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Abstract

One of the challenges of supersymmetry (SUSY) breaking and media-
tion is generating a µ term consistent with the requirements of electro-weak
symmetry breaking. The most common approach to the problem is to gen-
erate the µ term through a SUSY breaking F-term. Often these models
produce unacceptably large Bµ terms as a result. We will present an alter-
nate approach, where the µ term is generated directly by non-perturtative
effects. The same non-perturbative effect will also retrofit the model of
SUSY breaking in such a way that µ is at the same scale as masses of
the Standard Model superpartners. Because the µ term is not directly
generated by SUSY breaking effects, there is no associated Bµ problem.
These results are demonstrated in a toy model where a stringy instanton
generates µ.
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1 Introduction

Electro-weak symmetry breaking in the Minimal Supersymmetric Standard Model
(MSSM) requires a Higgs sector with both supersymmetry breaking masses of the
form m2

hu
h†uhu, m

2
hd
h†dhd and Bµhuhd and a supersymmetric mass (µ

∫
d2θHuHd).

The presence of a stable vacuum that spontaneously breaks electro-weak sym-
metry further requires that µ2 ∼ Bµ ∼ m2

h. Because µ does not break su-
persymmetry, there is no reason a priori that µ should be of the same scale as
the supersymmetry breaking terms in the MSSM. We will refer to this as the µ
problem.

The µ term does break a Peccei-Quinn (PQ) symmetry under which both Hu

and Hd have charge +1 and quarks and leptons have charge −1/2. The standard
approach to the µ problem is to assume that the physics of mediation is the
origin of PQ breaking and thus ties the scale of SUSY breaking in the MSSM
to the scale of PQ breaking. Specifically, the µ term is generated from a Kähler
potential term by integrating out the F-term that breaks SUSY.

In gravity mediation, this approach can be effective via the Giudice-Masiero
mechanism [1]. Both µ and Bµ are generated by tree-level effective couplings to
the supersymmetry breaking field S in the Kähler potential

K ⊃ S†

MPl.

HuHd +
S S†

M2
Pl.

HuHd + h.c. (1)

This naturally leads to µ2 ∼ Bµ once one integrates out the F-term FS 6= 0.
In models of gauge mediation [2, 3, 4, 5, 6], reviewed e.g. in [7], the µ problem

is more severe [8]. Specifically, the same physics that generates the µ term will
also generate a Bµ term. In the simplest models, both terms are generated by 1-
loop diagrams such that µ2 � Bµ due to the automatic appearance of a relative
1-loop suppression factor. This can be evaded by introducing more elaborate
messenger sectors [8, 9, 10] or strong dynamics [11, 12, 13, 10].

We propose an alternate approach to the µ problem, where one ties the scale
of µ to the scale of supersymmetry breaking, but not to supersymmetry breaking
itself. The µ term will be generated directly in the superpotential and thus we
will not generate a Bµ term simultaneously. If one is agnostic about the origin
of supersymmetry breaking, it is unclear how one would do this. However, if
one demands that supersymmetry is broken dynamically [14] then there may be
natural mechanisms that generate µ.

We will focus on the use of retrofitting [15] to explain the small scale of SUSY
breaking. For the purpose of this paper, retrofitting is a mechanism by which non-
perturbative effects generate the mass parameters in the supersymmetry breaking
sector. The supersymmetry breaking sector may then be as simple as a Fayet,
Polonyi or O’Raifeartaigh model, with mass parameters generated by gaugino
condensation [15] or instantons [16].
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The approach taken in this paper will be to generate µ by the same non-
perturbative effect that retrofits the SUSY breaking sector. Our goal will be
to produce a µ term that arises at the same scale as the soft masses in the
Standard Model. We will show how the order of magnitudes can be made to
match in models with calculable non-perturbative effects. We will focus on the
use of stringy instantons, mostly for calculability of the instanton effect although
one could construct purely field theoretic models with the same features. The
generation of a µ term by stringy instantons has been suggested before in [17,
18, 19] with concrete realisations including [20, 21, 22]. What is new about our
approach is the correlation between the scale of µ and the scale of supersymmetry
breaking.

The organization of the paper is as follows: In section 2, we will explain
the basic idea of retrofitting and µ generation. We will also elaborate on some
of the basic obstacles that can arise in specific models. In section 3, we will
present a particular model based on a supersymmetry breaking quiver of ISS type.
Retrofitting is performed by a stringy instanton that generates supersymmetry
breaking masses for the quark flavors at the same scale as the µ term. To illustrate
possible embeddings into string theory, we have constructed a toy model, based
on the geometries of [23], which realizes the main aspects of this quiver and the
instanton sector. Technical details about the string construction are left to an
appendix. In section 4, we will discuss the use of anomalous U(1)s to prevent
tree level mass terms, focusing on how this affects the couplings to the SUSY
breaking sector. We will then discuss some open issues.

2 Retrofitting and µ

2.1 The general idea

As a concrete example of retrofitting, let us consider the model from [15]. The
dynamics of this model are non-trivial and will serve only as motivation for our
own model building in later sections. We will restate their results and refer the
reader to [15] for details. The superpotential is given by

W = Z1
φ3

3M∗
+ Z2(λ

φ2

2
[1 + λ1

Z2

M∗
]− λσ

2

2
+
φηη̃

M∗
) + λφηη̃ + λ2

(ηη̃)2

M∗
, (2)

where Z1, Z2 and φ are hidden sector fields, η and η̃ are messengers embedded in
a 5 + 5 representation of SU(5) and M∗ is some UV cutoff. The σ2 term in the
superpotential leads to SUSY breaking.

In [15], the scale of SUSY breaking was generated by gaugino condensation.
Specifically, we couple an SU(2) to Z2 via

∫
d2θWαW

α λZ2

M∗
. This will dynamically

generate σ2 ' Λ3/M∗. In the above model, the SUSY breaking scale of the MSSM
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is given by

m̃ ∼ g2

16π2

σ4

M3
∗λ

2
∼ g2

16π2

Λ6

M5
∗λ

2
. (3)

As a simple illustration of our idea to address the µ problem, consider adding
to the theory a coupling between the Higgs sector and the SU(2) sector by

S ⊃
∫
d4x d2θ (WαW

α)2 κHuHd

M5
∗

. (4)

Such a coupling will generate a µ term of the order µ ∼ m̃ ∼ Λ6/M5
∗ . Of course,

one would have to explain why such a highly irrelevant operator was the leading
effect. Nevertheless, it serves as a simple illustration of how one can generate µ
without coupling the Higgs sector to the messengers or SUSY breaking directly.

Furthermore, one should note that no Bµ term will be generated by this
coupling. As a result, at the scale of SUSY breaking Bµ ∼ 0. Bµ and m2

h will be
generated through renormalization group (RG) flow in the MSSM. This will lead
to a consistent Higgs sector provided the gaugino masses (mg̃) are at the weak
scale and m2

h . m2
g̃ at the SUSY breaking scale. Thus, electroweak symmetry

breaking will require
µ ∼ mg̃. (5)

A viable model should satisfy this condition after including all order one factors.
These factors are difficult to calculate when considering non-perturbative effects
and/or UV complete models. We will discuss specific factors as they arise, but
the end result will contain a theoretical error competitive with factors of 16π2.
It is important that some of these factors are functionally independent for µ
and mg̃ such that there is no in principle obstacle to finding viable models. As
reviewed in the introduction, this is in contrast to the generation of µ by Giudice-
Masiero type 1-loop Kähler potential couplings in gauge mediation, where the
16π2 discrepancy to the Bµ term is generic [8] and avoidable only with extra
effort [8, 9, 10, 11, 12, 13].

Finally, note that one may also consider cases where Bµ is generated by
messenger couplings to the Higgs, leading to Giudice-Masiero type couplings at
one loop. Since the µ term is generated independently at the correct scale by
non-perturbative effects, for appropriate values of the couplings a viable Bµ term
is achievable. In this case, the additional contribution to the µ term produced
by the same physics responsible for the Bµ term is subleading.

As a starting point, we will look to satisfy (5) at the order of magnitude level.
For the time being, we will assume that couplings like κ are order one, but we
will return to discuss how couplings are generated in section 4.

2.2 Stringy Instantons

For the rest of the paper, we will focus on the use of (stringy) instantons to
generate the necessary non-perturbative effects (see [24] for a recent review).
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The advantage of this approach is that conditions for generating non-perturbative
superpotential terms can be determined geometrically.

To demonstrate the general idea we will think of field theories that arise
on D-branes wrapping cycles in some local geometry. This effectively reduces
the problem to supersymmetry breaking in globally supersymmetric field the-
ories. The successful realisation of supersymmetry breaking in compact string
constructions is a much more intricate problem which requires full control of the
moduli stabilisation sector in supergravity and is beyond the scope of this article.
We will comment on associated problems in section 4.2.

The gauge groups arise from the number of D-branes on a given cycle. Bi-
fundamental matter (Φj) are localised at the intersections of various cycles. A
Euclidean brane wrapping a cycle of volume Vol in units of the string length gives

rise to non-perturbative effects suppressed by e−S0 = e−
Vol
gs . Our goal will be to

use a single instanton to generate both the µ term and a mass term in the SUSY
breaking sector.

In order to compute the contributions to the superpotential, one must de-
termine the zero modes of the instanton. The universal zero modes arise from
the breaking of translation invariance and SUSY in the presence of the instan-
ton. For the Euclidean brane to give a superpotential contribution, integrating
over these zero modes should introduce

∫
d4x d2θ. In addition, there are charged

fermionic zero modes (αi) due to massless strings that stretch between the Eu-
clidean brane and D-branes on other cycles [25, 17, 18, 26]. The number of such
modes can be determined in the same way that the number of bi-fundamental
fields is determined from the intersection of branes.

The Euclidean brane contributes to the action a term

S ⊃
∫
M3

s d
4x d2θ

∫ ∏
i

dαi e
−S0−Sint(αi,Φj), (6)

where Ms denotes the string scale. Here S0 = Vol
gs

with gs the string coupling

and Sint(αi,Φj) denotes the couplings between the charged instanton zero modes
and the open string modes in the D-brane sector. This interaction piece can be
determined by the same techniques that determine the couplings between the
matter fields [27, 28]. Integrating out the fermionic zero modes αi will generate
superpotential terms involving the matter fields Φj.

In [16], it was shown how these contributions can be used to engineer simple
local models of SUSY breaking (see [29, 30, 31, 32, 33, 34] for concrete realisations
and applications). For example, one can construct the Polonyi model if there are
only two fermionic zero modes, α and β, that couple in the instanton action to
a field Φ via Sint = cFM

−1
s αΦβ. The coupling cF is a function of the open and

closed string moduli and therefore model dependent. Integrating out α and β we
get a superpotential for Φ of the form

W = σ2Φ ' cF e
−S0 M2

s Φ. (7)
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Here we are neglecting an additional O(1) factor due to the 1-loop Pfaffian of the
instanton path integral. In models of this type, one generates an F-term of the
form FΦ = σ2 ' cF e

−S0M2
s .

What we need is that µ is of the scale of SUSY breaking in the MSSM. On
dimensional grounds, any simple model of mediation should generate soft masses
of the form

mg̃ ∼
λ(φ, r,m,M, . . .)

16π2

F

M
, (8)

where λ(φ, F,M, . . .) is some dimensionless quantity that may depend on the
dimensionful and dimensionless parameters of the theory, and M is some mass
scale associated with the messengers. However, if we generate µ by the same
instanton, then we get

W ⊃ µHuHd ' cµMs e
−S0 HuHd, (9)

with cµ denoting the coupling in Sint ⊃ cµM
−2
s αHuHd β. For µ ' mg̃ we need

M ' λ

16π2

cF
cµ
Ms. (10)

Note that since in typical string setups cF and cµ can easily differ by factors
competing with 16π2, this relation might result in string scale messengers, de-
pending on the details of the model. A related potential worry is that domination
of gauge mediation over gravity mediation requires λ

16π2
F
M
< F

MPl.
, so typically

M ≤ 10−3MPl.. This can be read as a constraint of the model dependent proper-
ties of the dimensionless coupling constants appearing in the setup. In this sense
models of SUSY breaking where a (mass)2 controls SUSY breaking will generi-
cally be more involved. A possible resolution to this problem is to generate the
couplings in the messenger sector non-perturbatively as well, as we will discuss
in section 4.

For the above reasons, it will be technically simpler to focus on models where a
coupling of mass dimensions one is generated by the instanton. A simple example
of this type is the Fayet model. In this model, we have a U(1) gauge field that
couples to two chiral superfields Φ± with opposite charges. We wish to generate
a superpotential

W = mΦ+ Φ− = cmMs e
−S0Φ+Φ−. (11)

SUSY is unbroken if both φ± = 0. If the theory has a non-zero Fayet-Iliopoulos
(FI) parameter r, then the D-term requires that

|φ+|2 − |φ−|2 = r. (12)

For
√
r � m, this leads to F-term breaking where |φ+|2 ∼ r and FΦ− ∼ m

√
r.
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One could construct such a model where m is generated by a stringy instanton,
as in [16], and generate a µ term of the form (9) from the same instanton. As a
result we will get µ = cµ

cm
m. Then µ ∼ mg̃ requires

M ∼ λ

16π2

cm
cµ

√
r. (13)

On the one hand, the scale of M is now free in principle (as long as M �
µ) and not directly determined by the scale of supersymmetry breaking. This
resolves potential conflict with the requirement of dominance of gauge versus
gravity mediation. Still, the relationship (13) is not generic and would have to
be ensured by model building in the field theory or by some special features of
the geometry (i.e. from the UV completion). For the FI parameter, engineering
such a relationship seems difficult. In the next section, we will see one way such
a relationship can occur naturally.

None of the problems in this section seem insurmountable, but do require
more input than just a single field model of SUSY breaking. Having a natural
mechanism for generating µ in such simple models makes this worth further study.
We will now move on to more complicated models of SUSY breaking where we
know of simple solutions to these basic obstacles.

3 A Quiver for µ

3.1 The quiver

As we discussed in the previous section, if we wish to generate both µ and SUSY
breaking from a single instanton, it is most convenient to have the µ term and
the supersymmetry breaking operator of the same mass dimension. As in the
Fayet model, we would then expect F ∼ µM where M � µ is some mass scale
in the SUSY breaking sector.

A model where SUSY breaking is F-term dominated and is the product of
two mass scales is the construction of ISS [35]. We will consider SU(Nc) gauge
theories with Nf flavors (qi, q̃i) such that 3Nc/2 > Nf > Nc. If all the Nf flavors
have a mass in the superpotential

W ⊃ mqi q̃i, (14)

there is a metastable vacuum which breaks SUSY with

F ' mΛ, (15)

where Λ is the dynamical scale of the SU(Nc) gauge theory. Like in the Fayet
model, we will generate both a µ term for HuHd as well as the mass m for the
flavors by one instanton.
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In order to find a string construction of the model, including the appropriate
instanton effect, it will be convenient to write the model as a quiver diagram.
In the interest of simplicity, our “Standard Model” will be an SU(5) node with
vector-like matter in the (5 + 5) representation yielding our Hu and Hd. We
also want to have an SU(Nc) node with Nf flavors for SUSY breaking. We
will communicate SUSY breaking to the Standard Model by a set of vector-
like messengers (Ψ, Ψ̃) in the (5 + 5) representation of SU(5) and (Nc + Nc)
representation of SU(Nc).

Typically in stringy models of ISS, one uses a “flavor brane” to engineer Nf

flavors. This would mean that the quarks would be bi-fundamentals (5,Nf ) of
SU(5) and an SU(Nf ) gauge group realised on a stack of Nf branes. This will
not work for us, as the fermionic instanton zero modes would have to be charged
under the SU(Nf ) or the SU(Nc) gauge groups. Integrating out these zero modes
would then produce a term of the form det(qq̃) rather than mqiq̃i. Therefore, we
will require that the Nf flavor symmetry is not gauged. In our string construction,
this can be achieved by introducing a single brane with gauge group U(1) and
Nf copies of messengers (Ψ,Ψ̃) in the bi-fundamental representation (5,−1) and
(5, 1). The U(1) gauge group is massive via the Stückelberg mechanism and
remains only as a global perturbative symmetry.

Likewise the Higgs and flavor quarks arise as bi-fundamental fields in the
5− 1 and 3− 1 sector. There are in principle two different possible assignments
of anomalous U(1) charges to the Higgs and flavor quarks: Either Hu, Hd form
proper vector-like pairs in the representation (5,−1), (5, 1) (and similarly for
qi, q̃i). To engineer the correct instanton effect, the instanton should only have
two charged zero modes, α and β, of charge −1 and +1, respectively. In addition
the instanton action must contain the terms

Sint = λijF M
−2
s α qi q̃j β + cµM

−2
s αHuHd β, (16)

where cijF is a rank Nf matrix. Integrating out α and β will produce, up to the
couplings,

m ∼ µ ∼ e−S0 . (17)

The full quiver, including the instanton, is shown in figure 1.
The disadvantage of this charge assignment is that no symmetry protects the

µ term and the quark masses from being generated perturbatively, i.e. generically
at the string scale. This can be remedied by assigning charges (5,+1), (5,+1) to
Hu, Hd and (Nf ,+1), (Nf ,+1) to qi, q̃i as well as −1 to both α and β, see table 1.
Such charges can easily be achieved in a stringy orientifold setup. The operators
HuHd and qq̃ thus carry charge +2 under the massive U(1), which is now also
anomalous and whose anomaly is cancelled by the Green-Schwarz mechanism.
The charges of the instanton zero modes guarantee that the volume modulus
appearing in e−S0 shifts appropriately so as to render the non-perturbative µ and
mass term gauge invariant.
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field U(5) U(Nc) U(1)

qj 1 1

q̃j 1 1

Hu 1 1

Hd 1 1

Table 1: Charges associated with the fields Hu, Hd and qi, q̃i in the quiver in
figure 1.

In the low energy theory, it is the meson field

M̃ j
i = Λ−1 qi q̃

j (18)

which acquires a SUSY breaking F-term , FM̃ = mΛ ' µΛ. The messengers will
have a tree level mass,

W ⊃MΨΨ̃. (19)

In the string construction M will be controlled by an open string modulus, which
has to be tuned to get M � Ms. We will couple the messengers to the mesons
via W ⊃ κijM̃

j
i ΨΨ̃. Clearly the second charge assignment, where qiq̃i carries net

charge +2 under the anomalous U(1), suffers from the drawback of forbidding
this coupling at the perturbative level. Slight generalizations of this model, to be
introduced in section 4, will overcome this deficiency. The coupling κ will depend
on Λ/M∗, where M∗ is some mass scale where the coupling of the messengers to
the quarks is generated. The coupling of ISS models to a messenger sector was
analyzed in [36], although there M∗ is identified with the Planck scale.

Our model has many features in common with the Fayet model we discussed
above. The gaugino masses in the “Standard Model” are given by

mg̃ '
κ

16π2

F

M
∼ κ

16π2
µ

Λ

M
, (20)

where we used the fact the instanton gives m ∼ µ. To ensure that µ ∼ mg̃, we will
need Λ ∼M . Unlike in the Fayet model, there is a straightforward way to satisfy
this condition. Since M � µ, the relevant dynamical scale Λ is determined after
integrating out the messengers. If the UV theory is weakly coupled at the scale
M , we can use the 1-loop matching formula to determine the new dynamical scale
(Λ) from the one determined by the string construction (Λ̃),

Λb(Nf ) ∼ Λ̃b(Nf+5)M b(Nf )−b(Nf+5), (21)

where b(Nf ) ' 3Nc − Nf is the coefficient of the 1-loop beta function for the
coupling of the SU(Nc) gauge theory. The exponent b(Nf + 5) appears because
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5

1 Nc

� �

Hu 

Hd 

�

�

qi

qi

Figure 1: A quiver diagram for the theory described in section 3. The numbers
give the rank of U(N) gauge groups and the arrows represent bifundamental
matter. The square node is the stringy instanton that gives rise to the µ term
and the mass for the flavors, where α and β are the charged zero modes of the
instanton.

the messengers are in the 5+5 of SU(5) and thus act like five heavy flavors. This
matching is only approximate and more precise matching calculations will lead
to order one factors in the relationship between Λ and M .

We see from (21) that the condition that Λ ∼M arises naturally if b(Nf+5)�
b(Nf ). The simplest way to achieve this is if the 1-loop contribution to b(Nf + 5)
vanishes, which occurs if Nf + 5 ∼ 3Nc. If this is the case, we naturally get
Λ ∼M and therefore µ ∼ mg̃. Let us consider the case where

Nc = 3, Nf = 4. (22)

Clearly, Nf + 5 = 9 = 3Nc, so at 1-loop b(Nf + 5) ∼ 0. The 2-loop contribution
leads to a Landau pole, but we will UV complete with string theory below that
scale. Of course, because this is a purely field theoretic mechanism, we will need
M � Ms so that we are well within the field theory regime. We will see in our
string construction that this requires a small amount of fine tuning.

3.2 String Construction

In this section, we will give a qualitative description of a string theoretic real-
isation of the quiver in figure 1, leaving all technical details to the appendix.
The quiver shown in figure 1 naturally appears in the construction of [23]. This
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construction is based on an orientifold compactification of Type IIB string theory
with D7 branes carrying worldvolume flux. We stress that even though this setup
is compact, we treat the open and closed string moduli controlling the mass scales
and supersymmetry breaking scales as tunable parameters of the theory. Clearly
in a compact vacuum this is not justified. The stabilisation of these moduli in
the present context is a central question, both to decide if supersymmetry may
be restored in moduli space and in order to estimate the dominance of gauge
mediation. This important open issue is common to all fully-fledged embeddings
of supersymmetry breaking gauge dynamics into string theory and not specific
to our proposed solution of the µ problem. We therefore think it is useful to
demonstrate how at least the basic ingredients of our proposed quiver can be
engineered in string theory models.

The three different gauge groups arise from different spacetime-filling stacks
of D7 branes wrapping internal four-cycles. As can be seen in the original models
of [23], canceling the D7 brane charge for an SU(5) GUT gives precisely the U(1)
and SU(3) gauge groups that our model requires.1

The number of quark flavors is determined by the intersection form of the
geometry and the worldvolume fluxes on the D7 branes. For a concrete choice of
cycles on which D7s are wrapped in a specific geometry, getting Nf = 4 puts a
condition on the worldvolume flux (line bundle).

A Euclidean D3 brane wrapping another cycle not populated by any of the
SU(5), U(1) and SU(3) branes will generate both the quark masses and a µ term.
Let us focus for definiteness on the second U(1) charge assignment summarized
in table 1, for which this non-perturbative effect is the leading order contribution
to both terms due to the global U(1) symmetry. The Euclidean brane must
not carry any worldvolume flux to contribute to W , and must have non-trivial
intersection with the D7 on the U(1) node to allow for charged zero modes. The
requirement of precisely two such modes α, β between the U(1) node and the
Euclidean brane and no zero modes charged under the other gauge groups puts
extra constraints on the geometry. In principle there do exist realisations of this
scenario in the present setup with exactly one pair of Hu, Hd fields, but due
to a certain technical complication discussed in the appendix we discard these
solutions here. The smallest number of Higgs pairs avoiding this complication
turns out to be 4 in our particular geometry. This is just an unfortunate feature
of the comparatively simple geometry we are considering and we therefore believe
that this model is sufficient for the purpose of illustrating the mechanism. The
explicit data of an example of such a model is given in equ. (30) and (34).

The messenger fields in the model acquire mass at tree-level, which means
they would generically be string scale. Similar situations occur in many D-brane
constructions, where vector-like matter has a mass proportional to the separation

1The diagonal U(1) factors of the original U(5) and U(3) groups on the brane stacks become
massive and will play no role here.
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between branes (for a discussion in the context of gauge meditation see [37]). By
tuning the distance between the branes to be smaller than the string scale, one
engineers massive particles in the low energy effective theory. It is important
that when one is tuning open string moduli to achieve masses small, one does
not necessarily introduce other light fields corresponding to closed string modes.

Similarly in our model, the mass of the messengers is controlled by an open
string modulus. Thus, like the distance between branes, we can “tune” the mass
to be below the string scale.2 We will construct a simple toy model to illustrate
the open string moduli dependence of the messenger mass. The SU(3) D7 branes
in (30) can be split into two separate stacks of branes. In that limit, there are
two U(1) gauge fields, one on each of the two cycles after splitting, and two
additional chiral fields, φ± stretching between these cycles in both directions. φ±
has change ±1 under the first U(1) and ∓1 under the second. Each messenger
only transforms under one of the U(1)s such that φ−ΨΨ̃ forms a gauge invariant
combination. The D-terms for this system take the form

(|φ+|2 − |φ−|2 − ζ1)2 + (−|φ+|2 + |φ−|2 − ζ2)2, (23)

with the field dependent FI terms ζi determined by the gauge flux along the two
components of the divisor. A supersymmetric configuration requires ζ1 = −ζ2.
In this case the D-term conditions force 〈Φ−〉 = 〈φ+〉 − 〈φ−〉 = 0, while the
combination Φ+ = φ+ +φ− remains as a flat direction (modulus). A non-zero vev
〈φ+〉 = 〈φ−〉 breaks U(1)×U(1)→ U(1) in a way consistent with recombination of
the branes. The vev of the modulus Φ+ gives a mass 1

2
〈Φ+〉ΨΨ̃ to the messengers

if there exists a superpotential W = φ−ΨΨ̃. It is this open string modulus that
controls the mass of our messengers.

There are two further obstacles which generically arise in all such models when
trying to make sense of the model as a consistent compact string vacuum. First of
all, we were unable to cancel the D3 tadpole while maintaining the matter content
of the model (see the appendix for details). This is can be resolved in priniciple
with a more complicated orientifold. The second and conceptually much more
serious problem is moduli stabilization, see section 4.2 for more comments.

4 Massive U(1)s and Couplings

4.1 An extended quiver

As pointed out already, it is important to explain the absence of tree level con-
tributions to the non-perturbative mass terms for the SUSY breaking sector or
the µ term. Without further symmetries these superpotential terms are techni-
cally natural in field theory and thus one often argues they can be freely chosen

2Again, eventually the open string moduli will have to be stabilized dynamically.
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1a 1b

Hu 

Nc

Hd 

qj

Qi

� �

qj

Qi

Figure 2: A quiver diagram for the theory described in section 4. The numbers
give the rank of the U(N) gauge groups and the arrows represent bifundamental
matter. The number Nf of q and q̃ fields is not determined. The number of Q
and Q̃ fields is given by Ñ . SUSY breaking will require that 3/2Nc > Nf > Nc

and solving the µ problem will require that Ñ = 3Nc −Nf .

and will only be corrected non-perturbatively. However, in string models, it is
rarely the case that operators allowed by gauge symmetries are absent from the
superpotential.

A common way to forbid dangerous superpotential terms in string theory is
through anomalous U(1) charges. If the operators of interest carry charge under
some set of U(1) gauge fields, then they are forbidden by the gauge symmetry.
Since the anomalous U(1) becomes massive via the Green-Schwarz mechanism,
these operators may be generated non-perturbatively. As reviewed previously, the
instanton action is proportional to the closed string moduli that shift to cancel
the anomaly. As a result, e−S0 can carry the correct charge to generate the mass
terms of interest [17, 18, 26].

If anomalous U(1)s are used to justify the superpotentials of our model, one
must also consider the origin of the messenger mass and the coupling of SUSY
breaking to the messengers. As we saw in the previous section, if the flavors
are charged but the messengers are uncharged, then both the mass term for the
flavors and the coupling of the flavors to the messengers will be forbidden at tree
level.

One possible way out would be to consider the case where also the messenger
couplings are generated non-perturbatively. For instance this opens the possi-
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bility of having a Polonyi model as the SUSY breaking sector without the need
to require string scale messengers, see the discussion around (10). Specifically,
if the coupling and the messenger mass were both generated by the same non-
perturbative effect, then we could have λ = e−S1 , M ∼Ms e

−S1 , µ ∼Ms e
−S2 and

F = M2
s e
−S2 . This would give gaugino masses at the scale

mg̃ ∼
λF

M
∼Ms e

−S2 ∼ µ. (24)

Unfortunately, we were unable to realize such a model where all the operators
carry charge. Such a model may exist, but will likely involve a more elaborate
messenger sector.

field U(5) U(Nc) U(1)a U(1)b field U(5) U(Nc) U(1)a U(1)b

Qi 1 −1 0 Ψ 1 −1 0

Q̃i 1 0 1 Ψ̃ 1 0 1

qj 1 1 0 Hu 1 1 0

q̃j 1 0 −1 Hd 1 0 −1

Table 2: Charges associated with the fields in the quiver in figure 2.

The quiver of section 3 can be modified in order to allow for order one cou-
plings but forbid tree level mass parameters. This modified quiver is shown in
figure 2. Both U(1) nodes will have anomalies that are cancelled by the Green-
Schwarz mechanism. We will include Nf fields qj and Ñ fields Qi. For the purpose
of SUSY breaking, the rank of gauge group Nc is such that 3/2Nc > Nf > Nc.
The charge assignments for the fields are displayed in table 2. For these charges,
the possible tree level superpotential terms begin at quartic order,

Wtree =
λ

(1)
ij

m∗
QiQ̃jHuHd +

λ
(2)
ij

m∗
qiq̃jΨΨ̃ +

λ(3)

m∗
ΨΨ̃HuHd +

λ
(4)
ijkl

m∗
QiQ̃jqiq̃j. (25)

Clearly the presence of such couplings, the rank of coupling matrices λi and
the mass scale m∗ are model dependent. The only coupling we need for gauge
mediation to work is the second one.

As before, we will use an instanton to generate both µHuHd and µqj q̃j. For
the instanton action to produce these terms, the instanton must have a zero mode
with charge −1 under U(1)a and another zero mode with charge +1 under U(1)b.
This will generate µ ∼Mse

−S1 . A second instanton will generate the mass MΨΨ̃
for the messengers and MQiQ̃i for the heavy flavors.3 This requires that the

3Note that the effective mass terms for the messengers and quarks after condensation of the
Higgs fields in (25) will be only a negligible correction.
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instanton has a charged zero mode with charge +1 under U(1)a and another zero
mode with charge −1 under U(1)b. This will generate M ∼ Mse

−S2 . We want
the messengers to be much heavier than the Higgs, so we will need S2 < S1.

The structure of the quiver is different from that of figure 1 in order to give
the messengers U(1) charge. This is needed to allow for tree level couplings.
Fortunately, this will also allow for non-perturbative messenger masses at no
additional cost. This is not possible in models where the messengers are charged
under both the Standard Model and SUSY breaking gauge groups. In such cases,
the charged zero modes must carry charge under a non-abelian group and thus
we get determinants rather than mass terms in the superpotential.

The lower part of the quiver in figure 2 is our SUSY breaking sector, as in
the previous section. The only difference in this case is that the messengers are
not the heavy flavors. This will also give us extra freedom to choose both the
gauge group and the number of flavors. Following our matching argument of
the previous section, we find the Λ ∼ M when Ñ = 3Nc − Nf . Although the
messengers are not directly involved in the matching condition, the fact that the
heavy quark masses arise from the same instanton as the messenger mass ensures
the result is the same.

The tree level couplings in (25), if present, also lead to one-loop diagrams
that generate µ and Bµ after integrating out the messengers. Specifically, the
contribution to Bµ is given by

Bµ ' κ2

16π2

λ(3)|F |2

m∗M
, (26)

where κ ∼ λ(2)Λ/m∗. This should be expected as we have direct couplings of the
messengers to the Higgs sector. In the absence of our instanton contribution to
µ, such a model would lead to an unacceptable Higgs sector [8]. The reason is
that one cannot independently set the scales of µ and Bµ. Since Bµ is generically
much larger, this gives back the usual µ problem in gauge mediation. However,
with the instanton, we now have independent control over µ. The couplings in
(25) are only constrained by Bµ . m2

g̃ ' | κF
16π2M

|2. For given values of λ
(2)
ij and all

the dimensionful parameters, this will lead to an upper bound on the size of the
coupling λ(3). In general, λ(3) ≤ 10−2 is sufficient but λ(3) ∼ O(1) is permitted
when m∗ �M . Since generically m∗ = Ms, this is easily achieved.

Unlike our previous model, we have not attempted to find a geometry where
the quiver and instantons arise, but there is no obstacle of principle to doing
so. Given a geometry that yields a quiver of the form given in figure 2, the
techniques described in the appendix can be used to engineer the correct number
of bifundamentals on the different nodes, as well as instantons that will produce
the mass terms that are needed for this model.
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4.2 Remarks on moduli stabilisation

Our discussion has treated the moduli controlling the couplings of the models
as free parameters and is therefore valid in the limit of a supersymmetric field
theory. We have repeatedly alerted the reader, though, that a full realisation
of supersymmetry breaking and gauge mediation in compact string models is
severely complicated by the requirement of moduli stabilisation. The problem
comes in two parts. Firstly, in the presence of any non-trivial D-brane sector it is
difficult to stabilize the volume moduli of the D-branes in an appropriate regime.
This problem was raised in [38] in the context of Type IIB orientifolds. There it
was pointed out that those D-brane instantons which are usually responsible for
stabilisation of the Kähler moduli do not generate the necessary dependence of
the superpotential on all the Kähler moduli due to extra zero modes related to
the presence of the D-branes. This challenge calls for a solution in most attempts
to realize realistic phenomenology and is per se independent of the engineering
of a supersymmetry breaking gauge sector. More specifically applied to scenar-
ios of supersymmetry breaking this means that e.g. for simple realizations of
Polonyi type models by D-brane instantons as in [16, 29, 30, 31, 32, 33, 34] it
remains to show how the moduli controlling the volume of the instanton cycle
are stabilised in a regime where the F-term is non-vanishing. Aspects of this
problem have been analyzed for the simplest examples in [39]. In the context of
our quiver, the volume instanton generating the µ term and the supersymmetry
breaking mass terms of the flavor quarks has to be stabilised without leading to
a supersymmetry restoring runaway. Specifically, the F-terms vanish in the limit
of infinite volume of the instanton. In the presence of massive U(1) factors, also
the D-term conditions must be taken into account. While in the simplest classes
of models this can kill the viability of the construction as stressed in [39], one can
in principle consider adding extra U(1) charged matter so as to relax the D-term
conditions. Effects of D-terms for stringy embeddings of ISS type dynamics have
been considered e.g. in [40].

A second concern is that the closed string moduli sector will often intro-
duce additional sources of supersymmetry breaking of size comparable to or even
dominating over the contributions from the gauge dynamics. Even for a super-
symmetric closed moduli sector the dominance of gauge mediation over gravity
mediation might be hard to ensure. We point out, though, that even in such sce-
narios our construction can be useful to guarantee a viable Higgs sector. Namely,
in presence of extra U(1) symmetries the Giudice-Masiero mechanism might fail
to generate a µ term also in models of gravity mediation. E.g. Kähler potential
terms of the form ∫

d4x d4θ
λ

M
S†HuHd (27)

with S the closed string field whose F-term breaks supersymmetry are obviously
forbidden once the operator HuHd carries charge under some global U(1) symme-
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try. As discussed, such symmetries are not only generic in string theory, but often
also required to guarantee absence of a tree-level µ term. Of course in models
with an F-term only due to gauge dynamics, but of comparable or competing
gravity mediation contributions, our mechanism will still yield a µ term of the
correct order.

5 Discussion

In this paper, we have presented a qualitatively new approach to solving the µ
problem. In these models, the µ term is generated directly by a non-perturbative
effect in such a way that the very same non-perturbative effect generates dimen-
sionful parameters in the SUSY breaking sector controlling the size of the F-term.
For some simple models of gauge mediation, the scale of the µ term is of the same
order of magnitude as the soft masses of the MSSM.

There are two major advantages of this approach. Firstly, because µ is gen-
erated supersymmetrically, there is no associated Bµ production. Bµ could then
be generated by MSSM RG flow. One could also couple the messengers to the
Higgs sector to generate Bµ. Because µ has additional contributions, one can
avoid the usual Bµ problem of gauge mediation. The second advantage is that
one is able to generate µ in a controlled way without adding additional fields
beyond those needed for SUSY breaking and mediation. One is simply getting
more out of a non-perturbative effect than just retrofitting the SUSY breaking
sector.

This model is not without its share of problems. First of all, it is clear that
only special models have the right structure to even get the order of magnitude
matching between µ and the gaugino masses. In many models, even if the non-
perturbative effect contributes to µ and the SUSY breaking F-term, one is many
orders of magnitude from an acceptable value of µ. Eventually, in string models
the moduli fields controlling the actual size of the couplings will have to be
stabilized dynamically in the right regime.

Secondly, one must show that the Higgs sector is viable when including all
order one factors. As is well known from the µ / Bµ problem in gauge mediation,
factors of 16π2 can ruin a perfectly good model. In this case, there are many
(so far) incalculable factors that will play an important role in determining the
success of a given model.
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A Details of Stringy Realization of the Quiver

In this appendix we provide the details of a string theoretic realisation of the
quiver described in section 3. We engineer an SU(5)a × U(1)b × SU(3)c gauge
theory in the context of Type IIB orientifolds with intersecting D7 branes wrap-
ping holomorphic four-cycles (divisors) of a Calabi-Yau threefold X. We choose
X to be given by the manifold Q(dP9)4 . It arises, loosely speaking, from the quin-
tic P1,1,1,1,1[5] after fixing some of the complex structure moduli and replacing the
resulting singular loci by four dP9 surfaces. These so-called del Pezzo transitions
were worked out in the present context in [41, 23]. All geometric details relevant
for our discussion can be found in sections 7.1 and 7.3 of [23], whose notation we
adopt. There the manifold X was used to construct phenomenologically attrac-
tive SU(5) GUT models. It turns out that the hidden sector of these models is
just of the right form for the purpose of this article. However, for simplicity our
”Standard Model” is a pure SU(5) theory. The simultaneous implementation of
the SUSY breaking quiver and a more realistic visible sector as in [23] requires
more complicated geometries.

The manifold X has h1,1 = 1+4 and thus 5 independent holomorphic divisors
D5 and D6, D7, D8, D9. The latter four correspond to the dP9 surfaces referred
to above. On a complex threefold three divisors intersect in a point, and the
intersection pattern is encoded in the intersection form

I3 = D5(D6D8 +D8D9 +D6D9 +D6D7 +D7D8 +D7D9)

−D2
6(D7 +D8 +D9)−D2

7(D6 +D8 +D9)−D2
8(D6 +D7 +D8) (28)

−D2
9(D6 +D7 +D8)−D3

5.

To specify the orientifold we must define a holomorphic involution σ acting as
a Z2 symmetry on X. The theory we consider is compactification of Type IIB
theory on X modded out by Ω (−1)FL σ, where Ω is world-sheet parity and FL
denotes the left-moving fermion number. We pick the same involution σ as in
section 7.1 of [23]. It interchanges the divisors D7 and D8, but leaves D5, D6, D9

invariant as a divisor. The fixed point locus was determined in [23] as

DO7 = D5 +D7 +D8. (29)

It is the cycle wrapped by an O7-plane.
To cancel the charge 8DO7 of this O7-plane we introduce stacks of Ni D7

branes along suitable combinations of divisors Di, together with their orientifold
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image along the divisors D′i = σDi. The rules for doing this in a consistent
manner are described e.g. in section 2 of [23].

Consider the configuration

U(5)a : Da = D7, D′a = D8,

U(1)b : Db = D5, D′b = D5, (30)

U(3)c : Dc = D5 +D7, D′c = D5 +D8,

with Na = 5, Nb = 1, Nc = 3. It cancels the O7-tadpole and realises an SU(5)a
theory on Da.

4 Together with the U(1)b × SU(3)c sector this is exactly as in the
quiver we are aiming for.

Charged matter is localized at the intersection curves of the different divisors.
To realize the desired spectrum of four quark flavors we introduce line bundles
La, Lb, Lc (and their orientifold images) on the three brane stacks. Here we merely
specify the part of the line bundles that can be written as the pullback from
bundles defined on the manifold X, and parametrise their first Chern class as

c1(La) =
∑
i

aiDi+4, c1(Lb) =
∑
i

biDi+4, c1(Lc) =
∑
i

ciDi+4. (31)

The chirality of the massless matter from open strings stretching between the
various branes is computed by the index

Iij = −
∫
X

Di ∧Dj ∧ (c1(Li)− c1(Lj)). (32)

If Iij > 0 there is an excess of chiral multiplets in the bifundamental repre-
sentation ( i, j). Similar expressions exist for matter in the (anti-)symmetric
representations [23]. If Di = Dj, the vector-like matter content has to be deter-
mined by a genuine cohomology computation. With the help of the intersection
form (28) we collect the formulas relevant for the chiral spectrum in table 3.

The model

To define a concrete string vacuum we must specify the background value of the
NS B-field which enters the quantisation condition of the line bundles (see [23]
for details). In this paper we consider configurations with

B =
1

2
D5. (33)

In view of the non-spin property of the divisors Da, Db, Dc and the intersection
form (28) one finds that with this choice all coefficients in (31) have to be integer.

4The diagonal U(1)s of U(5)a and U(3)c acquire string scale mass via the Stückelberg mech-
anism and survive merely as global symmetries.
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chirality U(5)a U(1)b U(3)c

2(a1 − a3 − a4) (2) 1 1

−a2 − a4 − a5 + b2 + b4 + b5 (−1) (1) 1

a2 + a4 + a5 + b2 + b3 + b5 (1) (1) 1

−2b2 − b3 − b4 − 2b5 1 (2) 1

−2b1 + 2b2 + b3 + b4 + 2b5 1 (2) 1

b1 − b2 − b4 − b5 − c1 + c2 + c4 + c5 1 (−1) (1)

−b1 + b2 + b3 + b5 − c1 + c2 + c4 + c5 1 (1) (1)

4c2 + 4c5 1 1 (2)

Table 3: Non-vanishing chiral spectrum for intersecting D7 brane model. The
subscripts give the U(1) charges.

Consider now the special configuration

c1(La) = 8D5 + 8D7, c1(Lb) = 5D6 −D7 −D8,

c1(Lc) = D5 +D6 +D8 −D9. (34)

We can read off the chiral spectrum from table 3. From Ib′c = 4 = Icb we find the
desired four pairs of quarks qi, q̃j in the representation (3c, 1b) and (3c, 1b). In
this model it so happens that Ia′b = 4 = Iab account for four pairs of fields Higgs
doublets (Hu, Hd) of charge (5a, 1b) and (5a, 1b), respectively. On the other hand,
there are generically no massless fields in the a− c sector due to Iac = 0 = Ia′c.

Consistency conditions and D-term constraints

Apart from cancellation of D7 brane charge various consistency conditions have
to be met for the model to represent a viable string construction. One can show
that for the above choice of bundles a potential D5 brane tadpole is cancelled.
To analyze the K-theory charge constraints one has to verify if for each probe
brane carrying a symplectic gauge group the index of states in the fundamental
representation is even [42]. With the choice (33) D5, D6 and D9 can carry trivial
line bundles and can thus be invariant under the orientifold. While for D5, D6

the probe brane criterion is satisfied, it is violated for D9. Since it is hard to
determine if this divisor indeed carries symplectic (as opposed to orthogonal)
Chan-Paton factors, we do present this model as a promising example, but not
without pointing out the potential subtlety in connection with K-theory charge

20



cancellation. On the other hand, the model does slightly overshoot the D3 brane
tadpole [23]

ND3 +Ngauge = 10, (35)

since the flux-induced D3-charge on the D7 branes is Ngauge = −1
2

∑
iNi c

2
1(Li) =

15. This overshooting is rooted in the simplistic form of the chosen orientifold
projection, whose fixed-point locus exhibits only a relatively small Euler number.
Cancellation of the D3-tadpole e.g. by anti D3 branes would break supersymme-
try at the string scale and clearly undermine the purpose of the quiver. We trust
that these technical obstacles can be overcome in more sophisticated geometries.
We also note that solutions leading to a single (as opposed to four or more)
Higgs pairs can be found, but at the price of inducing half-integer Ngauge. Since
it is not clear how to cancel the D3 brane tadpole in this case even in principle,
irrespective of the question of overshooting, we do not present these examples
here.

Finally, the D-term supersymmetry conditions allow for a solution on the
boundary of the Kähler cone for non-zero Vevs of all charged matter fields. We
leave it to the reader to convince themselves, from the analysis in section 7.1 of
[23], that the Fayet-Iliopoulos terms vanish for a Kähler form J = riKi with

r2 = r3 = x, r4 =
1

4
x. (36)

Instanton sector

We now show that the model possesses an instanton sector which simultaneously
generates a µ term and a mass for the quarks. Consider a Euclidean D3 brane
wrapping the cycle D6. With the choice of B-field (33) a brane along D6 carry-
ing trivial gauge flux satisfies the Freed-Witten quantisation condition. Such a
configuration is invariant under the orientifold projection and thus yields either
orthogonal or symplectic gauge group. Since D6 is transverse to the O7-plane
a spacetime-filling D-brane along D6 carries symplectic Chan-Paton factors. By
general arguments (see e.g. [24] for a review) a D3 instanton along D6 is therefore
of O(1) type. This means it has the right universal zero mode structure d4xd2θ
to contribute to the superpotential. Furthermore D6 is a rigid dP9 so that the
instanton carries no extra deformation modes that would spoil the superpotential
contribution.

The charged zero modes are computed from formula (32) taking into account
that the instanton E on D6 carries trivial line bundle. From IbE = 2 one finds
precisely two charged zero modes α, β in the representation (−1b, 1E) (where 1E
refers to the O(1) symmetry of the instanton). Note that open strings in the b−E
and in the E − b′ sector are identified for E = E ′ so that we can think of these
modes as αEb′ and βbE . It is then clear that by gauge invariance the instanton
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effective action can contain the four-point couplings

Sint = cijF M
−2
s α qi q̃j β + cµM

−2
s αHuHd β. (37)

For these couplings to really exist, the matter curves of the involved states must
meet in a point so that the wave-functions have non-zero overlap. This indeed
follows from a closer look at the geometry: The modes α and β are localised on
the curve C56 = D5 ∩ D6, while Hu, Hd are localised on C57 = D5 ∩ D7. Both
of these loci are elliptic curves; namely they are the elliptic fibers of the dP9

surfaces D6 and D7, respectively. We know from (28) that D5, D6, D7 intersect
in one point, which has to be the point common to C56 and C57. Together with
a similar reasoning for D5, D7 and the divisor Dc = D5 + D7 this establishes
the existence of both terms in (37) required for the non-perturbative generation
of a µ term and quark masses. Clearly, the actual computation of the moduli
dependence of cF and cµ is much more involved and beyond our scope here.

Messenger sector

The divisor Dc = D5 + D7 can be understood as the recombination of the two
sparate divisors Dc1 = D5 and Dc2 = D7 into a single object. The recombination
moduli are given by the open strings in the D5−D7 sector localised on the elliptic
intersection curve C57 = D5 ∩ D7. For zero gauge flux on D5 and D7 they are
counted by the cohomology groups H i(C57,O) = (1, 1). Here it is crucial that
the intersection curve is indeed a T 2 to allow for a vector-like pair of states φ+

and φ− in the D7 −D5 and D5 −D7 sector, respectively, corresponding to the
elements of H0(T 2,O) and H1(T 2,O). Since only one combination of φ+, φ− is
constrained by the D-terms (23), we are left with an open string modulus in
the manner explained in section 3. Note that the curvature induced D3-charges
of D5 and D7 add up correctly, in agreement with charge conservation upon
brane recombintation. This is because the Euler characters χ(D5) = 13 and
χ(D7) = 12 computed in section 7.1 of [23] sum up to χ(D5 +D7) = 25.

The presence of a line bundle Lc on Dc does not affect this analysis much.
The system (D5 + D7, Lc|D5+D7) splits into (D5, Lc|D5) and (D7, Lc|D7), again
in agreement with charge conservation on the D-branes.5 Since we still find
H i(C57, Lc ⊗L∗c) = H i(C57,O) = (1, 1) on the split locus, the gauge flux Lc does
not lift the modulus associated with one of the recombination fields.

The massive spectrum of the recombined brane can be inferred from the mass-
less states on the split locus given by φ+ = 0 = φ−. In the presence of super-
potential couplings to φ± these fields acquire open string modulus dependent
masses away from this locus. This means that there will be one massive pair of
messengers Ψ, Ψ̃ for non-zero vev of the recombination modulus φ− if the system

5Specifically, also the flux induced D3-charge
∫

X
(D5 +D7)∧ c1(Lc)2 is obviously conserved

by linearity of the intersection form.
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at φ± = 0 exhibits precisely one massless pair Ψ, Ψ̃ with superpotential coupling
φ−ΨΨ̃, as discussed in section 3. In our model

Ic2,a = −
∫
D7 ∧D7 ∧ (c1(Lc)− c1(La)) = 1 (38)

indeed shows the existence of one messenger Ψ in the 5 of SU(5)a. Similarly
Ic1,a = −

∫
D5 ∧ D7 ∧ (c1(Lc) − c1(La)) = −1 corresponds to Ψ̃. Note that the

analagous intersections with (Da, La) replaced by the orientifold image (D′a, L
′
a)

vanish. Since D5 and D7 intersect along a curve, there will appear no extra
vector-like states in the (D5, Lc) − (D7, La) sector. For the c2 − a sector, by
contrast, (38) merely counts the chiral index at φ± = 0, and one really has to
compute the full cohomology groups to detect extra vector-like pairs. If present,
these will lead to more than just one pair of massive messengers for φ− 6= 0. We
do not perform this analysis here, but note that such extra pairs can generically
be removed by twisting the line bundles with bundles in the relative cohomology
of the divisors (see [23] for details). This is at the cost of introducing extra D3-
charge, thus worsening the overshooting. The same remark holds for the sectors
Dc2 − Db and Dc1 − Db, which would lead, if non-trivial, to massive quarks of
potentially the same mass scale as the messengers.
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