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1.1.1 Introduction 

LOCO has been a powerful beam-based diagnostics and optics control method for 

storage rings and synchrotrons worldwide ever since it was established at NSLS by J. 

Safranek [1]. This method measures the orbit response matrix and optionally the 

dispersion function of the machine. The data are then fitted to a lattice model by 

adjusting parameters such as quadrupole and skew quadrupole strengths in the model, 

BPM gains and rolls, corrector gains and rolls of the measurement system. Any 

abnormality of the machine that affects the machine optics can then be identified. The 

resulting lattice model is equivalent to the real machine lattice as seen by the BPMs. 

Since there are usually two or more BPMs per betatron period in modern circular 

accelerators, the model is often a very accurate representation of the real machine. 

According to the fitting result, one can correct the machine lattice to the design lattice 

by changing the quadrupole and skew quadrupole strengths. LOCO is so important that 

it is routinely performed at many electron storage rings to guarantee machine 

performance, especially after the Matlab-based LOCO code [2] became available. 

 

However, for some machines, LOCO is not easy to carry out. In some cases, LOCO 

fitting converges to an unrealistic solution with large changes to the quadrupole 

strengths K∆ . The quadrupole gradient changes can be so large that the resulting lattice 

model fails to find a closed orbit and subsequent iterations become impossible. In cases 

when LOCO converges, the solution can have K∆  that is larger than realistic and often 

along with a spurious zigzag pattern between adjacent quadrupoles. This degeneracy 

behavior of LOCO is due to the correlation between the fitting parameters – usually 

between neighboring quadrupoles. The fitting scheme is therefore less restrictive over 

certain patterns of changes to these quadrupoles with which the correlated quadrupoles 

fight each other and the net effect is very inefficient 2χ  reduction, i.e., small 2χ  

reduction with large changes of K∆ . Under effects of random noise, the fitting solution 

tends to crawl toward these patterns and ends up with unrealistically large K∆ . Such a 

solution is not very useful in optics correction because after the solution is dialed in, the 

quadrupoles will not respond as predicted by the lattice model due to magnet hysteresis. 

We will show that adding constraints to the fitting parameters is an effective way to 

combat this problem of LOCO [3-4]. In fact, it improves optics calibration precision 

even for machines that don’t show severe degeneracy behavior.  

 

LOCO fitting is essentially to solve a nonlinear least square problem with an iterative 

approach. The linear least square technique is applied in each iteration to move the 

solution toward the minimum. This approach is commonly referred to as the Gauss-

Newton method. By using singular value decomposition (SVD) to invert the Jacobian 

matrix, this method has generally been very successful for LOCO. However, this 

method is based on a linear expansion of the residual vector over the fitting parameters 
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which is valid only when the starting solution is sufficiently close to the real minimum. 

The fitting algorithm can have difficulties to converge when the initial guess is too far 

off. For example, it’s possible for the 2χ merit function to increase after an iteration 

instead of decrease. This situation can be improved by using more robust nonlinear least 

square fitting algorithms, such as the Levenberg-Marquardt method [7].  

 

We will discuss the degeneracy problem in section 2 and then show how the 

constrained fitting can help in section 3. The application of Levenberg-Marquadt 

method to LOCO is shown in section 4. A summary is given in section 5. 

1.1.2 The degeneracy problem 

A general nonlinear least-square problem is to minimize the merit function 

 [ ]∑ −==
22 );()( pp ii xyyf χ ,  (1) 

where p  is a vector of the fitting parameters, ( ii yx , ) are measured data and );( pxy  is a 

nonlinear model function. The residual vector is a column vector r whose components 

are );( piii xyyr −= , with Ni ,,2,1 L=  and N  is the number of data points. The 

Jacobian matrix J  is defined as, 
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Each column of the Jacobian matrix is the derivative of the residual vector over one 

fitting parameter. In the Gauss-Newton method, the solution is advanced toward the 

minimum at each iteration by p∆ , which is determined by 

 0rJpJJ
TT −=∆ ,  (3) 

where 0r is the residual vector of the previous iteration. This is essentially the method 

adopted by the original LOCO, although where the equation was 0rpJ −=∆ . However, 

it is much faster to do SVD on matrix JJ
T  than on J  since the latter has tens of times 

more rows [3].  

 

In a fitting problem, two parameters can be deeply coupled such that their contributions 

to the merit function are very difficult to separate. In an extreme case, for example, it is 

impossible to determine the two fitting parameters 1p  and 2p  in the problem defined 

by [ ]∑ −−=
2

21

2 ),( ppxyy iiχ  because the merit function has no dependence 

on 21 pp + . The corresponding columns of the Jacobian matrix for the two parameters 

differ by only a scaling constant. Therefore, the Jacobian matrix is rank deficient. In a 

less severe case, the merit function may have weak dependence over 21 pp +  so that in 

principle it can be determined. But it is susceptible to noise in the experimental data and 

tends to have large error bar. Consequently the two parameters 1p  and 2p  both have 



 3 

larger error bars. The coupling of adjacent quadrupole gradient parameters in LOCO is 

very similar to the above case. If two quadrupoles are placed next to each other without 
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Figure 1: the correlation coefficients and betatron phase advances between neighboring 

quadrupoles (excluding QFC) in SPEAR3.  

much space between, they perturb the linear optics of the machine in essentially the 

same manner. LOCO may be able to accurately fit the combined integrated gradient of 

the two magnets but it would not be able to distinguish the individual contributions. 

When quadrupoles are separated with drift spaces or other components, the coupling 

between their gradients gets weaker but remains existent. Detailed analysis shows that it 

is the betatron phase advances between two quadrupoles that determine their coupling 

strength. Adding BPMs in the vicinity can alleviate the problem to some extent, but 

cannot eliminate it.   

 

The coupling between fitting parameters is reflected in the similarity of their 

corresponding columns in the Jacobian matrix, which may be characterized by their 

correlation coefficient, 

 
21
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JJ
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T

=ρ ,  (4) 

where 2,1J are corresponding columns of the parameters 1p  and 2p , and •  stands for 

the 2-norm of its argument. Fig. 1 shows the correlation coefficients between 

neighboring quadrupoles in SPEAR3. The horizontal and vertical betatron phase 

advances (mod π2 ) between these quadrupoles are also plotted. The correlation 

coefficients between neighboring QF, QD magnets in a DBA cell are around 0.8. 

Quadrupole magnets in the double waist straight section (in the center of the plot), [6], 

have even stronger correlation between their neighbors. Clearly, strong correlation is 

the result of small betatron phase advances between them.  Stronger correlation can 

occur between two quadrupoles that are physically set apart but both betatron phase 

advances between them are close to a multiple ofπ . One may calculate a correlation 

matrix and examine the coupling relations between the fitted quadrupole gradients.  

 

Because of the coupling between quadrupoles, some patterns of changes of the 

quadrupole gradients are much less restricted by LOCO fitting. If these patterns form a 

null-space in the parameter space, meaning that they correspond to singular values 

considerably smaller than others, then they can be simply removed by proper selection 
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of singular values. However, the less restrictive patterns have various severity 
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Figure 2: singular values of the correlation matrix of SPEAR3 quadrupoles. 

and are rarely orthogonal. The patterns through SVD have to be orthogonal to each 

other. Consequently the singular value spectrum is usually a smooth curve without a 

clear cut. For example, the singular values for the correlation matrix in the SPEAR3 

example are shown in Fig. 2. The less restrictive patterns tend to be clustered toward the 

lower end of the spectrum. When degeneracy becomes a problem, removing some of 

the very low singular value modes is justifiable. However, completely removing any 

mode is a loss of information and thus would reduce the fitting accuracy to some level. 

It often takes much work to find an optimal threshold. And our experience shows that 

some less restrictive patterns still leak into the solution even if a seemingly optimal 

threshold is applied. It seems not possible to retain good accuracy of fitting and keep the 

quadrupole strength changes reasonably low at the same time by merely selecting the 

singular values. This has also been the observation at Soleil, [10]. 

 

The response matrix measurement always has errors because of random BPM noises 

and random machine fluctuation. There are also systematic errors due to, for example, 

nonlinearity of the machine. The solution may drift along a less restrictive direction by 

a large step to gain a small reduction of 2χ  that is under the error level. Since the fitting 

algorithm does its best to find a minimum, the final solution tends to acquire large 

excursions toward the less restrictive directions. Such excursions are not necessarily 

reflected in the standard error bar calculation of LOCO because there only random 

BPM noises are considered.  

 

The degeneracy caused by coupling between the fitting parameters is intrinsic to the 

problem. Strictly speaking, there is no single “best solution”. Instead, any solution 

whose 2χ  differs from the global minimum by less than a certain amount determined 

by the noise level is a valid, equivalent solution. These solutions should in principle 

give the same machine lattice. We should pick the reasonable ones from this set of 

equivalent solutions. In the next section, we will show how this can be done by the 

constrained fitting method.  
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1.1.3 LOCO fitting with constraints 

Since coupling between LOCO fit parameters can cause excursions of the solution in 

unconstrained directions, it is natural to put a penalty on such excursions. This can be 

done by modifying the merit function with additional penalty terms. Ideally we would 

like the penalty terms to represent the unconstrained patterns as was done in Ref. [3-4]. 

However, it is not easy and also not necessary to identify these patterns. A much 

simpler approach is to put penalty on the change of gradient K∆  of each quadrupole 

directly. Therefore the least-square problem now reads, 

 ∑∑ ∆+
−

=
∆ k

kk

Kji i

ijij
Kw

MM
22

2
,

2

2

meas,mod,2 1)(

σσ
χ , (5) 

where K∆σ  is an overall normalization constant and 2

kw are individual weighting factors 

that represent the needs to constrain their corresponding quadrupoles.  The weighting 

factors should be adjusted according to the performance on a trial and error basis. But 

once a suitable set of weighting factor is found for one lattice, there is usually no need 

to change it later on. Removing singular values is equivalent to put infinite penalty 

weight on the corresponding patterns. This extreme measure seems to work less 

efficiently than the more “gentle” approach here.  

 

It is straightforward to implement this modified LOCO fitting scheme. The input and 

output are the same data as the original LOCO. Only the minimization algorithm needs 

a slight modification. The additional terms in 2χ  amount to simultaneous linear 

equations, 0=∆ kK , qNk ,,2,1 L= , each with a weight 22 / Kkw ∆σ , where qN is the number 

of constrained quadrupoles. Consequently the residual vector and the Jacobian matrix 

are extended. Suppose the original Jacobian matrix has N  rows (i.e., N  data points). 

The Jacobian matrix will have qN  more rows with nonzero elements KkkkN wJ ∆+ = σ/,  

and the corresponding additional elements of the previous residual vector 0r  are zeros. 

Then Eq. (3) is applied as usual to find the step to the next solution.  

 

The additional constraint terms changes the solution to the linear problem of each 

iteration. However, since only the gradient changes between successive iterations are 

constrained with a cost, the global minimum of the original problem remains the same. 

What has been changed is the convergence path. Fig. 3 serves as an illustration of this 

picture, where point 0 represents the initial guessed solution; point M is the global 

minimum within a sea of equivalent solutions under the noise level. The unconstrained 

path (solid arrows) takes large excursions and reaches the global minimum quickly, 

while the constrained path (dashed arrows) touches the nearest edge of the noise sea and 

slows down.  

 

Fig. 4 is an example of real LOCO data at SPEAR3 fitted for 12 iterations with both 

algorithms. Here 12 iterations are run just to show the behavior of the fitting methods. 

We usually run two or three iterations and apply the solution for optics correction. The 

convergence paths are shown on an rms relative gradient change vs. residual 2χ  

(normalized by degree of freedom) plot. The unconstrained algorithm converges in 
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three iterations but ends with a 2.1% rms relative gradient change. The constrained 

algorithm brings 2χ  down to the same level in three steps with an rms relative gradient 

change of only 0.6%. The additional gradient changes of the unconstrained algorithm do 

not result in a very different lattice. In fact, the rms relative differences of horizontal 

and vertical beta functions between the two lattices at point 3 and point 3’ are only 1% 

and 0.3%, respectively. Most of the additional gradient changes are cancelled by 

fighting each other. The lattice difference would be far larger if the gradient changes 

were random.  

 

 

Figure 3: An illustration of the changes to the convergence path with or without constraints. 

Solid: no constraints; Dashed: with constraints. 
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Figure 4: The rms relative change of gradients vs. the residual 
2χ   for a SPEAR3 data set. 

Green: no constraints; Blue: with constraints. Point 0 is located at (
6100.2 × , 0). The right plot 

is a blowup show of the left plot. 

 

A LOCO solution with smaller gradient changes is preferred for optics control. When 

quadrupole setting corrections are dialed in according to the solution, it is assumed that 

the magnets respond with a linear field-current relation. This assumption holds only 

when the current changes are sufficiently small because of magnet saturation and 

hysteresis. Therefore, a solution with large changes of gradients may not produce the 

expected lattice in reality. For the nominal SPEAR3 lattice the coupling problem is not 

severe. A beta beating under 1% rms was achieved with proper selection of singular 

values using the original LOCO method. The constrained fitting, however, still proves 

to be a valuable tool by improving the precision of optics control. Presently, the 

machine optics are corrected to a beta beat less than 0.2% beta beating without special 
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care to singular value selections. For the low alpha lattice, [5], this tool is indispensable 

because the lattice couldn’t be calibrated without it. For one LOCO data set from the 

low alpha lattice, the rms relative K∆ change is fitted to be 14.5% by keeping 530 out 

of 542 singular values and larger if more singular values are kept with the unconstrained 

method. The constrained method finds a solution with only 3.5% rms relative 

K∆ change and the rms relative beta function difference between the two resulted 

lattices is only 2.0% horizontal and 0.7% vertical. After correction, the beta beat was 

reduced to 0.5% horizontal and 0.3% vertical.  

 

It is worth noting that the ability of LOCO to identify large gradient errors is not 

sacrificed by adding constraints. The constraints endanger primarily the existence of the 

less restrictive patterns in the solution because they are “cheap” in terms of 2χ . Real 

gradient errors usually cause large 2χ  contributions and they rarely form a less 

restrictive pattern. For example, during the 2007 shutdown of SPEAR3, an insertion 

device was moved to a new location. The perturbation to the lattice corresponds to 

normalized 2χ  contributions over 4108× . The nearby quadrupole magnets stand out in 

the fitting solution to account for the change, even if we put 20 times more weight on 

these quadrupoles than we normally do.  

 

The penalty terms, the costs, are essential to the improved performance of LOCO. It is 

important to set the cost factors properly. If the penalty is too high, the solution would 

converge too slowly. If the penalty is too low, the benefit of constraints would not be 

seen.  The average cost may be a good indicator of the choice of weighting factors. In 

Fig. 5 we plot the average cost for each iteration for the example shown in Fig. 4.  For 

SPEAR3, equal weighting factors were initially chosen for all quadrupoles and then 

adjustments are made as needed.  The more sensitive a parameter is to coupling issues, 

the more weight gets added. The proper overall weighting factor may be found by 

adjusting it to produce an average cost at the first iteration that is comparable to the 

normalized residual 2χ . The correlation coefficient plot (Fig. 1) could be useful in 

identifying the sensitive quadrupoles. However, a more straightforward and easier 

method is to study the individual 2χ contribution of the fitting parameters, [3].  The 
2χ contribution of a fitting parameter is defined as the increase to 2χ  if we set this 

parameter to its initial value at iteration 0 and keep all other parameters unchanged. We 

can define the contribution of a group of parameters in the same manner. Ideally, if 

there is no correlation between the fitting parameters so they don’t fight each other, then 

the sum of their individual contributions should be nearly equal to their group 

contribution, assuming a linear expansion is valid. In contrast, if a parameter drifts 

along a less restrictive direction by a large amount from iteration 0, then it will cause a 

sizable 2χ contribution because the other parameters are not present to cancel its effect 

in this calculation. This is what was observed in the same SPEAR3 data set. Fig. 6 

shows the 2χ contribution after three iterations with or without constraints. Because  

quadrupoles that share the same power supply are combined as one fitting parameter, 

there are 72 quadrupole fit parameters. Also shown in Fig. 6 are contributions of the 14 

skew quadrupoles. It is first noted that the group contribution of all fitting parameters 

for the two cases are about the same ( 36002 ≈∆χ ).This is not surprising because the 
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two resulting model lattices are nearly the same (see discussion before Fig. 3). 

However, for the unconstrained case, the individual contributions are considerably 

higher, especially for a few quadrupole magnets. It is reasonable to assign more weights 

to these parameters. These magnets turn out to be located around the double waist 

straight section, where the coupling between magnets is stronger. The constrained 

solution has small individual 2χ contribution for the fitting parameters and their sum is 

on the same order as their group contribution. 
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Figure 5: the average cost for the SPEAR3 example shown in Fig. 4 
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Figure 6: 
2χ  contribution for individual fitting parameters at point 3 (left) and point 3’ (right) 

for the SPEAR3 example shown in Fig. 4. The first 72 parameters are quadrupoles. The last 14 

are skew quadrupoles. 

Constraints can be easily applied to other parameters such as BPM gains and rolls, 

corrector gains and rolls but this is not necessary for the case of SPEAR3. 

 

1.1.4 The Levenberg-Marquadt fitting algorithm 

The Gauss-Newton method that is adopted by the original LOCO converges quickly if 

the initial solution is close to the minimum. But there are situations when a good initial 

guess is not available. In those situations, the fitting algorithm may behave 

unexpectedly, for example, an increased 2χ  or one that oscillates around the minimum. 

In such cases the steepest descent is more suitable because it can move the solution 

toward the minimum. The Levenberg-Marquadt algorithm combines the two methods in 
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an elegant way so that either one is selected in its applicable region [7]. This is achieved 

by replacing Eq. (3) with  

 0)( rJpDDJJ
TTT −=∆+ λ ,  (6) 

where ),,,diag( 21 NPJJJD L= , NP  is the number of columns of the Jacobian 

matrix and 0>λ  is a scaling constant. In other words, the diagonal elements of the 

matrix JJ
T  are scaled up by λ+1 . The constant λ  controls the behavior of the 

algorithm. If λ is very small (much less unity), it is the same as the Gauss-Newton 

method. If λ  is much larger than unity, it becomes the steepest descent method. Usually 

λ  is set to a small value initially, for example 001.0=λ . Then after every iteration it is 

adjusted, depending on the result of the solution found in that iteration. A simple way is 

to scale it down by a factor of 10 if the solution reduces 2χ  and update the Jacobian 

matrix; and if 2χ is increased then scale λ  up by a factor of 10 until a solution is found 

to reduce 2χ . In this way 2χ  is guaranteed to decrease after every iteration. The 

application of the Levenberg-Marquadt method to LOCO has been suggested in Ref. [3-

4].  

 

It is interesting that the fitting with constraints scheme can be cast into the same 

framework as the Levenberg-Marquardt algorithm. In fact, Eq. (6) applies to the former 

case with 1=λ  fixed and KNq
www ∆= σ/),,,,0,diag(0, 21 LLD , where the 0’s are for 

non-constrained parameters. This is not surprising because both methods want to limit 

the step sizes toward the next solution, but for different reasons! For the Levenberg-

Marquardt method, the goal is to find the global minimum reliably. But the constrained 

fitting actually wants to avoid the global minimum by going with slower paces.  

 

A recent report [8] indicates that a more delicate form of the Levenberg-Marquardt 

algorithm [9] could have better performance for LOCO. This algorithm is based on 

explicit control of a trust-region: it finds the best solution for the iteration within the 

region specified by 

 ∆≤∆pD ,  (7) 

where ∆  on the right hand side represents the size of the trust region and it is adjusted 

according to the efficiency of 2χ  reduction after every iteration.  

 

1.1.5 Summary 

Two ways to improve the LOCO technique have been discussed – the constrained 

fitting method and the Levenberg-Marquadt algorithm. The constrained fitting is 

introduced to cure the degeneracy problem caused by the coupling between fitting 

parameters (mainly the neighboring quadrupoles). This is a common problem that 

occurs to many machines in different severity. The constraints are implemented by 

putting penalties for the step sizes between the solutions of successive iterations. It has 
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shown to be an efficient way to remove the less restrictive patterns from the solution 

and it results in fitted lattices with small changes from the starting point. This enables 

precise control over the machine optics, even for machines where the degeneracy 

problem has made the original form of LOCO not useful.  

 

 The Levenberg-Marquadt algorithm is a robust solver for general nonlinear least square 

problems. It is useful for LOCO in cases when the initial guessed solution is not close 

enough to the minimum. In such cases the Gauss-Newton solver may fail because the 

solution it finds could lie outside of the region where linearization of the model is valid. 

The Levenberg-Marquadt algorithm is based on the trust-region strategy – the solution 

it finds is confined in a region where the linear model is valid. The size of the trust 

region is controlled implicitly or explicitly and is adjusted after every iteration.  
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