sky selected from the area of the RASS survey that overlaps with the maxBCG mask. After we select
the richest 1000 clusters in each realization, each cluster is given a luminosity based on the mean relation from Eqn. A22 and an
input intrinsic scattergi, = {0.0,0.2,0.4,0.6,0.8,1.0}. Each cluster luminosity is then converted to a number of photon counts
according to the RASS exposure at the given point, and scattered by Poisson uncertainties. Then, each cluster is given a positior
offset according to the maxBCG miscentering distribution described in Johnston et al. (2007, see § 4.3). The cluster profiles are
assumed to follow @ model, (R) = SH(1 +R?/RZ)3#*%/2, To ensure we are on similar footing as Vikhlinin et al. (2008), we

randomly assign each clustémodel parameters uniformly in the rangé & 3 < 0.7 and 005 < Rc < 0.15h™*Mpc. Finally, the
photons are scattered according to the RASS PSF, following the method of Rykoff et al. (2008b, see § 3.3.1). We then calculate
the stacked mean relation and scatter as described in Rykoff et al. (2008Db).

Figure A1 summarizes the results from our systematic tests. The x-axis shows the input intrinsicog¢atieg, y-axis shows
the ratio of the input parameter to output parameter for the normaliz&tiQr(circles), slopey |y (diamonds), and scattef |y
(squares). We note that whet, = 0.0 theno,,: = 0.31+ 0.04, which cannot be displayed on the plot. This is consistent with
our expectation that uncorrelated sources may boost the observed scatter, especially with low intrinsic scatter. Overall, we find
that (a) the slopey v is not significantly biased; (b) at moderate to large scattgrX 0.5) the intrinsic scattes |y is not
significantly biased; and (c) the output normalizatign, must be boosted by a factor 02D+ 0.05 to account for the flux lost
to miscentering, the finite aperture, and RASS PSF effects. Our priors become then

By =187+ 0.04 at) +0.05(y9) (A25)
ay =1.6340.06 (gtat) (A26)
o N =0.84+0.03 at). (A27)

In addition to these corrections, we also need to take into account systematic uncertainties due to purity and completeness in
the sample. Just as with the weak lensing mass estimates, completeness should not affect the Imedsunaddtion, whereas
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Fic. Al.— Results from systematic error Monte Carlo tests. The x-axis shows the input intrinsic sgattefhe y-axis shows the ratio of the given
input parameter to output parameter for the normalizalBpy (circles), slopex, |y (diamonds), and scatter |y (squares). We note that whem, = 0.0 then

oout = 0.3140.04, which cannot be displayed on the plot.

purity will tend to suppress the X-ray luminosity at fixed richness. Following the same procedure as in appendix A.2, we derive
systematic errora\By |y = 0.04 andA«y |y = 0.05, which we add linearly to our previous systematic error estimates. Finally, we

have repeated our scatter analysis using not just the 1000 richest clusters, but also the 2000 richest clusters, in which case we fin
cr|f_|N =0.95. To take into account this variation in our analysis, we also introduce a systematiderrqr= 0.10. Our final set

of priors is

B n=1.91+0.04 (stat) +-0.09 (sys) (A28)

an =1.63+0.06 (gat) = 0.05 (sys) (A29)

o n=0.8440.03 (at) +0.10(sys). (A30)
Lx =M Priors

As discussed in section 3, our analysis hinges on the fact that we can use prior knowledge dbptMtrelation to constrain
the M — N relation. Here, we use the results of Vikhlinin et al. (2008) to put priors orLtheM relation, which may be
summarized d¢

ALm +1.3610 y +1.5(07)y —0.40°) =2.59+0.08 (A31)
am=161+0.14 (A32)
oM =0.40+0.04. (A33)

We report a prior oy +1.36 1oy +1.5(cff“vI -0.40%) because a¥l = 10'* M, theLx —M parameters derived from the Burenin

et al. (2007) sample are correlated. To decouple them, one needs to shift to the statistical pividt p@8i8tx 10 M., and

introduce the scatter dependence quoted above (Vikhlinin, private communication). These constraints are derived from Chandra
observations of clusters in the 400d cluster catalog (Burenin et al. 2007), which allowed Vikhlinin et al. (2008) to Measdre

thereby infer cluster mass using the-Yy relation. This relation was itself calibrated on a cluster subsample for which masses
were derived using the standard hydrostatic equilibrium argument. This last point is very important, since simulations suggest
that hydrostatic mass estimates of clusters may be biased lew1§f6—30% (see e.g. Evrard 1990; Rasia et al. 2006; Nagai

et al. 2007). One way to calibrate such uncertainties is to compare weak lensing mass estimates to hydrostatic mass estimates
There are several examples of this type of approach. For instance, Vikhlinin et al. (2008) have performed such an analysis using
the weak lensing mass estimates of Hoekstra (2007), and/fine (1.09+ 0.11)Mx. A similar analysis has been carried out by
Mahdavi et al. (2008), who used the weak lensing mass estimates of Hoekstra (2007) and their own analysis of Chandra public
data to obtaiM,; = (1.28+0.15)Mx. Finally, using XMM X-ray observations and the weak lensing data of Bardeau et al. (2005),
Bardeau et al. (2007a), and Dahle (2006), Zhang et al. (2008)fjne (1.21+0.13)Mx. Zhang et al. (2008) also note, however,

that a histogram o, /Mx peaks at a ratio of. 00+ 0.05, and that clusters in the tails of the distribution tend to have tight error

bars, possibly biasing the error weighted ratio. In light of this, we have opted for a “middle of the road” approach, and introduce

a correction factor 15+ 0.15. Our corresponding prior is

ALm +1.3610y iy +1.5(07) —0.40°) =2.45+0.08 (dtat) + 0.23 (5y9) (A34)

17We have included the appropriate evolution correction for a median redsh@23, as appropriate for the maxBCG sample.
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TABLE B1
MAX BCG MASSFUNCTION DATA

Msooe | (dn/dInM) 1322 370 426 491 565 650 749 862 9.92 1142 1314 1512411 20.04 23.07 26.55 30.56

3.22 790e-7 [ 022 082 0.77 072 066 061 055 050 044 039 035 030 0zZw21 018 015 0.12
3.70 5.6le-7 | 082 024 079 076 0.71 067 062 057 052 046 041 036 03127 023 019 0.16
4.26 3.92e-7 | 077 0.79 0.27 0.77 0.74 0.70 0.66 061 057 052 046 041 03B31 026 022 0.18
491 2.70e-7 | 072 0.76 0.77 030 0.75 0.72 0.68 064 059 055 050 044 03834 029 024 0.20
5.65 1.82e-7 | 066 071 074 075 035 072 069 065 061 057 052 046 0436 030 026 0.22
6.50 1.21e-7 | 0.61 0.67 0.70 0.72 0.72 041 068 0.65 0.62 057 052 047 04237 032 027 0.22
7.49 7.93e-8 | 055 062 066 068 0.69 068 047 064 060 057 052 047 04237 032 027 0.23
8.62 5.11e-8 | 050 0.57 0.61 0.64 065 065 0.64 055 059 055 051 047 0437 032 027 0.23
9.92 3.24e-8 | 044 052 057 059 061 062 060 059 065 053 049 045 04m36 031 026 0.22
11.42 2.03e-8 | 039 046 052 055 057 057 057 055 053 076 047 043 03834 030 025 0.21
13.14 1.25e-8 | 0.35 041 046 050 052 052 052 051 049 047 092 040 03B32 028 024 0.20
15.12 7.61le:9 | 030 036 041 044 046 047 047 047 045 043 040 111 0.3B30 026 022 0.19
17.41 453e-9 | 025 031 036 038 041 042 042 041 040 038 036 033 13B26 024 020 0.17
20.04 2.63e9 | 021 0.27 031 034 036 037 037 037 036 034 032 030 0274 021 019 O0.16
23.07 1.48e-9 | 0.18 023 026 029 030 032 032 032 031 030 028 026 o021 222 017 0.14
26.55| 8.29e-10 | 0.15 0.19 0.22 0.24 0.26 0.27 0.27 027 026 025 024 022 04019 0.17 288 0.12
30.56| 4.41e-10 | 0.12 0.16 0.18 0.20 0.22 0.22 0.23 023 022 021 020 019 0116 014 0.12 3.88

Mean and covariance matrix of the maxBCG mass function. Maasedefined using an overdensity of 500 relative to critical, and are measured in units of
10" Mg . Space densities are measured in units of MpBiagonal terms in the covariance matrix above are se;/@Ti/ (ni), and thus represent the fractional

uncertainty in the halo space density. Off diagonal terms contain the correlation coeffigier@ j /,/C;iC;,j between the various bins. The median redshift of
the sample ig = 0.23.

aym =161+0.14 (at) (A35)
o1 =0.40+0.04 (gat). (A36)

Estimating systematic errors im v andoy )y is difficult. For instance, comparisons with weak lensing masses are not an
effective way of assessing systematics because weak lensing mass estimates are so noisy: trying to fit a power law relation
betweerM,, andMx results in very large errors for the slope of the relation.

One alternative is to consider multiple studies ofthe- M relation in order to asses how sensitive the recovered parameters
are to the analysis pipeline. Unfortunately, such an excercise is far from trivial. One difficulty is the fact that there is very little
agreement on the meaninglgf, with many works focusing on core-excised and/or core-corrected bolometric X-ray lumunisoties
(e.g. Bardeau et al. 2007b; Zhang et al. 2007, 2008). Even among those works that also exploreMhelation wher_y is a
soft X-ray band luminosity (e.g. Reiprich & Bohringer 2002; Maughan 2007), there are still important differences in the aperture
used to estimatey. In principle, we could attempt to convert between the various definitiohg td try to compare the works
against each other, but many of thése-M measurements are affected by Malmquist bias, making comparisons to the Vikhlinin
et al. (2008) results difficult.

One work that does constrain the the soft X-ray band, non-core excised, Malmquist bias cdrgecdddelation is Stanek
et al. (2006). Unfortunately, the energy band they use is slightly different from that of of Vikhlinin et al. (2008), so even here
comparison is not trivial. We expect, however, that at least the scatter and slopek;ofteelation will not be strongly affected
by the minor differences between the tig definitions. Given our purposes, the interesting thing about the Stanek et al. (2006)
results is that they use a very different methodology for constrainingtheM relation. In particular, they assume knowledge
of cosmological parameters, and then use the observed cluster X-ray luminosity function to c&fkirav). Assuming their
“compromise cosmology”, which they argue gives the best results, theyfing= 1.604-0.05 ando iy = 0.34+0.10. These
values are in excellent agreement with those of Vikhlinin et al. (2008), and suggest that placing additional systematic errors in
theLyx —M parameters is not really necessary at this point.

MASS FUNCTION DATA

Table B1 presents the mean and covariance matrix of the mass function data derived from our analysis. These results represen
the state of the art mass function measurements at low redshift from optically derived cluster catalogs. We emphasize we assumec
Qm=0.27 andh =0.71, so appropriate rescaling must be applied if the results are to be compared against significantly different
cosmologies. Note that the covariance matrix data in table B1 is normalized such that the diagonal entries are the fractional error
\/C.—-_j/ (n), while the off diagonal entries are the correlation coefficients- C; j/,/Ci;Cj.j. We present the data in this way
since it is easier to understand when expressed this way. The actual values for the covariance matrix are easily reconstructed fron
the data in the table.



