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We study gaugino mass generation in the context of semi-direct gauge mediation models, where
the messengers are charged under both the hidden sector and the standard model gauge groups while
they do not play important roles in dynamical supersymmetry breaking. We clarify the cancellation
of the leading contributions of the supersymmetry breaking effects to the gaugino mass in this class
of models in terms of the macroscopic effective theory of the hidden sector dynamics. We also
consider how to retrofit the model so that we obtain the non-vanishing leading contribution to the
gaugino mass.

I. INTRODUCTION

If supersymmetry is hidden in nature above the scale we have explored up to now, it helps us to understand the
large hierarchy between the electroweak scale and the Planck scale. It is, however, not straightforward to correctly
hide supersymmetry at low energy, and many years of experience suggest that breaking of the supersymmetry must
take place in a so-called hidden sector. So far, a lot of mechanisms have been proposed which communicate the
effects of supersymmetry breaking in the hidden sector to the supersymmetric standard-model. Among them, the
gauge mediation [1] is an attractive mechanism since the unwanted flavor-changing neutral processes are naturally
suppressed in this mechanism.

The pivot of gauge mediation consists of messenger fields that are charged under the standard model gauge symme-
tries. We classify the models with gauge mediation into two classes; the one is a class of models where the messenger
fields are charged under the hidden gauge dynamics and the other is a class of models where the messengers are singlet
under the hidden dynamics. In the former class of the models, we may further divide the models into two-types; direct
and semi-direct [2] (See earlier examples of the models with semi-direct gauge mediation [3, 4]). Let S = m+ θ2F be
a representative spurion for supersymmetry breaking (presumably with dynamical origin), where θ denotes the super-
space coordinate. The direct gauge mediation is given by a superpotential term SQQ̄ with standard model vector-like
pairs Q and Q̄ of chiral superfields as the mediators with hidden gauge interaction charges (whose dynamics cause
supersymmetry breaking encoded in the S value). The semi-direct mediation is given by a superpotential mass term
µQQ̄ with µ a constant and a representative term Sψψ̄ with a hidden gauge interaction vector-like pair ψ and ψ̄ of
standard-model singlet chiral superfields.

The important differences between the direct and semi-direct gauge mediations are that the messengers do not
play important roles in dynamical supersymmetry breaking in the semi-direct models. As a result, in the semi-direct
gauge mediation models, the rank of gauge group in the supersymmetry breaking sector can be smaller than that
in the direct gauge mediation models. In this way, we can ameliorate the Landau pole problem in the semi-direct
gauge mediation model, which is often encountered in direct gauge mediation models with low-energy supersymmetry
breaking.

A difficulty in the semi-direct gauge mediation models, however, is a little hierarchy between the gaugino masses
and the sfermion masses in the supersymmetric standard model sector. That is, in the semi-direct models, the gaugino
masses vanish to the leading order in F , while the scalar masses emerge at the leading order in F (the so-called gaugino
screening [5]), and the gaugino masses are roughly suppressed by (F/m2)2 compared with the scalar masses,1 which
leads to a severe ”little hierarchy” problem without careful tuning between the sizes of F and m.

In this paper, we study gaugino mass generation in strongly coupled semi-direct gauge mediation models by using
the macroscopic effective theory of the hidden strong dynamics [4]. As we will show, the gauge coupling constants of
the supersymmetric standard model sector receive non-trivial threshold corrections when we move to the macroscopic
effective theory from the microscopic gauge theory of the hidden gauge dynamics. Such threshold corrections, which
denote the gauge mediation effects from the heavy modes in the hidden dynamics, play crucial roles to determine the
gaugino masses. We also show how to retrofit the model so that we obtain the non-vanishing leading contribution to
the gaugino mass.

1 Notice that F/m2 < 1 is required for the messenger sectors not to have tachyonic modes.
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TABLE I: The matter content of the SU(Nc)× SU(NQ) model with Nf = Nψ +NQ = Nc + 1. The subgroups of the SU(NQ)
(NQ ≥ 5) are identified with the gauge groups of the standard model. The anomalous U(1)A global symmetry can be treated
as a symmetry by rotating the dynamical scale of SU(Nc), i.e. Λ, with a charge given in the table.

ψ(×Nψ) ψ̄(×Nψ) Q Q̄ Λ2Nc−1

SU(Nc) Nc Nc Nc Nc 1

SU(NQ) 1 1 NQ NQ 1

U(1)R 1 −Nc/Nψ 1 −Nc/Nψ 1 1 0
U(1)A 0 0 1 1 2NQ

The organization of the paper is as follows. In section II, we discuss the threshold corrections to the gauge coupling
constants of the supersymmetric standard model when we move to a macroscopic effective theory of the hidden strong
dynamics. In section III, we restate the gaugino screening in terms of the macroscopic effective theory. In section IV,
we consider a possible retrofit of the semi-direct gauge mediation model so that the leading gaugino mass contributions
are not canceled. The final section is devoted to discussions.

II. THRESHOLD CORRECTION TO THE SPECTATOR GAUGE COUPLING

In this section, we consider a model with SU(Nc)×SU(NQ) gauge interactions, where SU(Nc) is strongly interacting
with a dynamical scale Λ and is identified as the hidden gauge interaction, while SU(NQ) is a weakly coupling
spectator gauge interaction whose subgroups are eventually identified as the gauge groups of the supersymmetric
standard model. In the followings, we show that the gauge coupling of the spectator gauge theory receives a non-
trivial threshold correction when we move to a macroscopic effective theory of the hidden gauge interaction below
the dynamical scale Λ. As we will show in the next section, the threshold correction plays a crucial role to see the
gaugino screening in terms of the macroscopic effective theory.

A. Model with Nf = Nc + 1

We begin with a model with Nψ flavors of the SU(Nc) fundamental representation ψ’s which are singlets under
the spectator SU(NQ) gauge group and one flavor of the bi-fundamental representation Q’s of SU(Nc) × SU(NQ)
(Table I). We choose Nψ so that the total flavor of the SU(Nc) gauge theory is Nf = Nψ +NQ = Nc + 1.

At the scale below the dynamical scale Λ, the dynamics of the SU(Nc) theory can be described by combining
microscopic matter contents as

Mψ = ψψ̄ ,
N = ψ̄Q ,
N̄ = ψQ̄ ,

MQ = QQ̄ ,
Bs = ǫ ψ̄ · · · ψ̄Q̄ · · · Q̄, (ψ̄ : ×Nψ − 1, Q̄ : ×NQ) ,
B̄s = ǫ ψ · · ·ψQ · · ·Q , (ψ : ×Nψ − 1, Q : ×NQ) ,
BQ = ǫ ψ̄ · · · ψ̄Q̄ · · · Q̄, (ψ̄ : ×Nψ, Q̄ : ×NQ − 1) ,
B̄Q = ǫ ψ · · ·ψQ · · ·Q , (ψ : ×Nψ, Q : ×NQ − 1) , (1)

where ǫ denotes the invariant anti-symmetric tensor of SU(Nc) group and we have suppressed the indices of the gauge
groups and flavors. The charges of the macroscopic fields under the spectator gauge group as well as the relevant
global symmetries are given in Table II. The effective superpotential and Kähler potential of those macroscopic fields
are given by [6],

Weff =
1

Λ2Nc−1

(

BMB̄ − detM
)

,

Keff = Λ2

( |M |2
Λ4

+
|B|2
Λ2Nc

+
|B̄|2
Λ2Nc

+ · · ·
)

, (2)

where M , B, and B̄ collectively denote (Mψ, N, N̄,MQ), (Bs, BQ), and (B̄s, B̄Q), respectively, and the ellipses denote
the higher dimensional operators. Here, we have omitted O(1) coefficients in the Kähler potential terms. Let us
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TABLE II: Macroscopic field content of the SU(Nc) × SU(NQ) model at the scale below Λ.

Mψ N(×Nψ) N̄(×Nψ) MQ Bs(×Nψ) B̄s(×Nψ) BQ B̄Q
SU(NQ) 1 NQ NQ adj + 1 1 1 NQ NQ

U(1)R 2 − 2Nc/Nψ 2 −Nc/Nψ 2 −Nc/Nψ 2 Nc/Nψ Nc/Nψ 0 0
U(1)A 0 1 1 2 NQ NQ NQ − 1 NQ − 1

remind ourselves that M , B and B̄ are massless around their origins, which is consistent with the matchings of the
anomalies of symmetries such as U(1)R–SU(NQ)2 of the microscopic and the macroscopic theories.

Let us discuss the anomalies of the classical U(1)A symmetry given in Table I against the spectator SU(NQ) gauge
theory in both the microscopic and the macroscopic theories. In the microscopic theory, the U(1)A–SU(NQ)2 anomaly
is given by

Nc × 1 , (3)

which comes from the contribution ofQ and Q̄ with a U(1)A charge 1. On the contrary, the anomaly in the macroscopic
theory is given by

Nψ × 1 +NQ × 2 + 1 × (NQ − 1) = Nc + 2NQ , (4)

where the first contribution comes from Nψ flavors of N and N̄ , the second one from MQ, and the last one from BQ
and B̄Q. As a result, we find that the anomalies in both the theories do not match with each other. There is no
surprise in this disagreement because the U(1)A symmetry is anomalous to the SU(Nc) gauge theory.

On the other hand, we may make U(1)A symmetry free of the anomaly against the SU(Nc) gauge symmetry, by
rotating the dynamical scale Λ along with the U(1)A symmetry with a charge given in Table I. Once the classical
U(1)A symmetry is extended in this way, the anomalies in both the microscopic and the macroscopic theories must
match with each other. In fact, the anomaly matching is realized by making the following change to the gauge kinetic
function of SU(NQ):

1

g2
SU(NQ)

→ 1

g2
SU(NQ)

− 1

4π2
log

Λ2Nc−1

M2Nc−1
∗

, (5)

where M∗ denotes a scale at which the gauge coupling constant is defined. With the rotation of Λ given in Table I,
this term contributes to the anomaly by −2NQ, and hence, by putting this contribution together with Eq. (4), we
reproduce the anomaly in the microscopic theory in Eq. (3).2

The additional term in Eq. (5) can be interpreted as a threshold correction from the heavy modes of the SU(Nc)
gauge theory with masses in a range of O(Λ) which do not appear in Eq. (1). Notice that the above threshold correction
Eq. (5) does not have non-trivial dependence on the fields M , B, B̄. If it had field dependences, the function in the
logarithm would take zeros at some field values. This would imply that the SU(Nc) model should possess extra
massless modes at such field points, which is quite unlikely. Therefore, we conclude that the threshold correction to
the spectator gauge coupling is uniquely determined by Eq. (5).3

B. Model with Nf = Nc

Next, let us consider to integrate out one of the fundamental representation ψ’s. Here, we introduce masses to ψ’s
and Q’s by,

Wtree = miψiψ̄i + µQQ̄ , (6)

with mi, µ≪ Λ. Then, at the scale below Λ, the effective potential is again given by,

Weff =
1

Λ2Nc−1

(

BMB̄ − detM
)

+miMψi + µMQ . (7)

2 The above additional term corresponds to the “gaugino counterterm” discussed in Ref. [7].
3 There can be a numerical factor in front of Λ2Nc−1 in Eq. (5), which can be absorbed by M∗ and does not change the following analysis.
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Notice that even in the presence of the mass terms, the threshold correction to the spectator gauge coupling from
the heavy modes in Eq. (5) is not changed and does not depend on the masses in Eq. (6), since there are no invariant
combinations which show no singularity in the limit of mi, µ→ 0.

In the meantime, let us assume that m1 ≫ mi>1, µ and integrate out the macroscopic fields which involve ψ1 as
constituents (see the list in Eq. (1)). The relevant equation of motion, i.e. F -term condition in this case, is that of
the “heavy mode” Mψ1

which is given by,

∂W

∂Mψ1

= −
Mψ2

· · ·MψNψ
M

NQ
Q

Λ2Nc−1
+m1 = 0 . (8)

Here, we are considering the vacuum around Mij = Miδij and B = B̄ = 0 and further assuming all the diagonal
components of MQ take the same value. At this vacuum, the masses of the macroscopic fields which involve ψ1 and
are charged under SU(NQ), i.e. N1 and BQ, are given by4

MN1
=

Mψ2
· · ·MψNψ

M
NQ−1
Q

Λ2Nc−1
,

MBQ =
MQ

Λ2Nc−1
. (9)

After these charged fields are integrated out, the spectator gauge coupling receives a threshold correction,

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N1,BQ

= − 1

8π2
logMN1

M∗ −
1

8π2
logMBQM

2Nc−3
∗

,

= − 1

8π2
log

Mψ2
· · ·MψNψ

M
NQ
Q

Λ4Nc−2M2−2Nc
∗

,

= − 1

8π2
log

m1

Λ2Nc−1M2−2Nc
∗

, (10)

where we have used the equation of motion given in Eq. (8) in the final expression.
By putting these threshold corrections together with that from the heavy modes in Eq. (5), we obtain a total

threshold correction to the spectator gauge coupling,

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N1,BQ,heavy

= − 1

8π2
log

m1Λ
2Nc−1

M2Nc
∗

= − 1

8π2
log

Λ2Nc
1

M2Nc
∗

, (11)

where we have defined the dynamical scale of the SU(Nc) gauge theory with Nf = (Nψ − 1) +NQ = Nc flavors by

Λ2Nc
1 = m1Λ

2Nc−1 . (12)

Now, let us remind ourselves that the Nf = Nψ+NQ = Nc+1 model with a decoupled flavor cannot be distinguished
from the Nf = (Nψ − 1) + NQ = Nc model at the energy scale well below Λ and m1. Therefore, the threshold
correction derived in Eq. (11) is nothing but the one from the heavy modes in the model with the dynamical scale Λ1

and Nf = Nψ +NQ = Nc flavors. In this way, we can derive the threshold correction to the spectator gauge coupling
from the ”heavy” modes with masses of the dynamical scale Λ1 of the Nf = Nψ +NQ = Nc model, which is given by

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=Nc

= − 1

8π2
log

Λ2Nc
1

M2Nc
∗

. (13)

We may check the consistency of the above threshold correction by examining the anomaly matching of the classical
U(1)A symmetry in the Nf = Nc theory. The charge assignments of the macroscopic fields and the dynamical scale
are given in Table III. In the microscopic theory, the U(1)A–SU(NQ)2 anomaly is given by

Nc × 1 , (14)

4 Here, we are using the normalizations of the field given in Eq. (7), and hence, the masses are not dimension one parameters.
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TABLE III: The matter content of the SU(Nc) × SU(NQ) model with Nf = Nψ +NQ = Nc.

ψ(×Nψ) ψ̄(×Nψ) Q Q̄ Λ2Nc
1

SU(Nc) Nc Nc Nc Nc 1

SU(NQ) 1 1 NQ NQ 1

U(1)R 1 −Nc/Nψ 1 −Nc/Nψ 1 1 0
U(1)A 0 0 1 1 2NQ

Mψ N(×Nψ) N̄(×Nψ) MQ Bs B̄s
SU(NQ) 1 NQ NQ adj + 1 1 1

U(1)R 2 − 2Nc/Nψ 2 −Nc/Nψ 2 −Nc/Nψ 2 0 0
U(1)A 0 1 1 2 NQ NQ

as it appeared in the Nf = Nc + 1 model. On the other hand, the anomaly in the macroscopic theory is now given by

Nψ × 1 +NQ × 2 = Nc +NQ . (15)

where the first contribution comes from Nψ flavors of N and N̄ , and the second one from MQ. Thus, the anomaly
matching of the “quantum” U(1)A symmetry with a non-trivial rotation of Λ1 is realized only after we add the
anomaly contribution (−NQ) from the threshold correction from the heavy mode in Eq. (13).

C. Model with Nf = Nc − 1

We may further integrate out the second flavor, ψ2, by taking m2 ≫ mi>2, µ, and consider the threshold correction
in the model with Nf = Nc − 1 flavors. The relevant equation of motion in this case is

∂W

∂Mψ2

= −
Mψ1

Mψ3
· · ·MψNψ

M
NQ
Q

Λ2Nc−1
+m2 = 0 . (16)

At this vacuum, the macroscopic field N2 decouples with a mass

MN2
=
Mψ1

Mψ3
· · ·MψNψ

M
NQ−1
Q

Λ2Nc−1
=

m2

MQ
, (17)

and contributes to the threshold correction by

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N2

= − 1

8π2
logMN2

M∗ = − 1

8π2
log

m2M∗

MQ
. (18)

By adding this contribution to Eq. (11), we obtain

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N1,N2,BQ,heavy

= − 1

8π2
log

m2Λ
2Nc
1

MQM
2Nc−1
∗

. (19)

As a result, by interpreting this threshold correction as the one from the heavy modes in the model of SU(Nc)
gauge theory with Nf = Nc − 1 flavors, we obtain

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=Nc−1

= − 1

8π2
log

Λ2Nc+1
2

detM
1/NQ
Q M2Nc−1

∗

, (20)

where we have defined the dynamical scale of the model with Nf = Nc − 1 by

Λ2Nc+1
2 = m2Λ

2Nc
1 = m1m2Λ

2Nc−1 . (21)

In the above expression, we have also taken into account the SU(NQ) symmetry by replacing MQ with detM
1/NQ
Q .

Let us note that the threshold correction from the heavy fields in the case Nf = Nc − 1 depends on detMQ and is
singular at MQ = 0. This singularity is consistent with the fact that the origin of the macroscopic fields are removed
by the effective potential [8],

WADS =
Λ2Nc+1

2

detM
, (22)

and the anomaly matchings of the global symmetries require that the global symmetries are broken spontaneously.
Here, M collectively denotes the meson fields consisting of Nf = Nc − 1 flavors of ψ and Q.
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D. Model with Nf = Nψ +NQ

By repeating the above discussion, we obtain the threshold correction to the spectator gauge coupling from the
heavy modes in the model with Nf = Nψ+NQ < Nc+1 flavors when we move from the microscopic to the macroscopic
theory. The resultant threshold correction is given by

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=Nψ+NQ

= − 1

8π2
log

Λ
3Nc−Nf
eff

detM
(Nc−Nf )/NQ
Q M

Nc+Nf
∗

, (23)

for Nc + 1 > Nf > 1 ,5 while it is given by

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=Nc+1

= − 1

4π2
log

Λ2Nc−1
eff

M2Nc−1
∗

, (24)

for Nf = Nc + 1. Here, Λeff denotes the dynamical scale of the SU(Nc) gauge theory with Nf flavors.
Notice that we have not used the equation of motion of MQ in the above derivations of the threshold correction.

Thus, the threshold correction derived above are not changed even if we consider more generic superpotential of Q’s,

Wtree = miψiψ̄i + f(QQ̄) . (25)

This property of the threshold correction will play an important role to discuss a possible retrofit of the semi-direct
gauge mediation model so that the gaugino-screening is overcome.

III. GAUGINO SCREENING IN MACROSCOPIC EFFECTIVE THEORY

Now, let us discuss the gaugino screening in the semi-direct gauge mediation model. The gaugino mass at the
leading order in F can be extracted from the spurion dependence of the gauge coupling constant after the messenger
fields are integrated out [9], i.e.

mgaugino|leading =
1

2

1

g2
eff

∣

∣

∣

∣

∣

θ2

g2
eff . (26)

The gaugino screening in the semi-direct gauge mediation can be understood as follows. In the semi-direct gauge
mediation models, the tree-level superpotential is given by

Wtree = Sψψ̄ + µQQ̄ , (27)

where ψ is again a fundamental representation of SU(Nc), and Q’s are bi-fundamental representations of SU(Nc) ×
SU(NQ) which play roles of messengers. The supersymmetry breaking effect is encapsulated in the spurion field
S = m+ θ2F .6 In order for the gaugino masses in the supersymmetric standard model to be generated at the leading
order in F at the one-loop level, the effective gauge coupling constants must have non-trivial S dependences after the
messengers are integrated out, such as,

1

g2
eff

∼ c

8π2
log

S

M∗

, (28)

where c is a numerical coefficient. Such an S dependence, however, contradicts with the anomaly matching of the
U(1)R symmetry given, for example, in Table I and an appropriate assignment to S. Therefore, the above dependence
must be vanishing, and hence, the gaugino masses at the leading order in F are vanishing.

In the followings, we reanalyze the gaugino screening in terms of the macroscopic effective theory. The explicit
analysis in terms of the macroscopic theory opens new possibilities to extend the semi-direct gauge mediation model
with the gaugino mass emerging at the leading order in F .

5 Here, we have derived this result by deforming the model with Nf = Nc + 1 flavors with mass terms to the constituent fields. We may
also obtain the same result by applying the anomaly matching condition directly to the model with Nf = Nψ + Nc flavors.

6 In this paper, we do not address the explicit model of dynamical supersymmetry breaking in the hidden sector. Instead, we assume that
the supersymmetry breaking effects are effectively encapsulated in the spurion S.
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A. Gaugino screening in macroscopic theory

Here, as an example, we consider the Nf = Nψ +NQ < Nc model with a tree level superpotential

Wtree = Sψψ̄ + µQQ̄ , (29)

where S = m+Fθ2 again denotes the spurion and we are assuming
√
F ≪ m. In this model, the effective superpotential

of the macroscopic fields

Mψ = ψψ̄ , N = ψ̄Q , N̄ = ψQ̄ , MQ = QQ̄ , (30)

is given by [8]

Weff = (Nc −Nf )

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf

+ SMψ + µMQ . (31)

Here, again, M denotes the Mψ, N , N̄ , and MQ collectively.
By using the effective superpotential, we obtain the F -term conditions of the (light) macroscopic fields,

∂W

∂Mψ
= −Nψ

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf 1

Mψ
+NψS = 0 ,

∂W

∂MQ
= −NQ

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf 1

MQ
+NQµ = 0 , (32)

where we are again considering the vacuum with Mij = Miδij and further assuming all the diagonal components
of Mψ and MQ take the same values, respectively. At this vacuum, the expectation values of MQ and Mψ have
non-trivial F dependences,7

Mψ =

(

µNQΛ
3Nc−Nf
eff

SNc−Nψ

)1/Nc

∝
(

1 − Nc −Nψ
Nc

F

m
θ2
)

,

MQ =

(

SNψΛ
3Nc−Nf
eff

µNc−NQ

)1/Nc

∝
(

1 +
Nψ
Nc

F

m
θ2
)

. (33)

Now let us consider the gauge mediation effects when the macroscopic fields N and N̄ , which are charged under
SU(NQ), and the adjoint representation in MQ are integrated out. The masses of those fields are given by

MN =
1

MψMQ

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf

=
S

MQ
∝
(

1 +
Nc −Nψ

Nc

F

m
θ2
)

,

MMQ
=

1

M2
Q

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf

=
µ

MQ
∝
(

1 − Nψ
Nc

F

m
θ2
)

. (34)

Thus, the gaugino mass of the spectator gauge theory obtains a non-trivial contribution at the leading order in F ,
which is obtained from the threshold correction,

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N,MQ

= −Nψ
8π2

logMNM∗ −
NQ
8π2

logMMQ
M∗ ,

= − 1

8π2
log

µNQSNψM
NQ+Nψ
∗

M
NQ+Nψ
Q

,

7 As long as we are considering the leading order in F , we can take the F -term condition as the relation between the superfields (see
appendix A).
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∼ − 1

8π2
log

(

1 +
Nψ(Nc −Nf )

Nc

F

m
θ2
)

. (35)

From this threshold correction, we obtain the gaugino mass in the spectator gauge theory;

mgaugino|N,MQ
= −

g2
SU(NQ)

16π2

Nψ(Nc −Nf )

Nc

F

m
. (36)

As we have discussed in the previous section, however, we should also pay attention to the threshold correction
from the heavy modes in Eq. (23). Since it depends on MQ, the threshold correction from the heavy modes also gives
a non-trivial gaugino mass at the leading order in F through the F dependence of the vacuum expectation value of
MQ;

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=Nψ+NQ

= − 1

8π2
log

Λ
3Nc−Nf
eff

M
Nc−Nf
Q M

Nc+Nf
∗

,

∼ − 1

8π2
log

(

1 − Nψ(Nc −Nf )

Nc

F

m
θ2
)

. (37)

The resultant contribution to the gaugino mass at the leading order of F from the heavy mode is given by,

mgaugino|heavy,Nf=Nψ+NQ
=
g2
SU(NQ)

16π2

Nψ(Nc −Nf )

Nc

F

m
. (38)

Therefore, we find that both the contributions to the gaugino mass from the light modes Eq. (36) and the heavy
modes Eq. (38) are cancelled with each other, which reproduce the gaugino screening.

This cancellation can be seen more concisely in terms of the threshold correction. By combining the two contribu-
tions in Eqs. (35) and (37), we obtain the total threshold correction,

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N,MQ,heavy,Nf=Nψ+NQ

= − 1

8π2
log

µNQSNψΛ
3Nc−Nf
eff

MNc
Q MNc

∗

,

= − 1

8π2
log

µNc

MNc
∗

, (39)

where we have used the vacuum expectation value of MQ in Eq. (33). From the final expression, we easily see that
the threshold correction has no S dependence, which shows the gaugino screening.

The above arguments show that the vacuum expectation value of MQ plays an important role in the gaugino
screening. This observation sheds light on possibilities that we may overcome the gaugino screening by deforming the
tree level superpotential of QQ̄ so that the total threshold correction depends on S. In fact, we will show that we can
make the semi-direct gauge mediation have the gaugino mass at the leading order in F by using such a deformation.

B. Semi-direct mediation via “spurious” dynamical scale

Before closing this section, we mention another description of the above semi-direct gauge mediation. In the above
analysis, we have treated ψ’s and Q’s in a similar way as the constituent fields. We could, however, have integrated
out all the ψ’s first before moving to the macroscopic effective theory. In this case, the model just looks like the one
with Nf = NQ and the effective dynamical scale.

Λ′

eff
3Nc−NQ = SNψΛ

3Nc−(Nψ+NQ)
eff . (40)

The important difference from the model in the previous section is that the effective dynamical scale now plays a role
of the spurion of supersymmetry breaking which has a non-trivial θ2 dependence.

In this description, we may again check the gaugino screening by adding the gauge mediation effect through the
effective superpotential

Wtree = (Nc −NQ)

(

Λ′

eff
3Nc−NQ

detMQ

)
1

Nc−NQ

+ µMQ , (41)
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and the one from the heavy modes of the model with Nf = NQ,

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

heavy,Nf=NQ

= − 1

8π2
log

Λ′

eff
3Nc−NQ

detM
(Nc−NQ)/NQ
Q M

Nc+NQ
∗

. (42)

IV. RETROFITTED SEMI-DIRECT MEDIATION

In the previous section, we discussed the gaugino screening in terms of the effective macroscopic theory. There, we
saw that the vacuum expectation value of MQ plays an important role for the screening. In this section, we show that
we can retrofit the model of the semi-direct gauge mediation so that it has the gaugino mass at the leading order in
F by deforming the superpotential of QQ̄.

As an example of such a deformation, let us consider to deform the model with Nf = Nψ +NQ by adding a quartic
terms of Q’s;

Wtree = Sψψ̄ + µ trQQ̄+ κ(trQQ̄)2 , (43)

where κ is a numerical coefficient and we have written “tr” explicitly, which has been suppressed in the preceding
sections, so that the flavor structure of the quartic term is clarified. With the above deformation, the supersymmetric
expressions of the masses of the N and MQ in Eq. (34) are not changed,8 while it affects the F -term condition of MQ;

∂W

∂MQ
= −NQ

(

Λ
3Nc−Nf
eff

detM

)
1

Nc−Nf 1

MQ
+NQµ+ 2NQκ trMQ = 0 . (44)

Therefore, the threshold correction to the SU(NQ) gauge coupling in the deformed model is obtained by changing
the µ in Eq. (39) to µ+ 2κ trMQ, i.e.

1

∆g2
SU(NQ)

∣

∣

∣

∣

∣

N,MQ,heavy,Nf=Nψ+NQ

= − 1

8π2
log

(µ+ 2 κ trMQ)Nc

MNc
∗

. (45)

Contrary to the previous result in Eq. (39), the threshold correction in the deformed model has a non-trivial F
dependence through the vacuum expectation value of MQ.9

As a result, we obtain a gaugino mass at the leading order in F , which is given by

mgaugino = −Nψ
g2
SU(NQ)

8π2

κF

µm
〈trMQ〉 , (47)

where we have used

trMQ ≃ 〈trMQ〉
(

1 +
Nψ
Nc

F

m
θ2
)

, (48)

with

〈trMQ〉 ≃ NQ

(

mNψΛ
3Nc−Nf
eff

µNc−NQ

)1/Nc

. (49)

8 If we deform the model by tr MQMQ instead of (tr MQ)2, the masses of the adjoint component of MQ are changed. Our analysis can
be extended to a model with such a deformation straightforwardly.

9 Notice that the threshold correction in Eq. (45) has a singularity at the field value

µ + 2κ tr MQ = 0 . (46)

This singularity corresponds to the massless adjoint fields MQ at this field value.



10

Here, we have kept only the leading order contribution in κ by assuming µ > κ 〈trMQ〉. Let us remind ourselves that
the sfermion masses are also generated at the thresholds at the masses of N , MQ and heavy modes, and they are
roughly given by,

mscalar = η
g2
SU(NQ)

16π2

F

m
, (50)

where η is a numerical coefficient of the order of unity which is non-vanishing even in the limit of κ→ 0.10 Thus, by
comparing Eqs. (47) and (50), we find that the gaugino mass can be comparable to the scalar masses for

µ ∼ κ 〈trMQ〉 ∼ κΛ2
eff

(

µ

Λeff

)

NQ
Nc

−1(
m

Λeff

)

Nψ
Nc

. (51)

Finally, we comment on a possible origin of the quartic deformation term κ(trQQ̄)2. From the gaugino mass
obtained in Eq. (47), we need to have a rather large coupling constant κ = O(µ/ 〈trMQ〉), so that the gaugino masses
are not too suppressed compared with the scalar masses. Such a large coupling can be realized, for example, by
introducing an extra singlet field X which couples with trQQ̄ as

W = −1

2
mXX

2 + kX trQQ̄. (52)

After integrating out X , we obtain the desired quartic term with κ = k2/(2mX). Thus, the coupling of order of
κ = O(µ/ 〈trMQ〉) can be realized for mX = O(〈trMQ〉 /µ) and k = O(1).

V. DISCUSSIONS

In this paper, we studied gaugino mass generation in the semi-direct gauge mediation models. We found that the
gaugino mass screening can be understood as a cancellation of the gaugino mass contributions from the heavy modes
and the light modes of the hidden gauge dynamics. In such a cancellation, we showed that the vacuum expectation
value of the macroscopic messenger field plays an important role. We also proposed how to retrofit the semi-direct
gauge mediation model so that the gaugino mass emerges at the leading order in F .

We have not addressed explicit models of dynamical supersymmetry breaking in the hidden sector. In order to
construct a realistic semi-direct gauge mediation model, we must identify this sector. However, in doing this, we
easily encounter one problem for the following reason. That is to say, in general, supersymmetry is restored due to
the quartic term in the tree level superpotential even if we take the dynamical model as the supersymmetry breaking
sector.11 Therefore, it is necessary to find the model whose supersymmetry is dynamically broken even in the presence
of the quartic term. Apparently, we may consider metastable supersymmetry breaking models, for instance.

It is also interesting to consider the extention of our analysis to the Nf > Nc + 1 case. One complexity in this case
is that we have to estimate the effect of the remaining hidden gauge interaction.

Acknowledgements

We would like to thank F. Yagi for valuable discussion. M. I. is grateful to Yukawa Institute for Theoretical Physics
for hospitality where part of this work was done. This work was supported by the Grant-in-Aid for Yukawa Interna-
tional Program for Quark-Hadron Sciences, the Grant-in-Aid for the Global COE Program ”The Next Generation of
Physics, Spun from Universality and Emergence”, and World Premier International Research Center Initiative (WPI
Initiative), MEXT, Japan. The work of M. I. was supported by the U.S. Department of Energy under contract number
DE-AC02-76SF00515.

10 The coefficient η is non-calculable since it includes the contributions from the heavy modes of the strong dynamics.
11 For example, at the singularity in Eq. (46), the effective masses of Q’s are vanishing, and hence, the supersymmetry can be restored

around this point.



11

TABLE IV: The matter content of the SU(Nc) × U(1) model with Nf = Nc + 1.

ψ(×Nψ) ψ̄(×Nψ) Q Q̄ Λ2Nc−1

SU(Nc) Nc Nc Nc Nc 1

U(1) 0 0 1 −1 0
U(1)R 0 0 1 1 0
U(1)A 0 0 1 1 2

Mψ N(×Nψ) N̄(×Nψ) MQ Bs B̄s BQ(×Nψ) B̄Q(×Nψ)
U(1) 0 1 −1 0 0 0 1 −1
U(1)R 0 1 1 2 0 0 1 1
U(1)A 0 1 1 2 0 0 1 1

APPENDIX A: ADIABATIC SUPERSYMMETRY BREAKING

In this appendix, we consider how the supersymmetry breaking effect of the spurion S = 〈S〉 + FSθ
2 affects the

F -term VEVs of the other superfields (we collectively name them M), which are vanishing in the limit of FS = 0. We
consider that the superpotential and the Kähler potential are given by W (M,S) and K(M,S), respectively. In this
case, the scalar potential is given by

−V = KMM̄ |FM |2 + (KSM̄F
∗

MFS + c.c.) +KSS̄ |FS |2 + (WMFM +WSFS + c.c.)

= KMM̄

∣

∣

∣

∣

FM +
1

KMM̄

(KSM̄FS +W ∗

M )

∣

∣

∣

∣

2

+KSS̄ |FS |2 −
1

KMM̄

|KSM̄FS +W ∗

M |2 + (WSFS + c.c.). (A1)

Thus, we see the minimal of FM at

FM = − 1

KMM̄

(KSM̄FS +W ∗

M ). (A2)

Now, let us assume that the WM = 0 at the vacuum in the limit of FS = 0, and calculate the FM at the leading order
of FS by solving ∂V/∂M = 0. At the leading order of FS , the relevant terms in ∂V/∂M are

∂V

∂M
=

1

KMM̄

(KSM̄FS +W ∗

M )WMM −WMSFS

= −FMWMM −WMSFS , (A3)

and hence, we obtain the leading contribution to the F -term as

FM = −WMS

WMM
FS . (A4)

Here, all the scalar VEVs in the right hand side are those in the limit of FS = 0.
We compare the result with the supersymmetric VEV which is obtained by the F -term condition, i.e. WM = 0.

We assume that the equation of the F -term condition can be extended to the one between superfields as long as the
SUSY breaking is adiabatic, that is, the SUSY breaking effect of the spurion S = 〈S〉+FSθ2 is turned on continuously
from the limit of FS = 0. Under this assumption, the F -terms in the F -term condition satisfy

WMMFM +WSMFS = 0. (A5)

By comparing this result with Eq. (A4), we find that we can reproduce the leading F -term obtained by using the
potential analysis. Therefore, as long as we are considering the leading effect, we can make a shortcut to obtain the
F -term VEV by using the F -term condition.

APPENDIX B: THRESHOLD CORRECTION TO SPECTATOR U(1) GAUGE COUPLING

In section II, we considered the threshold correction to the spectator SU(NQ) gauge coupling from the heavy modes
in the hidden SU(Nc) gauge dynamics. In this appendix, we consider the model with a U(1) spectator gauge group
which requires careful attention to discuss the decoupling procedures by adding mass terms to the ψ’s. For simplicity,
we consider the model with NQ = 1 with tree-level superpotential,

W = miψiψ̄i + f(QQ̄), (B1)

where only Q’s are charged under the U(1) gauge group with unit charge while ψ’s are singlet.
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1. Model with Nf = Nc + 1

We begin with the model with Nf = Nc + 1. In this model, the effective macroscopic theory can be described by

Mψ = ψψ̄,
N = ψ̄Q,
N̄ = ψQ̄,

MQ = QQ̄,
BQ = ǫ ψ · · ·ψQ, (ψ : ×Nc − 1, Q : ×1),
B̄Q = ǫ ψ̄ · · · ψ̄Q̄, (ψ̄ : ×Nc − 1, Q̄ : ×1),
Bs = ǫ ψ · · ·ψ, (ψ : ×Nc, Q : ×0),
B̄s = ǫ ψ̄ · · · ψ̄, (ψ̄ : ×Nc, Q̄ : ×0), (B2)

where the definitions of the baryons are different from those in section II, because the U(1) charges of the baryons
are simply the sums of those of their constituents. The charge assignments of the relevant symmetries are given
in Table IV. With these macroscopic fields, the effective potential is again given by Eq. (7) for Wtree = 0. The
important difference from the SU(NQ) model is that the threshold correction from the heavy modes. In this model,
the threshold correction to the gauge coupling constant of U(1) from the heavy modes, which satisfy the anomaly
matching conditions of the global symmetries in Table IV, is given by

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nc+1

= − Nc
8π2

log
Λ2Nc−1

M2Nc−1
∗

. (B3)

2. Model with Nf = Nc

In order to obtain the threshold correction to the U(1) gauge coupling in the Nf = Nc model, let us consider to
make ψ1 heavy by switching on the mass term in Wtree. Notice again that the threshold correction from the heavy
modes does not change even in the presence of the mass term of ψ1. In this case, the relevant equation of motion of the
heavy mode, Mψ1, is given in Eq. (8), by assuming that only the diagonal components obtain non-vanishing values.
Around this point, the heavy fields which are charged under U(1) are N1 = ψ1Q, N̄1, BQi = ǫψ1 · · ·ψi−1ψi+1 · · ·Q,
and B̄Qi, and they decouple at

MN1
=

Mψ2
· · ·MψNψ

Λ2Nc−1
,

MBQi =
Mψi

Λ2Nc−1
, (i = 2, · · · , Nc). (B4)

Hence, the threshold corrections from these modes are given by

1

∆g2
U(1)

∣

∣

∣

∣

∣

N1,BQi(i=2···Nc)

= − 1

8π2
logMN1

M∗ −
1

8π2
logMBQ2

· · ·MBQNc (M
2Nc−3
∗

)Nc−1

= − 1

8π2
log

(Mψ2
· · ·MψNc )

2

ΛNc(2Nc−1)M
−2N2

c+5Nc−4
∗

= − 1

8π2
log

m2
1

M2
QΛ(Nc−2)(2Nc−1)M

−2N2
c+5Nc−4

∗

, (B5)

where we have used the equation of motion Eq. (8), (Mψ2
· · ·MψNc ) = m1Λ

2Nc−1/MQ, in the final expression.
Therefore, putting the heavy modes and N,BQ contributions together, we obtain the total threshold correction

which can be identified with the correction to the Nf = Nc model:

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nc

=
1

∆g2
U(1)

∣

∣

∣

∣

∣

N1,BQi(i=2···Nc),heavy,Nf=Nc+1

= − 1

8π2
log

(m1Λ
2Nc−1)2

M2
QM

4Nc−4
∗

= − 1

4π2
log

Λ2Nc
1

MQM
2Nc−2
∗

, (B6)

where we have defined the dynamical scale of the Nf = Nc model by Λ2Nc
1 = m1Λ

2Nc−1.
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3. Model with Nf = Nc − 1

Now let us move on to the model with Nf = Nc − 1 by integrating out ψ2 with a mass m2. In this case, N2 and
BQ1 decouple in addition to N1 and BQi discussed above at

MN2
=

Mψ1
Mψ3

· · ·MψNψ

Λ2Nc−1
=

m2

MQ
,

MBQ1
=

Mψ1

Λ2Nc−1
=

m2

MQ detMNc−2
, (B7)

where MNc−2 denotes the mesons that consist of ψ̄iψj , (i, j = 3, · · · , Nc). Here, we have used the equation of motion
of the heavy mode Mψ2

,

∂W

∂Mψ2

= −Mψ1
Mψ3

· · ·MψNcMQ

Λ2Nc−1
+m2 = 0. (B8)

As a result of the decoupling of MN2
and MBQ1

, we obtain the threshold correction as

1

∆g2
U(1)

∣

∣

∣

∣

∣

N2,BQ1

= − 1

8π2
logMN2

M∗ −
1

8π2
logMBQ1

M2Nc−3
∗

= − 1

8π2
log

m2
2M

2Nc−2
∗

M2
Q detMNc−2

. (B9)

Thus, we obtain the total threshold correction from the heavy modes in the Nf = Nc − 1 model,

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nc−1

=
1

∆g2
U(1)

∣

∣

∣

∣

∣

N2,BQ1,heavy,Nf=Nc

= − 1

8π2
log

m2
2Λ

4Nc
1

M4
Q detMNc−2M

2Nc−2
∗

= − 1

8π2
log

Λ4Nc+2
2

M4
Q detMNc−2M

2Nc−2
∗

= − 1

8π2
log

(

Λ2Nc+1
2

M3
QM

2Nc−5
∗

)

(

WADS,Nc−1

M3
∗

)

. (B10)

Here, we have defined the dynamical scale of the Nf = Nc − 1 model by Λ2Nc+1
2 = m2Λ

2Nc
1 , and denoted the

Affleck-Dine-Seiberg superpotential [8] that consists of MQ and the remaining Mψs as

WADS,Nc−1 =
Λ2Nc+1

2

MQ detMNc−2
. (B11)

4. Model with Nf = Nψ + 1

By repeating the above procedure, we end up with the threshold correction

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nψ+NQ

= − 1

8π2
log

(

Λ
3Nc−Nf
eff

M
Nc−Nf+2
Q M

Nc+Nf−4
∗

)

(

WADS,Nf

M3
∗

)

, (B12)

with

WADS,Nf = (Nc −Nf )

(

Λ
3Nc−Nf
eff

MQ detMNf−1

)
1

Nc−Nf

, (B13)

for Nc > Nf > 1, while it is given by

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nc

= − 1

4π2
log

Λ2Nc
eff

MQM
2Nc−2
∗

, (B14)
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for Nf = Nc and

1

∆g2
U(1)

∣

∣

∣

∣

∣

heavy,Nf=Nc+1

= − Nc
8π2

log
Λ2Nc−1

eff

M2Nc−1
∗

, (B15)

for Nf = Nc + 1. Here, Λeff denotes the dynamical scale of the SU(Nc) gauge theory with Nf flavors. By means of
the above threshold corrections, we can check the gaugino screening for f(MQ) = µMQ.
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