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1. Introduction

The Large Hadron Collider (LHC) at CERN is now beginning operation, and will be the

major source of data from the energy frontier for many years to come. The main goal of

the LHC experimental program is to discover physics beyond the Standard Model (SM),

as well as the mechanism of electroweak symmetry breaking. In the SM, this breaking is

due to a single scalar field, the Higgs field [1, 2, 3]. Similar fields exist in most extensions

of the SM, such as the Minimal Supersymmetric Standard Model (MSSM).

The discovery and the measurement of the Higgs sector will be a central piece of the

experimental effort at the LHC. The production of the Higgs boson is dominated by gluon

fusion through a top quark loop, for the whole relevant Higgs mass range [4]. The next-

to-leading-order (NLO) corrections to the gluon-fusion production cross section are very

large, of the order of 100% [5, 6, 7, 8]. The second most important contribution to the

Higgs production cross section comes from the vector boson fusion (VBF) process, which

proceeds at tree-level and receives much smaller QCD corrections [9, 10, 11].

Both of these channels participate in the phenomenologically interesting signal of pp→
H + 2 jets. The jets coming from the two processes have different angular distributions:

well-separated and forward jets in the VBF case, in contrast to less separated jets and

further central jet activity in the gluon fusion case. Thus, the cross-contamination can be

reduced by imposing appropriate experimental cuts. A good theoretical understanding is

also necessary to reduce the uncertainties coming from the backgrounds and interference

effects, and to allow us to perform precision studies of the Higgs sector.

For the gluon-fusion contribution, in order to make the computation more tractable,

it is possible to make the approximation of a large top quark mass mt [12, 13, 5, 6]. This

approximation replaces the full one-loop coupling of the Higgs boson to gluons via a top

quark loop, by an effective local operator C(mt) H Gµν Gµν ; thus it reduces the problem

by one loop order. For inclusive Higgs production, this approximation works very well up

to quite large Higgs masses if C(mt) is taken to have the exact mt dependence from one

loop [14]. Here we are interested primarily in processes where the Higgs boson is relatively

light, but because of the extra jet activity the partonic center-of-mass energy and final-

state invariant masses may be large. It has been shown that the large-mt approximation

is still valid for such configurations, as long as the jet transverse energies are smaller than

mt [15].

Several groups have computed various relevant quantities for the gluon-fusion contri-

bution to pp→ H + 2 jets, at LO, in the large mt limit [16, 17, 18] and with the exact mt

dependence [19]; and at NLO accuracy in the large mt limit [20, 21]. The real corrections

to this process, involving tree amplitudes of a Higgs plus five partons, were studied in [22].

The interference between gluon fusion and VBF production has been computed, and found

to be very small [23, 24]. Our results for the Hq̄qQ̄Q amplitudes can also be used to

calculate the one-loop interference between the color-singlet pieces of these two processes.
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We outline this calculation in section 4.

New methods have been developed for computing one-loop amplitudes for multi-leg

processes. Some are based on Feynman diagrams [25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35] while others exploit generalized unitarity [36, 37, 38, 39, 40, 41, 42] and recursion

relations [43]. The methods based on Feynman diagrams have been employed to compute

several quantities involving the Higgs boson to next-to-leading-order [44, 45, 46].

In the large mt approximation, the NLO corrections to the production of a Higgs boson

plus various numbers of jets at a hadron collider require one-loop amplitudes in QCD, with

one insertion of the effective operator H Gµν Gµν . We will refer to these amplitudes as

one-loop Higgs plus multi-parton amplitudes. Because these virtual amplitudes contain

infrared divergences, they are invariably presented using dimensional regularization (we

take D = 4 − 2ε), as a Laurent expansion in ε through the finite O(ε0) terms. The

complete set of such amplitudes for three external partons (ggg or qq̄g) was provided in

ref. [47]. Results for various numbers of legs and helicity configurations have appeared

more recently [48, 49, 50, 51]. In particular, the amplitudes with four gluons, all of the

same helicity [48], and those with two negative and two positive helicities [50, 51] have now

been computed analytically, using techniques very similar to what we will employ here.

The full analytic results for the one-loop Higgs plus four-parton amplitudes, for a

complete set of parton helicities, have not yet appeared. However, the analytic expressions

for the color- and helicity-summed NLO interference of one-loop and tree amplitudes have

been presented for the four-quark case [20], along with numerical results for the two-quark-

two-gluon and four-gluon cases. These results have been incorporated into the NLO gluon

fusion contributions to pp → H + 2 jets mentioned earlier [21]. In this paper we present

analytic results at the amplitude level for the four-quark case, Hq̄qQ̄Q. We also give

the two-quark-two-gluon amplitudes, with the restriction that the two gluons must have

opposite helicity, Hq̄qg±g∓.

In our method, the Higgs field H is rewritten as the sum of a complex field φ, and

its complex conjugate φ†. This has the advantage that the analytic structure of the two

components is much simpler than in the total amplitude. Furthermore, we only need to

compute the φ-amplitudes because parity relates them to the φ† ones. Our technique for

calculating these amplitudes comprises of a unitarity-recursive bootstrap approach: by

performing appropriate unitarity cuts we obtain all cut-containing terms of the amplitudes

(logarithmic, polylogarithmic functions, and associated terms), while the rational terms

are computed using on-shell recursion relations. In this process we only use on-shell lower-

point amplitudes as input in our calculation. This greatly simplifies our task and allows

us to obtain compact analytic answers efficiently.

In slightly more detail, we employ quadruple cuts [52] to determine the coefficients

of scalar box integrals in the amplitudes. The only scalar triangle integrals appearing

in the amplitudes described here have one or two external massive legs, not three; the

coefficients of such integrals are fixed easily using the amplitudes’ known infrared poles.
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The coefficients of bubble integrals are computed using the method of spinor integration

via residue extraction [53, 54]. As just mentioned, the rational terms are computed using

on-shell recursion relations. Certain spurious poles arising in this technique are dealt with

using an approach which is a hybrid between the cut-completion method [55, 56, 57] and the

method of evaluating the spurious pole residue of the cut part [58] which is implemented

numerically in BlackHat [43].

Our analytic expressions can easily be incorporated into one of the NLO computer

programs for computing cross sections. They provide a fast evaluation of the amplitudes

and are more stable compared to (semi)numerical approaches. In the computation of Higgs

amplitudes with yet one more external parton (five in all), they can serve to check limiting

cases, when two partons become collinear, or one gluon becomes soft. In a numerical on-

shell recursive approach such as BlackHat [43], they could provide a more important role:

the four-parton amplitudes could be used as a fast analytic input for some of the terms in

the on-shell recursion relations for the five-parton amplitudes.

By performing the appropriate sum over colors and helicities of the interference between

tree and one-loop amplitudes, we are able to confirm (numerically) the expression for the

virtual part of the NLO cross section for Hq̄qQ̄Q presented in ref. [20]. At the same time,

because our results are color decomposed, we can project them into a color-singlet channel

with respect to the q̄q (and Q̄Q) quantum numbers. The color-singlet channel can interfere

with the electroweak VBF process [59]. We have verified numerically that this interference,

which is one of the two virtual contributions to the full interference, agrees with one [23]

of the two recent computations [23, 24] of this (quite small) effect [60].

The color-singlet parts of the one-loop amplitudes may be of use in determining how

frequently the gluon-fusion process produces events with large “rapidity gaps” that would

survive typical central jet vetoes proposed to select the VBF process. Resummed estimates

of the efficacy of such vetoes have been performed recently in ref. [61] for example; however,

there may also be important contributions at fixed order in αs.

The paper is organized as follows: In section 2 we introduce some basic notions that

simplify the task of computing the Hq̄qQ̄Q and Hq̄qgg amplitudes — the φ-φ† and color

decomposition of Higgs amplitudes, and the spinor helicity formalism. In section 3 we

outline the basics of the unitarity-recursive method at the core of the calculation. We also

apply the technique to specific examples. In section 4 we present the full analytic answers,

numerical results, and applications of our expressions. We describe checks that we have

used to verify their correctness. In section 5 we present our conclusions and mention

possible future directions.

2. Notation

In this section we introduce the basic notation used in the rest of this paper, as well

as some prerequisite notions. In particular, we decompose the Higgs amplitudes into φ
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and φ† components with simpler analytic properties, describe the color decomposition of

scattering amplitudes in terms of partial and primitive amplitudes, and recall the spinor-

helicity formalism.

2.1 The φ-φ† decomposition of Higgs amplitudes

In the amplitudes we study in this paper, all external quarks are taken to be massless, and

the Higgs couples to them through gluons. The coupling of the SM Higgs boson to gluons

is dominated by an intermediate top quark loop, because the top is much heavier than the

other quarks. In the limit of very large top mass, mt →∞, the top quark can be integrated

out, giving rise to the following effective interaction [12, 13],

Lint
H =

C

2
H tr Gµν Gµν , (2.1)

with the coefficient C given by C = αs/(6πv) = g2/(24π2v), to leading order in αs. Here v

is the vacuum expectation value of the Higgs field, v = 246 GeV. (The value of C is known

to O(α4
s) [62].) Our convention for the normalization of generators is tr T aT b = δab, and

Gµν =
∑

a T aGa
µν , so that tr Gµν Gµν = Ga

µν Ga µν .

Tree-level amplitudes (not counting the top quark loop) for a Higgs boson plus multiple

partons were first computed analytically for up to four partons in refs. [16, 17, 18], and up

to five partons in ref. [63]. The structure of these amplitudes could be simplified [64] by

splitting the effective interaction Lagrangian into two parts, a holomorphic (self-dual) and

an anti-holomorphic (anti-self-dual) part. In fact, certain “maximally helicity violating

(MHV) rules” that had been developed for QCD tree amplitudes [65] could be applied

straightforwardly to Higgs amplitudes after making this split [64, 66]. Specifically, we

consider the Higgs boson to be the real part of a complex field φ, with

φ =
1

2
(H + iA) . (2.2)

The interaction Lagrangian can then be rewritten as

Lint
H,A =

C

2

[
H tr Gµν Gµν + iA tr Gµν

∗Gµν
]

(2.3)

= C
[
φ tr GSD µν Gµν

SD + φ† tr GASD µν Gµν
ASD

]
, (2.4)

where the gluon field strength has been divided into a self-dual (SD) and an anti-self-dual

(ASD) component, given by

Gµν
SD =

1

2
(Gµν + ∗Gµν) , Gµν

ASD =
1

2
(Gµν − ∗Gµν) , ∗Gµν ≡ i

2
εµνρσGρσ . (2.5)

From eq. (2.2) and its conjugate we can reconstruct the scalar H and pseudoscalar A

fields according to

H = φ + φ† , A =
1

i
(φ− φ†) . (2.6)
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It follows from eq. (2.6) that the scattering amplitude for a scalar Higgs boson plus any

number of partons can be obtained, at any loop order l, by the sum of the amplitudes with

φ and φ†,

A(l)
n (H, . . .) = A(l)

n (φ, . . .) +A(l)
n (φ†, . . .) , (2.7)

with “. . .” indicating any arbitrary configuration of partons.

Similarly, the amplitudes for a pseudoscalar A plus partons are given by

A(l)
n (A, . . .) =

1

i

[
A(l)

n (φ, . . .)−A(l)
n (φ†, . . .)

]
, (2.8)

recognizing that the constant C is different for the A case [49]. The relation between the

φ and φ† amplitudes is through parity or complex conjugation of spinors,

A(l)
n (φ†, 1h1 , 2h2 , . . . , nhn) = (−1)nq̄q

[
A(l)

n (φ, 1−h1 , 2−h2 , . . . , n−hn)
]∣∣∣∣

〈i j〉↔[j i]

, (2.9)

where the spinor products 〈i j〉 and [j i] are defined in eqs. (2.27) and (2.27), and n q̄q

denotes the number of external antiquark-quark pairs [63]. In other words, to generate an

amplitude with φ† from an amplitude with φ, one reverses the helicities of all quarks and

gluons, and replaces all spinors 〈i j〉 with [j i]. Thus, it is possible to reconstruct the H

and A helicity amplitudes by computing only their φ-components, using parity to get the

φ†-components, and then assembling the two ingredients together.

It is important to note that in the separation of any Higgs amplitude into a φ and

a φ† amplitude, all color and kinematic information (e.g., the momentum of the scalar

particle) remain the same in the original and the component amplitudes. What separates

is the self-duality properties of the amplitudes, and consequently their analytic structure,

resulting in a simplification of the calculation.

2.2 Color decomposition and color sums

An important tool for QCD calculations is the color decomposition of amplitudes [67, 68,

69]. It allows us to write down a color-ordered expression for any amplitude, which is a

sum of products of color structures and uncolored functions of the kinematic variables,

called partial amplitudes. The color and kinematic information is neatly separated in

this way, and one has to compute only the partial amplitudes, which have simpler analytic

properties. The partial amplitudes can be expressed in terms of yet simpler building blocks,

called primitive amplitudes. Primitive amplitudes are color ordered; that is, they receive

contributions only from planar one-loop Feynman diagrams with a fixed cyclic ordering of

the external legs. Furthermore, a given primitive amplitude either contains a closed fermion

loop, or it does not. If it does not, then the primitive amplitude is further characterized

by how the external fermion lines are routed as they enter the loop: whether they turn

left (L) or right (R) in the case of one fermion line; and according to leading-color (lc) and

subleading-color (slc) designations in the case of two separate fermion lines. Computing the

primitive amplitudes will be the focus of this paper. First, we describe the decomposition

of the φq̄qQ̄Q and φq̄qgg amplitudes in terms of partial, and then primitive, amplitudes.
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Figure 1: Sample diagrams corresponding to the (a) leading color or “lc”, (b) subleading-color or

“slc” and (c) fermion loop or “f” primitive amplitudes. The Higgs field can attach to any gluon

line in these diagrams.

2.2.1 φq̄qQ̄Q

Because the Higgs boson, and φ and φ† fields, are color-neutral, they play no role in

the color structure of the amplitude. The color decomposition of the Hq̄qQ̄Q or φq̄qQ̄Q

amplitude is identical to the decomposition of the four-quark q̄qQ̄Q amplitude [70]. There

are two independent color structures, corresponding to the two independent ways we can

contract the color indices of the quarks. At tree level, the coefficients of the two color

structures are simply related,

A(0)
4 (φ, 1q̄, 2q, 3Q̄, 4Q) = Cg2 A

(0)
4 (φ, 1q̄, 2q, 3Q̄, 4Q)

[
δ ı̄1
i4

δ ı̄3
i2
− 1

Nc
δ ı̄1
i2

δ ı̄3
i4

]
, (2.10)

where the tree helicity amplitudes A
(0)
4 (φ, 1q̄, 2q, 3Q̄, 4Q) are given in eq. (A.4), and Nc

denotes the number of colors, Nc = 3 in QCD.

At one loop, the color decomposition is

A(1)
4 (φ, 1q̄, 2q, 3Q̄, 4Q) = Cg4 cΓ

[
Nc δ ı̄1

i4
δ ı̄3
i2

A4;1(φ, 1q̄, 2q, 3Q̄, 4Q)

+ δ ı̄1
i2

δ ı̄3
i4

A4;2(φ, 1q̄, 2q, 3Q̄, 4Q)

]
. (2.11)

where we have also extracted a factor from the loop integrals,

cΓ ≡
1

(4π)2−ε

Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (2.12)

Formulas (2.10) and (2.11) apply to the case of different quark flavors, q 6= Q. The am-

plitude for identical flavors, q = Q, is found from the unequal-flavor formula by subtracting

the same formula with the labels for q and Q exchanged,

A(l)
4 (φ, 1q̄, 2q, 3q̄, 4q) = A(l)

4 (φ, 1q̄, 2q, 3Q̄, 4Q)−A(l)
4 (φ, 1q̄ , 4q, 3Q̄, 2Q). (2.13)
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Note that the helicities of q and Q must be the same in order to get a nonvanishing

exchange term. Of course if there are two identical quarks in the final state, there is also

an identical-particle factor of 1
2 in the phase-space measure.

The partial amplitudes A4;1 and A4;2 can in turn be expressed in terms of primitive

amplitudes, using the results of refs. [70] for the analogous amplitudes, e+e− → q̄qQ̄Q.

Because the e+e− pair and the scalar φ are both colorless, the color structure is identical

to our case. The results could be given in a helicity-independent form; however, we list

the two different helicity cases separately, so that we can use relations among the primitive

amplitudes in order to minimize the number that appear:

A4;1(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) = Alc

4 (φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) (2.14)

− 2

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) + Alc

4 (φ, 1−q̄ , 2+
q , 4−

Q̄
, 3+

Q)
]

− 1

N2
c

Aslc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) +
nf

Nc
Af

4(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) ,

A4;1(φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) = Alc
4 (φ, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) (2.15)

− 2

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) + Alc
4 (φ, 1−q̄ , 2+

q , 4+
Q̄
, 3−Q)

]

+
1

N2
c

Aslc
4 (φ, 1−q̄ , 2+

q , 4+
Q̄

, 3−Q) +
nf

Nc
Af

4(φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) ,

A4;2(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) = Alc

4 (φ, 1−q̄ , 2+
q , 4−

Q̄
, 3+

Q) (2.16)

+
1

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 4−

Q̄
, 3+

Q) + Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)

]

+
1

N2
c

Aslc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q)− nf

Nc
Af

4(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) ,

A4;2(φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) = Alc
4 (φ, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) (2.17)

− 1

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) + Alc
4 (φ, 1−q̄ , 2+

q , 4+
Q̄
, 3−Q)

]

− 1

N2
c

Aslc
4 (φ, 1−q̄ , 2+

q , 4+
Q̄

, 3−Q)− nf

Nc
Af

4(φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) .

Here Alc
4 , Aslc

4 , and Af
4 describe respectively the leading-color, subleading-color and fermion-

loop primitive amplitudes. The number of massless quark flavors is denoted by nf . The

quantity Alc
4 (φ, 1−q̄ , 2+

q , 4−
Q̄

, 3+
Q) refers to the primitive amplitude Alc

4 (φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) with

the labels on legs 3 and 4 exchanged. Sample Feynman diagrams corresponding to these

amplitudes are shown in figure 1.

The virtual part of the unpolarized NLO cross section for Hq̄qQ̄Q requires the sum

over both helicities and colors of the interference of the tree and one-loop amplitudes. The
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Figure 2: Sample diagrams corresponding to the (a) q̄qgg L, (b) q̄qgg R, (c) q̄gqg L, (d) q̄qgg

fermion loop, and (e) q̄gqg fermion loop primitive amplitudes. The Higgs field can attach to any

gluon line in these diagrams.

color sum is straightforward to work out from eqs. (2.10) and (2.11),

∑

colors

[
A∗

4A4

]
NLO

= 2C2cΓg6(N2
c − 1) Nc Re

[
A(0) ∗

4 (H, 1q̄, 2q, 3Q̄, 4Q)A4;1(H, 1q̄, 2q, 3Q̄, 4Q)
]
.

(2.18)

The same formula also applies with H replaced by A. The formula for the case of identical

quarks q = Q follows from eq. (2.13).

2.2.2 φq̄qgg

Similarly, the color decomposition for the φq̄qgg amplitudes is identical to that for the

process e+e− → q̄qgg [71]. The tree amplitude is given by

A(0)
4 (φ, 1q̄ , 2q, 3, 4) = Cg2

∑

σ∈S2

(T aσ(3)T aσ(4)) ı̄1
i2

A
(0)
4 (φ, 1q̄ , 2q, σ(3), σ(4)) , (2.19)

where the tree helicity amplitudes A
(0)
4 (φ, 1q̄, 2q, 3, 4) are given in eq. (A.5).
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The one-loop amplitude is decomposed as

A(1)
4 (φ, 1q̄ , 2q, 3, 4) = Cg4 cΓ

[
Nc

∑

σ∈S2

(T aσ(3)T aσ(4)) ı̄1
i2

A4;1(φ, 1q̄, 2q, σ(3), σ(4))

+ δa3a4 δ ı̄1
i2

A4;3(φ, 1q̄, 2q; 3, 4)

]
. (2.20)

The partial amplitudes A4;1 and A4;3 are given, in a helicity-independent fashion, by

A4;1(φ, 1q̄, 2q, 3, 4) = AL
4 (φ, 1q̄ , 2q, 3, 4) − 1

N2
c

AR
4 (φ, 1q̄ , 2q, 3, 4)

+
nf

Nc
Af

4(φ, 1q̄, 2q, 3, 4) , (2.21)

A4;3(φ, 1q̄ , 2q; 3, 4) = AL
4 (φ, 1q̄ , 2q, 3, 4) + AL

4 (φ, 1q̄, 2q, 4, 3) + AL
4 (φ, 1q̄, 3, 2q , 4)

+ AL
4 (φ, 1q̄ , 4, 2q, 3) + AR

4 (φ, 1q̄, 2q, 3, 4) + AR
4 (φ, 1q̄, 2q, 4, 3) .

(2.22)

Here we choose to label the leading- and subleading-color primitive amplitudes by “L”

and “R” (corresponding to fermion lines turning left or right upon entering the loop)

to be compatible with the notation used in ref. [49]. Again Af
4 denotes a fermion-loop

contribution. Sample Feynman diagrams corresponding to these primitive amplitudes are

shown in figure 2.

The virtual part of the unpolarized NLO cross section for Hq̄qgg requires the sum over

both helicities and colors of the interference of the tree and one-loop amplitudes. The color

sum can be expressed in the same form as that for e+e− → q̄qgg [71],

∑

colors

[
A∗

4A4

]
NLO

= 2C2cΓg6(N2
c − 1) Re

{
A

(0) ∗
4 (H, 1q̄ , 2q, 3, 4)

[
(N2

c − 1)A4;1(H, 1q̄, 2q, 3, 4)

−A4;1(H, 1q̄, 2q, 4, 3) + A4;3(H, 1q̄, 2q; 3, 4)
]}

+ {3↔ 4} . (2.23)

The same formula also applies with H replaced by A.

2.3 Spinor helicity formalism

Primitive amplitudes depend only on kinematic variables. They are functions of the exter-

nal momenta of the Higgs boson, kφ = kH , and of the four partons, ki, i = 1, . . . , 4. These

momenta are all outgoing, by convention, so momentum conservation and the on-shell

conditions read,

kφ +

4∑

i=1

ki = 0 , (2.24)

k2
φ = k2

H = m2
H , k2

i = 0 . (2.25)
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A very convenient representation of the amplitudes is in terms of spinor inner products, as

reviewed e.g. in refs. [68, 69]. Let u±(ki) be a massless Weyl spinor of momentum ki and

positive or negative chirality. The corresponding two-component spinors are often denoted

λα
i and λ̃α̇

i . The spinor products are defined by

〈i j〉 = λα
i λj α = 〈i−|j+〉 = ū−(ki)u+(kj) , (2.26)

[i j] = λ̃i α̇λ̃α̇
j = 〈i+|j−〉 = ū+(ki)u−(kj) . (2.27)

We use the convention [i j] = sgn(k0
i k

0
j ) 〈j i〉∗, so that

〈i j〉 [j i] = 2ki · kj ≡ sij . (2.28)

For real momenta, and up to a complex phase, the spinor inner products are square roots

of the corresponding kinematic invariant sij ≡ (ki + kj)
2.

Three-parton invariant masses are defined by,

sijl ≡ (ki + kj + kl)
2 = 〈i j〉 [j i] + 〈j l〉 [l j] + 〈i l〉 [l i] . (2.29)

We also define the spinor strings,

〈a|i|b] = 〈a i〉 [i b] , 〈a|(i + j)|b] = 〈a i〉 [i b] + 〈a j〉 [j b] . (2.30)

Strings involving the Higgs momentum, such as 〈a−|kH |b−〉 could also show up; however,

they can be eliminated in favor of strings such as in eq. (2.30) using momentum conserva-

tion.

Besides momentum conservation, the other two spinor product identities used to sim-

plify expressions are antisymmetry,

〈j i〉 = −〈i j〉 , [j i] = − [i j] , (2.31)

and the Schouten identity,

〈a b〉 〈c d〉 = 〈a d〉 〈c b〉+ 〈a c〉 〈b d〉 , (2.32)

[a b] [c d] = [a d] [c b] + [a c] [b d] . (2.33)

Composite spinors can appear in these products as well and they can be handled similarly,

〈a|Pi...j |b] 〈c d〉 = 〈a d〉 〈c|Pi...j |b]− 〈a c〉 〈d|Pi...j |b] , (2.34)

〈a|Pi...j |b] [c d] = 〈a|Pi...j|d] [c b] + 〈a|Pi...j |c] [b d] , (2.35)

〈a|Pi...j |b]〈c|Pi...j |d] = 〈a|Pi...j|d]〈c|Pi...j |b]− P 2
i...j 〈a c〉 [b d] , (2.36)

where Pi...j denotes an arbitrary momentum sum, P µ
i...j ≡

∑j
m=i kµ

m. The spinor products

defined above form the building blocks for the primitive amplitudes and the basis for our

calculations in the next sections.
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3. Unitarity and recursive bootstrap method

The method we employ in our paper combines the (generalized) unitarity method [72, 73,

71, 52, 53, 54] with on-shell recursion relations [74] operating at one loop [75, 76, 55].

Using general integral reduction formulae [77, 78], any dimensionally-regulated one-loop

amplitude A(1)
n with massless internal lines can be decomposed as,

A(1)
n = Cn + Rn , (3.1)

where the cut part Cn is a linear combination of scalar integrals [77, 78],

Cn =
∑

i

di Ii
4 +

∑

i

ci Ii
3 +

∑

i

bi Ii
2 , (3.2)

and Rn denotes the rational part, which contains no branch cuts (in four dimensions).

The box integrals I i
4, triangle integrals I i

3 and bubble integrals I i
2 are well known (see

for example refs. [79, 80, 81, 82]). Hence determining Cn is equivalent to computing the

coefficients of the respective integrals, di, ci and bi. These coefficients are found by taking

(generalized) four-dimensional unitarity cuts of the amplitude in various channels. The

rational part Rn will be calculated by utilizing on-shell recursion relations, which requires

only information about lower-point loop amplitudes and tree amplitudes. (For a review of

the on-shell approach, see ref. [36].)

In the remainder of this section, we outline the various ingredients in the method, and

apply them to specific primitive amplitudes for φq̄qQ̄Q and φq̄qgg. The results for these

amplitudes are collected in section 4.

3.1 Generalized unitarity for box coefficients

In this paper, the generalized unitarity method, along with complex spinor integration [52,

53, 54] is employed in a twofold manner for the calculation of box functions and bubble

(single log) functions respectively.

In ref. [52] it was shown that using quadruple cuts, it is possible to reduce the task of

calculating the coefficient of any box function into that of calculating a product of four tree

amplitudes. This method can be applied to box functions with any number of external

masses by taking advantage of the generally non-vanishing behavior of the all-massless

three-point amplitudes when momenta are complexified. A three-point amplitude with

one leg carrying opposite helicity than the other two can have either an MHV or an anti-

MHV (sometimes also denoted MHV) representation while satisfying energy-momentum

conservation. The complex momenta allow for all four loop momenta of a box diagram to

become on-shell, freezing the cut integral completely and simplifying it into an algebraic

product of tree amplitudes.

For example, the coefficient of the box integral in figure 3 is given by

d =
1

∆LSI4

∫
d4`1 δ(+)(`2

1) δ(+)(`2
2) δ(+)(`2

3) δ(+)(`2
4) A

(0)
1 A

(0)
2 A

(0)
3 A

(0)
4 , (3.3)
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K1

K2 K3

K4

`3

`2 `4

`1

Figure 3: Evaluation of a box function coefficient using quadruple cuts. The four on-shell condi-

tions on the loop momentum reduce the integration to an algebraic product of four tree amplitudes.

where `2 = `1−K1, `3 = `1−K1−K2, `4 = `1 +K4, and each A
(0)
i corresponds to the tree

amplitude in the respective corner with massive (or massless) momentum Ki (i = 1 . . . 4).

The quadruple cut (or leading singularity) of the scalar box integral is given by

∆LSI4 =

∫
d4`1 δ(+)(`2

1) δ(+)(`2
2) δ(+)(`2

3) δ(+)(`2
4) , (3.4)

from which we obtain

d =
1

2

∑

σ,h

A
(0)
1 (`σ

1 )A
(0)
2 (`σ

1 )A
(0)
3 (`σ

1 )A
(0)
4 (`σ

1 ) , (3.5)

where the summation is over the two discrete solutions `σ
1 , σ = 1, 2, of the loop-momentum

localization constraints

`2
1 = `2

2 = `2
3 = `2

4 = 0 , (3.6)

and over all possible helicities h of internal particles propagating in the loop.

3.1.1 A two-mass box coefficient

Let’s consider, for example, the leading-color primitive amplitude Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q).

One of the box coefficients that needs to be determined for this primitive amplitude is that

of the “easy two mass” box integral, with diagonally opposite massive legs having mass

m2
H and s23. Because all the two-mass boxes have m2

H as one of the two masses, we denote

this coefficient, using the other mass, as d2me
23 . This box integral is defined by the clustering

of the five external particles into the four legs of the box: (1)(23)(4)(φ). The associated

quadruple cut is shown in figure 4.

The tree amplitude with φ and two gluons vanishes unless both helicities are nega-

tive [64]. It is easy to see that this fact, plus fermion helicity conservation, forces the
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φ

1 −

2 +

q

q̄

4 −

3 +
Q̄

Q

−

−

+

−

−

+

+

+

`1

`2

`3

`4

`′
4

Figure 4: Quadruple cut for the evaluation of the easy-two-mass box coefficient d2me
23 of

Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q).

unique assignment of intermediate helicities shown in figure 4. The three-point vertices

containing legs 1 and 4 are only nonvanishing for one of the two solutions to the quadruple

cut conditions (3.6). Equation (3.5) then becomes,

d2me
23 =

1

2
A

(0)
2 (φ, `−1 ,−`′4

−
)A

(0)
3 (−`+

1 , 1−q̄ , `+
2q)A

(0)
4 (−`−2q̄, 2+

q , 3+
Q̄

, `−4Q)A
(0)
3 (−`+

4Q̄
, 4−Q, `′4

+
) .

(3.7)

Using the expressions for the tree amplitudes, we get

d2me
23 =

i4

2
×
(
−
〈
`1 (−`′4)

〉2)× [(−`1) `2]2

[1 `2]
×
(
− [2 3]2

[(−`2) 2] [3 `4]

)
× [`′4 (−`4)]2

[(−`4) 4]
. (3.8)

The positive chirality spinors for the three-point vertices containing legs 1 and 4 are

proportional,

λ`1 ∝ λ`2 ∝ λ1 , λ`4 ∝ λ`′4
∝ λ4 . (3.9)

Using this fact, along with momentum conservation relations, we can eliminate all explicit

loop momenta from eq. (3.8):

d2me
23 =

1

2
[2 3]2

([`2 `1] 〈`1 `′4〉 [`′4 `4])2

[1 `2] [`2 2] [3 `4] [`4 4]

=
1

2
[2 3]2

([`2 1] 〈1 4〉 [4 `4])2

[1 `2] [`2 2] [3 `4] [`4 4]

=
1

2
〈1 4〉2[2 3]2

[1 `2] 〈`2 4〉 〈1 `4〉 [`4 4]

[2 `2] 〈`2 4〉 〈1 `4〉 [`4 3]

=
1

2
〈1 4〉2[2 3]2

[1|(2 + 3)|4〉 〈1|(2 + 3)|4]

[2 3] 〈3 4〉 〈1 2〉 [2 3]

=
1

2
〈4|(2 + 3)|1]〈1|(2 + 3)|4]

〈1 4〉2
〈1 2〉 〈3 4〉 . (3.10)
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φ

1 −

2 +

q

q̄

4 −

3 +
Q̄

Q

+ +
`2

`3

`4

`1

`′
4

−

+

−

−

−

+

Figure 5: Quadruple cut for the evaluation of the one-mass box coefficient d1m
123 appearing in

Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q).

In section 4 we express the result, not in terms of the scalar box integral I 2me
4 , but in

terms of the infrared-finite box function Ls2me
−1

(
s123, s234; s23,m

2
H

)
. These are related by

eq. (B.6). After removing a factor of cΓ associated with eq. (2.11), and using the identity

s123s234 − s23m
2
H = 〈4|(2 + 3)|1]〈1|(2 + 3)|4] , (3.11)

the coefficient of the box function Ls2me
−1

(
s123, s234; s23,m

2
H

)
in Alc

4 (φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) is

D2me
23 ≡ 2i

s123s234 − s23m2
H

d2me
23 = i

〈1 4〉2
〈1 2〉 〈3 4〉 = −A

(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q) . (3.12)

It is a general feature of every primitive amplitude presented in section 4 that all easy-

two-mass box functions have coefficients equal to the negative of the corresponding tree

amplitude. We therefore collect all the Ls2me
−1 functions into “V ” functions, which also

contain the infrared and ultraviolet poles in ε, since the latter have to be proportional to

the tree amplitude as well.

3.1.2 Calculation of a one-mass box coefficient

As our second box example, we compute for the same primitive amplitude the coeffi-

cient of the one-mass box function Ls−1 (s12, s23; s123), associated with the external leg

clustering (1)(2)(3)(4φ). The quadruple cut is depicted in figure 5. We label the box

integral coefficient by d1m
123. Again the vanishing of a tree amplitude involving φ, in this

case A
(0)
3 (φ, `+

1 ,−`+
4Q̄

, 4−Q), along with fermion helicity conservation and the vanishing of

A
(0)
4 (q̄−, q+, g+, g+), forces the unique helicity assignment shown in the figure. The cut
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φ

1 −

2 +

q

q̄

4 −

3 +
Q̄

Q

−

−

`1

`2

`3

`4

`′
4

+

+

+

−

Figure 6: Sample φq̄qQ̄Q triple cut, illustrating the vanishing coefficient for a three-mass triangle

integral, caused by the tree amplitude in the lower right corner associated with the external invariant

s34. Consequently, hard-two-mass box functions are absent from the amplitude as well.

evaluates to

d1m
123 =

1

2
A

(0)
3 (φ, `−1 ,−`+

4Q̄
, 4−Q)A

(0)
3 (−`+

1 , 1−q̄ , `+
2q)A

(0)
3 (−`−2q̄, 2+

q , `−3 )A
(0)
3 (−`+

3 , 3+
Q̄

, `−4Q)

=
i4

2
×
(
− 〈`1 4〉2
〈(−`4) 4〉

)
× [(−`1) `2]2

[1 `2]
×
(
−〈`3 (−`2)〉2
〈(−`2) 2〉

)
× [(−`3) 3]2

[3 `4]
. (3.13)

After some spinor product manipulations similar to eq. (3.10), we have

d1m
123 =

1

2
s12s23

〈1 4〉2
〈1 2〉 〈3 4〉 , (3.14)

which yields for the coefficient of the function Ls−1 (s12, s23; s123),

D1m
123 =

2i

s12s23
d1m
123 = i

〈1 4〉2
〈1 2〉 〈3 4〉 = −A

(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) . (3.15)

The result is again proportional to the tree, up to a sign. This property holds for all

the one-mass box coefficients Ls−1 in the φq̄qQ̄Q primitive amplitudes, apart from the

leading-color piece of the (−+−+) helicity configuration. However, in the φq̄qgg primitive

amplitudes it is typically not true.

3.2 Absence of three-mass triangles

The one-loop φ amplitudes that we consider in this paper have the property that the triple

cuts associated with three-mass triangle integrals all vanish. This general feature holds

because the tree-level four-parton amplitudes in QCD, A
(0)
4 (1, 2, 3, 4), and those with an

additional φ boson, A
(0)
4 (φ, 1, 2, 3, 4), each require two negative helicities to be nonvanishing.
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A nonvanishing product of three such amplitudes, as required for a triple cut, implies six

negative helicities. Three of the negative helicities are associated with the three cut lines,

so there must be three external negative helicities. However, the one-loop φ amplitudes

we consider here only have two negative helicities. An example of a vanishing triple cut

is shown in figure 6. The same argument implies that all “hard-two-mass” boxes, with

two adjacent massive legs, must vanish: For any hard-two-mass box quadruple cut, one

can remove the cut between the two adjacent massless legs, relaxing the quadruple cut

into a (vanishing) triple cut. Because the φ + 4 parton amplitudes obviously contain no

three-mass or four-mass box integrals, only one-mass and easy-two-mass box coefficients

have to be computed here.

The amplitudes φg−g−g+g+ [50] and φg−g+g−g+ [51] also contain only one-mass and

easy-two-mass boxes, and no three-mass triangles, for the same reason, insufficiently many

negative helicities in the triple cuts. Interestingly, the amplitude φg−g−g−g− computed in

ref. [48] also contains only one-mass and easy-two-mass boxes, and no three-mass triangles,

for the opposite reason, a paucity of positive helicity gluons. On the other hand, the

primitive amplitudes for φq̄−q+g−g− and φg+g−g−g−, which have not yet been computed

analytically, will contain three-mass triangles and hard-two-mass boxes.

For the coefficients of two-mass and one-mass triangles, the above triple-cut vanishing

argument does not hold. The existence of a massless external leg implies that one of the

tree amplitudes can be an MHV three-point amplitude, which contains only one negative

helicity, not two. However, the two-mass and one-mass triangle integrals, given in eqs. (B.7)

and (B.8), contain single log terms at order 1/ε. Because of this, their coefficients are

completely determined by the known infrared poles of the amplitude, so they do not have

to be computed separately. The remainder of the work to compute the cut part of the

amplitude involves determining the coefficients of bubble integrals.

3.3 Unitarity and spinor integration for bubbles

In the case of the ordinary two-particle cuts used to determine bubble coefficients, there

are not enough constraints to fully localize the cut integral. The cut contains a residual

phase-space integral. The method we use in this case was proposed in refs. [53, 54] and

consists of writing the cut loop momentum integral as an integral over spinor variables

` ≡ |`〉 and ˜̀ ≡ |`] [65]. The integrand can be transformed into a total derivative in ˜̀,

leaving a single integral over ` which can be evaluated by residue extraction.

For the cut shown in figure 7, the coefficient of the logarithm will be given by an

integral of the form

∫
d4`1 δ(+)(`2

1) δ(+)(`2
2) A

(0)
1 A

(0)
2 =

∫ ∞

0
dt t

∫
〈` d`〉 [` d`] δ(P 2− t〈`|P |`]) f(`, ˜̀) , (3.16)

where ` can be either `1 or `2, whichever is more convenient. The function f(`, ˜̀) represents
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P −P

`2

`1

Figure 7: Example of the evaluation of a bubble (single log) function using an ordinary two-particle

cut. Integration over the loop momentum is required in this case.

the product of the two tree amplitudes and is in general a sum of terms of the form

∏
i〈ai `〉∏j [bj `]

∏
k〈`|Rk|`]∏

i〈ci `〉∏j[dj `]
∏

k〈`|Qk|`]
, with Qk 6= P , Q2

k 6= 0 . (3.17)

After performing the integration over t and partial fractioning using Schouten identities,

we can always bring the remaining integrand into a form where we can take advantage of

the identity

[` d`]

(
[η `]n

〈`|P |`]n+2

)
= [d` ∂`]

(
1

n + 1

1

〈`|P |η]

[η `]n+1

〈`|P |`]n+1

)
, (3.18)

and convert it into a total derivative with respect to |`]. (In the special case of n = 0,

the spinor |η] appears only on the right-hand side of eq. (3.18); hence it can be chosen

arbitrarily.) Then we can evaluate the integral over |`〉 by calculating the residue for each

pole. The case of multiple poles was also examined in ref. [54].

In this process one also detects the coefficients of box integrals sharing the same cut.

These are the terms that scale like 1/〈`|P |`] after partial fractioning of the integrand. They

can serve as an independent check of the box coefficients determined by the quadruple cuts.

3.3.1 Calculation of a bubble coefficient

As an example, we compute the coefficient of the bubble integral I2(s123), or equivalently,

of the single logarithm ln(−s123), in the primitive amplitude Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q). The
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Figure 8: Two-particle cut for the evaluation of the bubble function coefficient b123 of

Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q).

corresponding two-particle cut is shown in figure 8, and the cut integral is given by

i

∫
dLIPS A

(0)
3 (φ, `−1 , `+

2Q̄
, 4−Q)×A

(0)
5 (−`+

1 , 1−q̄ , 2+
q , 3+

Q̄
,−`−2Q)

= i3
∫

dLIPS

(
−〈`1 4〉2
〈`2 4〉

)
× 〈1 (−`2)〉3 〈2 3〉
〈1 2〉 〈2 3〉 〈3 (−`2)〉 〈(−`2) (−`1)〉 〈(−`1) 1〉

=

∫
dLIPS

〈`2 1〉3 〈`1 4〉2
〈1 2〉 〈`2 3〉 〈`2 `1〉 〈`1 1〉 〈`2 4〉 . (3.19)

Here dLIPS stands for the Lorentz-invariant phase space measure.

By multiplying both the numerator and denominator of the integrand in eq. (3.19)

with factors of [`2 `1] we can eliminate one of the loop momenta (in this case we choose to

eliminate `1), leaving us with an expression that depends only on the other loop momentum

(in this case, `2). Furthermore, we rewrite the integral over the Lorentz-invariant phase

space as an integral over spinor variables, as in eq. (3.16),
∫

dLIPS =

∫ ∞

0
t dt

∫
〈`2 d`2〉 [`2 d`2] δ

(
P 2 − t 〈`2|P |`2]

)
, (3.20)

with P ≡ P123 = k1 + k2 + k3. We also need to track factors of
√

t from rescaling the `2

spinors in the integrand. Performing these steps yields

−
∫ ∞

0
t2 dt

∫
〈`2 d`2〉 [`2 d`2] δ

(
P 2 − t 〈`2|P |`2]

) 〈`2 1〉3 〈4|P |`2]2

〈1 2〉 〈`2 3〉P 2 〈1|P |`2] 〈`2 4〉 . (3.21)

We can readily integrate over t, eliminating the δ-function, to get

−
∫
〈`2 d`2〉 [`2 d`2]

P 2 〈`2 1〉3 〈4|P |`2]2

〈`2|P |`2]3 〈1 2〉 〈`2 3〉 〈1|P |`2] 〈`2 4〉
. (3.22)
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The two-particle cut we have considered detects not only bubbles, but also boxes that

have cuts in this channel. By using Schouten identities we can rearrange terms so that we

separate the bubble contributions from the box contributions,

−
∫
〈`2 d`2〉 [`2 d`2]

{
P 2 〈`2 1〉 〈1|P |`2] 〈`2 4〉
〈`2|P |`2]3 〈1 2〉 〈`2 3〉

− 2P 2 〈`2 1〉 〈1 4〉
〈`2|P |`2]2 〈1 2〉 〈`2 3〉

+
P 2 〈`2 1〉 〈1 4〉2

〈`2|P |`2] 〈1 2〉 〈`2 3〉 〈1|P |`2] 〈`2 4〉

}
. (3.23)

We identify the box contribution as the last term in eq. (3.23), with the 1/ 〈`2|P |`2] depen-

dence. Because the box contributions are obtained straightforwardly from the quadruple

cuts, we can safely discard them (or use them as an independent check, but we won’t do

so here). The remaining part will be the coefficient of the bubble I2(s123), given by

b123 = −
∫
〈`2 d`2〉 [`2 d`2]

{
P 2 〈`2 1〉 〈1|P |`2] 〈`2 4〉
〈`2|P |`2]3 〈1 2〉 〈`2 3〉

− 2P 2 〈`2 1〉 〈1 4〉
〈`2|P |`2]2 〈1 2〉 〈`2 3〉

}
. (3.24)

Transforming the integral over |`2] into a total derivative using the general formula (3.18),

with n = 0, 1 for the two terms in eq. (3.24), we obtain

b123 =

∫
〈`2 d`2〉 [d`2 ∂`2 ]

{
1

2

〈1|P |`2]2 〈`2 4〉
〈`2|P |`2]2 〈1 2〉 〈`2 3〉

+
2P 2 〈`2 1〉 〈1 4〉 [3 `2]

〈`2|P |`2] 〈1 2〉 〈`2 3〉 〈`2|P |3]

}
. (3.25)

In this last step we have chosen the value |η] = |3] for the arbitrary spinor |η] appearing in

the n = 0 term after its transformation into a total derivative.

At this point we are ready to evaluate the integral over |`2〉 by computing the residues

of the poles of the integrand. We only have simple poles occurring for |`2〉 = |3〉 in the

first term, and for |`2〉 = P |3] in the second term of eq. (3.25). Note that our choice for

|η] eliminates a pole for |`2〉 = |3〉 in the second term. After substituting and simplify-

ing, using 〈3|P |3] = s123 − s12, we get for the coefficient of the single log ln(−s123) in

Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q),

B123 = −i b123 = −i

[
1

2

〈1 2〉 [2 3]2 〈3 4〉
(s123 − s12)2

− 2
[2 3] 〈1 4〉
s123 − s12

]
, (3.26)

which is a rather simple final answer.

The procedure outlined above for the computation of B123 is a typical example of the

steps that have to be carried out to calculate any bubble function coefficient. It has been

automated and implemented in Maple and yields a fast analytical evaluation of these cuts.

3.4 On-shell recursion

The (four-dimensional) unitarity technique can give us the cut-containing parts of the

amplitudes (terms associated with functions with an imaginary part), but not the parts that
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are rational functions of the kinematic variables. However, these terms can be determined

from their analytic properties as well, namely their factorization poles. On-shell recursion

relations, developed first at tree-level [83, 74] and later at one loop [75, 76, 55, 56, 57, 84],

exploit the known factorization behavior and have greatly simplified the task of calculating

these terms.

At tree level, all amplitudes are rational functions and one can consider [74] a complex

shift of any two of the external momenta j and l of an amplitude An, given by

λ̃j → λ̃j − zλ̃l , λl → λl + zλj . (3.27)

This [j, l〉 shift preserves momentum conservation as well as the massless conditions for the

momenta kj and kl, which are now modified as follows,

kµ
j → kµ

j −
z

2
〈j|γµ|l〉 , kµ

l → kµ
l +

z

2
〈j|γµ|l〉 . (3.28)

The shifted amplitude An(z) is an analytic function of z with only simple poles, which are

associated with factorizations of An(z) onto lower-point tree amplitudes.

Provided that An(z)→ 0 as z →∞, the integral of An(z)/z over the contour at infinity

vanishes. This integral is also given by the sum over the residues at the poles for finite z.

Therefore, the unshifted physical amplitude we wish to compute is given by the residue at

z = 0,

An = An(0) = −
∑

poles α

Res
z=zα

An(z)

z
. (3.29)

Each pole zα in eq. (3.29) is associated with a physical factorization channel of the ampli-

tude. Factorization allows the evaluation of the residue, leading to the tree-level on-shell

recursion relation [83, 74]

An =
∑

h

∑

r,s

Ah
L(zrs)

i

P 2
r...s

A−h
R (zrs) , (3.30)

where h = ±1 denotes the helicity of the intermediate state carrying momentum Pr...s. The

double sum over r and s is over partitions of the external legs into two sets (contiguous

with respect to the color-ordering), for which the shifted legs j and l lie on opposite sides

of the pole (j ∈ L and l ∈ R). In the case of φ amplitudes, because φ is uncolored (and we

do not shift the φ leg), it can appear on either the L or R side. The tree amplitudes on

each side are evaluated at the complex momenta (3.28), shifted by z = zrs, where

zrs =
P 2

r...s

〈j−|Pr...s|l−〉
(3.31)

is the solution to the condition P 2
r...s(zrs) = 0.

At the one-loop level the situation is more intricate. Figure 9(a) shows schemati-

cally the pole structure of a typical tree amplitude A
(0)
n (z). As shown in figure 9(b), the

shifted one-loop amplitude A
(1)
n (z) can in general have not just simple physical poles, but
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(b) A(1)
n

z

(a) A(0)
n

z

(c) Rn

z

Figure 9: Analytic structure in the z plane of (a) tree amplitudes A
(0)
n (z), (b) one-loop amplitudes

A
(1)
n (z), and (c) the rational part of one-loop amplitudes Rn(z). The contour of integration is shown.

The (green) dots in (a) and (b) represent physical poles. The additional (red) dots displayed in (c)

represent spurious poles.

also branch cuts in the complex plane, as well as double poles [75]. In addition, it more

frequently has non-vanishing behavior at infinity.

Branch cuts would result in the need to evaluate discontinuities along an integration

contour, as shown in figure 9(b). To avoid this, one can use the decomposition (3.1) of the

one-loop amplitude A
(1)
n into a cut part Cn and a rational part Rn, and then work with the

shifted rational part Rn(z), instead of analyzing the behavior of the full shifted one-loop

amplitude A
(1)
n (z). Although Rn(z) is a rational function of z, only containing poles, some

of these poles are spurious. The spurious poles are represented by the additional (red) dots

in figure 9(c). Unlike the physical poles, the spurious poles are not associated with physical

factorization channels. Their contribution to the entire shifted amplitude A
(1)
n (z) cancels

between the shifted cut part Cn(z) and the shifted rational part Rn(z).

One type of spurious pole arises from the existence of terms such as (ln r)/(1 − r)2 in

Cn. Here r is a ratio of two kinematic invariants that differ by a single massless leg. For

example, eq. (3.26) displays a factor of (s123 − s12)2 in the denominator of the coefficient

of ln(−s123) in the primitive amplitude Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q). It corresponds to a term

(ln r)/(1 − r)2 with r = s123/s12. Under many choices of shift (3.27), r will become a

nontrivial function of z. In this case a spurious pole, located at the solution to r(z) = 1,

will be generated for Cn(z), and a compensating one for Rn(z).

An analytic method for handling the contributions of spurious poles was developed in

a number of papers [55, 56, 57, 84]. The method has also been applied to Higgs boson am-

plitudes [50, 51]. It consists of the following approach: We assume that the cut-containing

pieces Cn have been obtained using methods such as those described in the previous sub-

section. Then, for a general shifted one-loop amplitude we can write

A(1)
n (z) = Cn(z) + Rn(z) . (3.32)
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Our goal is to compute the rational terms Rn. We can absorb spurious singularities present

in Rn into the cut-containing pieces by rewriting

A(1)
n (z) = Ĉn(z) + R̂n(z) , (3.33)

where the completed-cut terms Ĉn(z) are free of spurious singularities, as are the remaining

rational terms R̂n(z).

To absorb all spurious singularities located at solutions to r(z) = 1, we make substi-

tutions in Cn of the form

ln r

(1 − r)2
→ ln r + 1− r

(1− r)2
≡ L1(r) , (3.34)

ln r

(1 − r)3
→ ln r − (r − 1/r)/2

(1− r)3
≡ L2(r) , (3.35)

where r represents the ratio of any two kinematic invariants that differ by a single massless

leg. The amount by which the completed-cut terms have changed in this process is given

by the rational completed-cut terms,

ĈRn(z) = Ĉn(z)− Cn(z) . (3.36)

Consequently,

R̂n(z) = Rn(z)− ĈRn(z) . (3.37)

One can then consider the contour integral at infinity for R̂n(z)/z.

Provided that all spurious poles are removed from R̂n(z) by the substitutions (3.34)

and (3.35), this contour integral leads to an equation analogous to the tree-level recursion

relation (3.29), featuring residues only at physical poles,

R̂n = R̂n(0) = −
∑

poles α

Res
z=zα

R̂n(z)

z
. (3.38)

These residues can be split into two sets of terms, using eq. (3.37). The first set consists of

the recursive diagrams, associated with residues of Rn(z); it can be evaluated analogously

to the tree-level recursive diagrams (3.30):

RD
n ≡ −

∑

poles α

Res
z=zα

Rn(z)

z

=
∑

h

∑

r,s

{
R(kr, . . . , k̂j , . . . , ks,−P̂−h

r...s)
i

P 2
r...s

A(0)(ks+1, . . . , k̂l, . . . , kr−1, P̂
h
r...s)

+ A(0)(kr, . . . , k̂j , . . . , ks,−P̂−h
r...s)

i

P 2
r...s

R(ks+1, . . . , k̂l, . . . , kr−1, P̂
h
r...s)

+ A(0)(kr, . . . , k̂j , . . . , ks,−P̂−h
r...s)

iRF (P 2
r...s)

P 2
r...s

A(0)(ks+1, . . . , k̂l, . . . , kr−1, P̂
h
r...s)

}
.

(3.39)

– 22 –



The recursive diagrams are computed from the rational parts R of lower-point loop am-

plitudes, and lower-point tree amplitudes A(0), as well as the rational part of the factor-

ization function RF , which only enters for multi-particle poles [55] (and not for collinear,

two-particle channels). Just as at tree level, φ can appear on either side of the pole.

The second contribution from the physical poles consists of the overlap terms,

On =
∑

poles α

Res
z=zα

ĈRn(z)

z
. (3.40)

They correct for the difference between Rn(z) and R̂n(z) in eq. (3.37). In section 3.4.2 we

will describe a modification of this procedure that can be used when the cut-completion

described above fails to remove all spurious poles.

Finally, we have to consider the potential contributions to the integral from infinity,

because R̂n(z) = A
(1)
n (z) − Ĉn(z) may not vanish as z → ∞. In the case of the Hq̄qQ̄Q

amplitudes there is always a shift that ensures a vanishing behavior of R̂n(z) for large z, but

there is no guarantee that this is always the case. In fact, some of the shifts used to compute

the Hq̄qgg amplitudes have non-vanishing large z behavior. Usually it is straightforward to

compute the z →∞ limit of An(z) and Ĉn(z), denoted by InfAn and Inf Ĉn respectively.

In some cases, a pair of shifts is necessary [56] (the original shift plus an auxiliary one), but

that was not required for the amplitudes computed here. Putting together all the pieces,

the full answer is given by

A1−loop
n = Ĉn + RD

n + On − Inf Ĉn + InfAn . (3.41)

3.4.1 Calculation of rational parts for Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)

To illustrate the calculation of the rational parts, we consider the primitive amplitude

Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q). After completing the cut terms to form ĈR4, the first step is to

choose a pair of legs [j, l〉 to shift according to eq. (3.27). Then we compute the recursive

diagrams RD
4 and overlap terms O4, as well as any contributions from infinity (Inf terms)

under this shift.

For the case of Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q), the only parts of the cut terms that need com-

pleting, to remove spurious singularities, are the single log terms. From the first term in

eq. (3.26) we see that the function L1(−s123
−s12

), as defined in eq. (3.34), should be introduced

to remove the singularity as s123 → s12. Similarly, the coefficient of ln(−s234) (which is

related by symmetry to that of ln(−s123)) requires the function L1(−s234
−s34

). These functions

are collected in eq. (4.8). From the rational parts of the L1 functions we obtain ĈR4,

ĈR4 =
i

2

〈3 4〉 [2 3]2

[1 2] (s12 − s123)
+

i

2

〈1 2〉 [2 3]2

[3 4] (s34 − s234)
. (3.42)
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Figure 10: Diagrams needed to evaluate the recursive diagrams RD
4 of Alc

4 (φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q).

At this point there are no spurious poles left in Ĉ4, so we can proceed to choose a

complex momentum shift (3.27). For Alc
4 (1−q̄ , 2+

q , 3+
Q̄

, 4−Q) we choose the [4, 2〉 shift, namely

λ̃4 → λ̃4 − zλ̃2 , λ2 → λ2 + zλ4 , (3.43)

or equivalently,

|4̂] = |4]− z |2] , |2̂〉 = |2〉+ z |4〉 . (3.44)

The contribution from infinity vanishes for this shift, Inf A4 = 0. This behavior for the full

amplitude can be inferred from the corresponding behavior of the known one-loop QCD

amplitude found by deleting φ, Alc
4 (1−q̄ , 2+

q , 3+
Q̄

, 4−Q). The rational part of this amplitude is

a constant times the tree amplitude [85], and it is easy to see from eq. (A.4) that the tree

amplitude vanishes under the [4, 2〉 shift. Injecting a finite amount of momentum through

the field φ should not affect the large-z behavior. We confirm this assumption a posteriori

by checking factorization limits that are independent of the ones used to construct the

recursion relation. It is also easy to verify that Ĉ4(z) vanishes at infinity; i.e., Inf Ĉ4 = 0.

Next we look at the recursive diagrams RD
4 . The only diagrams that give non-vanishing

contributions are the ones shown in figure 10. We evaluate each of them separately.

Diagram (a) is given by,

D
(a)
4 = R3(1−q̄ , 2̂+

q ,−P̂+)
i

s12
A

(0)
3 (φ, 3+

Q̄
, 4̂−Q, P̂−) . (3.45)

The tree amplitude A
(0)
3 (φ, 3+

Q̄
, 4̂−Q, P̂−) is a simple MHV φ-amplitude. The loop three-

point rational part R3(1−q̄ , 2̂+
q ,−P̂+) can be extracted from the rational part of a one-loop

splitting amplitude for g → q̄q. It is equal to the MHV tree amplitude A
(0)
3 (1−q̄ , 2̂+

q ,−P̂+),
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multiplied by the (O(ε0)) rational part of of the loop splitting factor r
[1]
S (±, q̄∓, q±) defined

in ref. [72],

r
[1]
S (±, q̄∓, q±)

∣∣∣
rat.

=
83

18
− δR

6
. (3.46)

Here δR is a regularization-scheme dependent parameter, which fixes the number of helicity

states of the gluons running in the loop to (4−2δRε). For the ’t Hooft-Veltman scheme [86]

δR = 1, while in the four-dimensional helicity (FDH) scheme [87, 88] δR = 0.

Thus we get for diagram (a),

D
(a)
4 =

(
−i

[2 (−P̂ )]2

[1 2]

)(
83

18
− δR

6

)
i

s12

(
−i
〈P̂ 4〉2
〈3 4〉

)
. (3.47)

To remove the dependence on P̂ we use the on-shell condition,

〈1 2̂〉 = 0 ⇔ 〈1 2〉 + z 〈1 4〉 = 0 ⇔ z = −〈1 2〉
〈1 4〉 , (3.48)

and

P̂ = |1]〈1| + |2̂]〈2̂| = |1]〈1| + |2]〈2| + z|2]〈4] = P + z|2]〈4] , (3.49)

plus some simple spinor product algebra, to get

D
(a)
4 = −i

〈1 4〉2
〈1 2〉 〈3 4〉

(
83

18
− δR

6

)
= A

(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)×

(
83

18
− δR

6

)
. (3.50)

For diagram (b) we have the same on-shell condition as for (a). We also need the

rational part of the leading-color φq̄qg amplitude A
(1)
3 (φ, 1−q̄ , 2+

q , 3−). This can be extracted

from the Hq̄qg amplitude [47] and the finite amplitude A
(1)
3 (φ, 1−q̄ , 2+

q , 3+) [49]. Then a

calculation very similar to that for diagram (a) yields

D
(b)
4 = A

(0)
3 (1−q̄ , 2̂+

q ,−P̂+)
i

s12
R3(φ, 3+

Q̄
, 4̂−Q, P̂−)

=

(
−i

[2 (−P̂ )]2

[1 2]

)
i

s12

(
−i
〈P̂ 4〉2
〈3 4〉

)(
2 +

83

18
− δR

6

)

= A
(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q)×
(

119

18
− δR

6

)
. (3.51)

For diagram (c), the required one-loop φ amplitude is A
(1)
3 (φ, 1−q̄ , 2+

q , 3+) [49]. The

on-shell condition becomes

[3 4̂] = 0 ⇔ [3 4] − z [3 2] = 0 ⇔ z =
[3 4]

[3 2]
(3.52)

and

P̂ = |3]〈3| + |4̂]〈4̂| = |3]〈3| + |4]〈4| − z|2]〈4] = P − z|2]〈4] . (3.53)
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The diagram evaluates to

D
(c)
4 = R3(φ, 1−q̄ , 2̂+

q , P̂+)
i

s34
A

(0)
3 (3+

Q̄
, 4̂−Q,−P̂−)

=

(
−i

[2 P̂ ]2

[1 2]

)(
−2− 1

2

s1b2

sb2 bP

)
i

s34

(
−i
〈(−P̂ ) 4〉2
〈3 4〉

)
. (3.54)

By substituting z with its value given by the on-shell condition for P̂ , eq. (3.52), and using

the Schouten identity, we find that

D
(c)
4 = −i

[2 3]2

[1 2] [3 4]

(
−2 +

1

2

[1 2] 〈1|(2 + 4)|3]

[2 3] s234

)

= A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)

(
−2 +

1

2

[1 2] 〈1|(2 + 4)|3]

[2 3] s234

)
. (3.55)

In principle, there could be recursive diagrams associated with the s123 and s341 chan-

nels. However, these diagrams vanish because on one side of the pole is a φq̄q amplitude.

The amplitudeA2(φ, 1−q̄ , 2+
q ) vanishes by angular momentum conservation, while the ampli-

tude A2(φ, 1+
q̄ , 2+

q ) vanishes because the quarks are massless and interact only with gluons,

via chirality-preserving interactions. Similarly, the s23 and s41 poles are absent because

there is no three-point amplitude containing two different flavor quarks. The sum of the

recursive diagrams is

RD
4 = D

(a)
4 + D

(b)
4 + D

(c)
4 . (3.56)

Next we evaluate the overlap terms O4. They are given by

O4 =
∑

poles α

Res
z=zα

ĈR4(z)

z
, (3.57)

where the sum is only over the physical poles. In our case, physical poles can arise only when

the following intermediate momenta go on shell (the same channels that admit possible

recursive diagrams):

P̂ 2
12 = 0 ⇔ z = −〈1 2〉

〈1 4〉 , P̂ 2
23 = 0 ⇔ z =

〈2 3〉
〈3 4〉 , (3.58)

P̂ 2
34 = 0 ⇔ z =

[3 4]

[3 2]
, P̂ 2

41 = 0 ⇔ z =
[1 4]

[1 2]
, (3.59)

P̂ 2
123 = 0 ⇔ z = − s123

〈4|(1 + 3)|2]
, P̂ 2

341 = 0 ⇔ z =
s341

〈4|(1 + 3)|2]
. (3.60)

However, we note that the s23, s41, s123 and s341 channels had no recursive diagrams. This

does not necessarily imply the absence of an overlap diagram (in principle ĈR4 could have

a worse behavior than R4 in a given channel), but it is easy to check that eq. (3.42) has no

poles in these channels.

The two remaining cases correspond schematically to diagrams (a) and (b) shown in

figure 11. We write

O4 = O
(a)
4 + O

(b)
4 , (3.61)
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Figure 11: Schematic diagrams corresponding to the overlap terms O4 of Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q).

The diagrams are computed from the residues of ĈR4(z)/z at poles in the z plane satisfying (a)

P̂ 2
12 = 0 and (b) P̂ 2

34 = 0.

where diagram (a) corresponds to P̂ 2
12 = 0 and diagram (b) to P̂ 2

34 = 0. It is simple to see

from the [4, 2〉 shift of ĈR4 in eq. (3.42) that O
(a)
4 also vanishes, because there is no factor

of 〈1 2〉 in the denominator of ĈR4. Thus the only non-vanishing overlap contribution

comes from O
(b)
4 , due to the factor of [3 4] in the denominator of ĈR4. The residue is easily

found to be

O4 = O
(b)
4 =

i

2

〈1|(2 + 4)|3] [2 3]

[3 4] s234
. (3.62)

We are finally ready to assemble the remaining rational terms of Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q),

given by the sum

R̂4 = RD
4 + O4 . (3.63)

Using eqs. (3.56) and (3.62), we get

R̂4 = A
(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)×

(
101

9
− δR

3

)
− 2 A

(0)
4 (φ†, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) , (3.64)

which is also recorded in eq. (4.8). Note that the term with the unphysical pole in s234 in

the recursive diagram D
(c)
4 cancels against the overlap diagram O

(b)
4 for the same channel.

Such recursive-overlap cancellations are a common feature.

3.4.2 Spurious poles in rational parts

The cut-completion process described in eqs. (3.34) and (3.35) removes certain types of

spurious singularities, namely those associated with terms like (ln r)/(1 − r)n for n > 1,

where r is a ratio of two momentum invariants that differ by one massless external leg. It

ensures that Ĉn(z), and therefore R̂n(z), is free of spurious singularities when r(z) → 1,

where r(z) is the shifted value of r. In refs. [55, 56, 57, 50] it was found that this type of

cut completion was sufficient to remove all spurious poles in the z plane for a large class of

QCD and φ amplitudes. (Note that if a spurious denominator factor is unaffected by the

particular shift used, eq. (3.27), then it will not produce a spurious pole in the z plane.)
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However, poles of the type r(z) = 1 certainly do not exhaust the set of potential spurious

poles for a general amplitude. These poles correspond specifically to Gram determinants

associated with two-mass triangle integrals. In a general amplitude, there are also poles

associated with the Gram determinants of a multitude of scalar box and triangle integrals

with varying numbers of external masses. It would be very difficult to construct a cut

completion Ĉn that removed all spurious poles.

On the other hand, a completely general alternative method for handling the spurious

poles was sketched in ref. [58], and fully implemented numerically in the BlackHat pro-

gram [43]. This method did not use cut completion, but rather the original decomposition

A
(1)
n = Cn + Rn, and instead relied on the fact that the residues of Cn(z)/z and Rn(z)/z

cancel at every spurious pole. The contour integral of Rn(z)/z at infinity requires the sum

over spurious pole residues of Rn(z)/z, but this sum can be evaluated using the shifted cut

part Cn(z), as

−
∑

spurious poles β

Res
z=zβ

Rn(z)

z
=

∑

spurious poles β

Res
z=zβ

Cn(z)

z
. (3.65)

Here we simply note that a hybrid approach is also feasible: First one removes the

spurious poles that can be easily removed by cut completion, such as eqs. (3.34) and (3.35).

This procedure leads to the overlap terms (3.40) in the usual way. Then one considers the

contour integral at infinity of the remaining rational terms R̂n(z)/z. One evaluates the sum

over residues of R̂n(z)/z, at the spurious poles zγ that were not removed by cut completion,

by using the fact that their residues still cancel against those of the completed cut terms,

Ĉn(z)/z:

−
∑

spurious poles γ

Res
z=zγ

R̂n(z)

z
=

∑

spurious poles γ

Res
z=zγ

Ĉn(z)

z
, (3.66)

where {γ} is a subset of {β}.

Note that Ĉn(z) in eq. (3.66) includes rational terms as well as cut terms; whereas

Cn(z) in eq. (3.65) is a pure cut function, which nevertheless can have rational-function

spurious-pole residues after Taylor expansion around the pole. In fact, it is only the

rational-function part of the residue of Ĉn(z)/z that we require; the terms containing

logarithms, polylogarithms and π2 factors are guaranteed to cancel, because the residue of

the rational function R̂n(z)/z can have no such terms.

In our calculation of the φq̄qgg amplitudes, after removing the r(z) = 1 spurious poles,

we found that certain spurious poles still remained, due to denominator factors in integral

coefficients of the form 〈i j〉 or [i j], where i and j are color non-adjacent legs. If i and j

are color-adjacent, then 〈i j〉 and [i j] denominator factors represent physical singularities,

corresponding (for real momenta) to the region where ki and kj become collinear, sij → 0.

However, physical collinear poles for color-ordered primitive amplitudes only occur when

i and j are color-adjacent; in the non-adjacent case, the 〈i j〉 and [i j] factors generate

spurious singularities. They are associated with the “easy two mass” box integral in which
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the two diagonally opposite massless momenta are ki and kj , whose Gram determinant

contains a factor of sij = 〈i j〉 [j i]. The factors 〈i j〉 and [i j] can also be seen in the

denominators of the solutions for the loop momenta in the quadruple cut for the easy-two-

mass box kinematics (see e.g. eq. (2.7) of ref. [43]). The same factors also persist in the

limiting case of a one-mass box.

Factors of 〈i j〉 or [i j] do appear in the denominators of coefficients of scalar integrals

in the QCD and φ MHV n-gluon amplitudes with non-adjacent negative-helicity gluons

labeled i and j, whose rational parts were computed using on-shell recursion relations [57,

51]. However, in these cases the [i, j〉 shift was used, which leaves both 〈i j〉 and [i j]

unshifted, and therefore produces no spurious pole in this channel.

In this work we encountered spurious poles associated with 〈i j〉 factors in several φq̄qgg

amplitudes. Here we illustrate how to use the method described above for the specific

example of the leading-color primitive amplitude AL
4 (φ, 1−q̄ , 2+

q , 3+, 4−). Using the methods

of sections 3.1–3.3, we have calculated the cut-containing parts of AL
4 (φ, 1−q̄ , 2+

q , 3+, 4−),

and obtained the completed-cut terms Ĉ4, which can be read off eq. (4.19) by ignoring the

purely rational terms in the last few lines. To compute the rational part of this amplitude

we chose to use a [4, 1〉 shift. Inspecting Ĉ4, we see that several terms contain the spurious

denominator factor 〈1 3〉, which will potentially lead to a spurious pole under the [4, 1〉
shift. These terms are,

i
〈1 4〉3

〈1 2〉 〈3 4〉 〈1 3〉
[
Ls−1 (s12, s23; s123) + Ls−1 (s34, s41; s341)

]

− i

3

〈1 2〉2 [2 3]3 〈3 4〉2
〈1 3〉

L2

(
−s123
−s12

)

s3
12

+
i

2

〈1 2〉 〈3 4〉 [2 3]2 〈1 4〉
〈1 3〉

L1

(
−s123
−s12

)

s2
12

. (3.67)

The spurious pole satisfies 0 = 〈1̂ 3〉 = 〈1 3〉 + z 〈4 3〉, or z = 〈1 3〉 / 〈3 4〉 ≡ zsp.

Using eq. (3.66), we need to compute

Res
z=zsp

Ĉ4(z)

z
. (3.68)

Now the Ls−1 functions in eq. (3.67) actually vanish as z → zsp. This is because the

relevant scalar box integral in D = 6 dimensions, which is nonsingular as s13 → 0, can be

written as

ID=6
4 (s12, s23; s123) = −i cΓ

Ls−1(s12, s23; s123)

s13
, (3.69)

and similarly for the other Ls−1 function. Because ID=6
4 is smooth in this limit, the Ls−1

functions must contain a factor of s13 = 〈1 3〉 [3 1] in the limit s13 → 0. Thus the terms

containing the Ls−1 functions in eq. (3.67) do not contribute to the residue.

After expanding the remaining logarithms and rational terms in eq. (3.67) around

z = zsp, we find that the logarithmic part of the residue cancels, as expected. Keeping the
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rational part of the residue, and simplifying, we get

Res
z=zsp

Ĉ4(z)

z
= − i

6

〈3 4〉 〈1 4〉2 [2 3]

〈2 3〉 〈1 3〉 〈4|(1 + 3)|2]
+ i

2

3

〈1 4〉 [2 3] 〈3 4〉
[1 2] 〈2 3〉 〈1 3〉 . (3.70)

This term has to be added to the recursive diagrams, overlap terms and ĈR4 to complete

the full rational terms of AL
4 (φ, 1−q̄ , 2+

q , 3+, 4−). The full rational terms, as well as the full

amplitude, are now free of spurious singularities as 〈1 3〉 → 0.

The procedure outlined above can be performed in a systematic way for any amplitude,

since the locations of the possible spurious poles under a chosen shift are known a priori,

or they can be inferred simply by inspecting the completed-cut terms, Ĉn. Whenever, after

absorbing spurious singularities according to eqs. (3.34) and (3.35), we are left with residual

spurious poles, we can always compute their contribution to the remaining rational terms

by evaluating the corresponding residues of Ĉn(z)/z instead.

4. The one-loop Hq̄qQ̄Q and Hq̄qgg amplitudes

In this section we present our main results for the one-loop Hq̄qQ̄Q and Hq̄qg±g∓ ampli-

tudes. First we outline how to obtain all primitive φ-amplitudes, using only a minimum

set of them. Then we give the full analytic expressions for these amplitudes, followed by

numerical results at a specific kinematic point. We then show how to obtain the color- and

helicity-summed cross section for a pseudoscalar Higgs plus two quarks and two gluons,

using our results and those of ref. [20]. As another application, we show how to compute

part of the virtual one-loop color-singlet interference term between the gluon-fusion and

VBF Higgs production mechanisms. Finally, we mention the various consistency checks we

used to verify the correctness of our expressions.

4.1 Preliminaries

We obtain the one-loop corrections to A4(H, 1q̄, 2q, 3Q̄, 4Q) and A4(H, 1q̄, 2q, 3, 4) by com-

puting color-ordered primitive φ-amplitudes in a helicity basis, following our discussion in

section 2.2. Once we have the complete set of φ-amplitudes, the φ†-amplitudes are obtained

by parity, eq. (2.9).

Consider first A4(φ, 1q̄, 2q, 3Q̄, 4Q). Because the quarks are massless, chirality is pre-

served along a quark line. By convention, all external legs are outgoing, so the helicities of

any quark-antiquark pair have to be opposite. Thus we need only consider the four helicity

configurations A4(φ, 1−λ
q̄ , 2λ

q , 3−Λ
Q̄

, 4Λ
Q), where λ, Λ = ± are the helicities of the q and Q

quarks, respectively.

Suppose the anti-quark q̄ (leg 1) has positive helicity. We can obtain these cases from

the cases where it has negative helicity by using charge conjugation, which reverses both
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quark lines (q ↔ q̄ and Q↔ Q̄):

A4(φ, 1+
q̄ , 2−q , 3−

Q̄
, 4+

Q) = A4(φ, 2−q̄ , 1+
q , 4+

Q̄
, 3−Q) , (4.1)

A4(φ, 1+
q̄ , 2−q , 3+

Q̄
, 4−Q) = A4(φ, 2−q̄ , 1+

q , 4−
Q̄

, 3+
Q) . (4.2)

Now taking the anti-quark q̄ to have negative helicity, we see that there are two independent

helicity configurations that we need to compute,

A4(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) and A4(φ, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q) . (4.3)

Here A4 is shorthand for the three types of primitive amplitude in this case (lc, slc, and f).

Recall from eq. (2.9) that parity gives the φ†-amplitudes in terms of the φ-amplitudes,

A4(φ†, 1λ
q̄ , 2−λ

q , 3Λ
Q̄
, 4−Λ

Q ) =
[
A4(φ, 1−λ

q̄ , 2λ
q , 3−Λ

Q̄
, 4Λ

Q)
]∣∣∣∣

〈i j〉↔[j i]

, (4.4)

where the operation 〈i j〉 ↔ [j i] conjugates spinors but does not reverse the sign of ab-

sorptive parts of loop integrals.

For the Hq̄qgg amplitude, there are two cases to consider, depending on whether the

helicities of the two gluons are the same or opposite. In the case that they are the same,

say both positive, we have, using the decomposition (2.7) and parity,

A4(H, 1−q̄ , 2+
q , 3+, 4+) = A4(φ, 1−q̄ , 2+

q , 3+, 4+)−
[
A4(φ, 1+

q̄ , 2−q , 3−, 4−)
]∣∣∣∣

〈i j〉↔[j i]

. (4.5)

The amplitude A4(φ, 1−q̄ , 2+
q , 3+, 4+) vanishes at tree level. For this reason, the one-loop

amplitude is quite simple [49] and is given below in eqs. (4.16), (4.17) and (4.18). However,

the amplitude A4(φ, 1+
q̄ , 2−q , 3−, 4−) is next-to-maximally-helicity violating (NMHV), and at

one-loop it is considerably more complex. (For example, the coefficients of the three-mass

triangle integrals are nonzero for this amplitude.) We will leave its analytic computation

for future work.

Instead we turn to the case of opposite-helicity gluons, which can be decomposed as

A4(H, 1−q̄ , 2+
q , 3±, 4±) = A4(φ, 1−q̄ , 2+

q , 3±, 4±)−
[
A4(φ, 1+

q̄ , 2−q , 3∓, 4∓)
]∣∣∣∣

〈i j〉↔[j i]

. (4.6)

In this case the φ amplitudes are both MHV, and of a similar complexity as the φq̄qQ̄Q

amplitudes. Again, using charge conjugation we can exchange the roles of anti-quark and

quark, so as to obtain the remaining φ-amplitude helicity configurations, in which the

anti-quark q̄ has positive helicity,

A4(1+
q̄ , 2−q , 3±, 4∓) = A4(2−q̄ , 1+

q , 4∓, 3±). (4.7)

Using the color decompositions in section 2.2, the problem is reduced to computing the

primitive amplitudes Alc
4 , Aslc

4 and Af
4 for two four-quark helicity configurations, 1−

q̄ 2+
q 3±

Q̄
4∓Q,

and AL
4 , AR

4 and Af
4 for two two-quark-two-gluon helicity configurations, and two color

orderings, namely 1−q̄ 2+
q 3±4∓ and 1−q̄ 3±2+

q 4∓.

– 31 –



4.2 Full results

In section 3 we showed in specific examples how to compute various ingredients necessary

to obtain the full Alc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) and AL
4 (φ, 1−q̄ , 2+

q , 3+, 4−) amplitudes. We used the

same techniques for the quadruple cuts and ordinary two-particle cuts in all channels, and

for all other color components and independent helicity configurations, in order to arrive

at the full results for the φ-amplitudes.

It is worth noting that the computation of the φq̄qQ̄Q primitive amplitudes in both

helicity configurations was significantly simpler than that of the φq̄qgg amplitudes. The

expressions were more compact at each stage (due in part to the higher symmetry of these

amplitudes). In addition, we had no remaining spurious poles for the shifts we chose

to perform. Specifically, we used a [4, 2〉 shift for all the A4(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) primitive

amplitudes, and encountered no contributions from z → ∞ (i.e., Ĉ4(z) as well as A
(1)
4 (z)

vanish in this limit). We used a [1, 3〉 shift for Alc
4 (φ, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q). Here there was

a contribution from z → ∞, from Ĉ4. We used a symmetry to obtain the slc and f

components of this helicity configuration from the previous one.

The φq̄qgg amplitudes were more intricate. For A4(φ, 1−q̄ , 2+
q , 3+, 4−), we used the [4, 1〉

shift, and we had to compute residues of spurious poles in the L, R and fermion loop (f) am-

plitudes, although there were no contributions from z →∞. For A4(φ, 1−q̄ , 2+
q , 3−, 4+), we

used the [3, 2〉 shift. There were not only spurious pole residues in the L and R components,

but also a contribution from z →∞ (from Ĉ4) in the L component. We cross-checked our

results for the L and R components of A4(φ, 1−q̄ , 2+
q , 3−, 4+) using the [2, 4〉 shift.

Finally, for the φq̄gqg L amplitudes, we used a [4, 1〉 shift for AL
4 (φ, 1−q̄ , 2+, 3+

q , 4−),

and a [2, 1〉 shift for AL
4 (φ, 1−q̄ , 2−, 3+

q , 4+). There were neither spurious pole contributions,

nor contributions from z → ∞. The full results, after assembly and simplification, are

presented below.

4.2.1 φq̄qQ̄Q

For the φq̄qQ̄Q (−++−) configuration we have

− iAlc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q) = −iA

(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)× V lc

− 1

2
〈1 2〉 〈3 4〉 [2 3]2




L1

(
−s123
−s12

)

s2
12

+
L1

(
−s234
−s34

)

s2
34


− 2 〈1 4〉 [2 3]




L0

(
−s123
−s12

)

s12
+

L0

(
−s234
−s34

)

s34




+ 2i A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q) , (4.8)
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with

V lc = − 1

ε2

[(
µ2

−s23

)ε

+

(
µ2

−s41

)ε]
+

13

6ε

[(
µ2

−s12

)ε

+

(
µ2

−s34

)ε]

− Ls2me
−1

(
s123, s234; s23,m

2
H

)
− Ls2me

−1

(
s341, s412; s41,m

2
H

)

− Ls−1 (s23, s34; s234)− Ls−1 (s34, s41; s341)

− Ls−1 (s41, s12; s412)− Ls−1 (s12, s23; s123) +
101

9
− δR

3
, (4.9)

− iAslc
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q)× V slc

+
1

2
〈1 2〉〈3 4〉[2 3]2




L1

(
−s123
−s12

)

s2
12

+
L1

(
−s234
−s34

)

s2
34


− 〈1 4〉[2 3]




L0

(
−s123
−s12

)

s12
+

L0

(
−s234
−s34

)

s34


 ,

(4.10)

with

V slc = − 1

ε2

[(
µ2

−s12

)ε

+

(
µ2

−s34

)ε]
− 3

2ε

[(
µ2

−s12

)ε

+

(
µ2

−s34

)ε]

− Ls2me
−1

(
s412, s123; s12,m

2
H

)
− Ls2me

−1

(
s234, s341; s34,m

2
H

)
− 7− δR , (4.11)

and

Af
4(φ, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) = A
(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q)

{
− 2

3ε

[(
µ2

−s12

)ε

+

(
µ2

−s34

)ε]
− 20

9

}
.

(4.12)

For the φq̄qQ̄Q (−+−+) case, we find

− iAlc
4 (φ, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q)

×
{

V lc +

[
1−

(〈1 4〉 〈2 3〉
〈1 3〉 〈2 4〉

)2
] [

Ls−1 (s23, s34; s234) + Ls−1 (s41, s12; s412)
]}

− 1

2

〈1 2〉 〈3 4〉
〈2 4〉2


s2

41

L1

(
−s412
−s12

)

s2
12

+ s2
23

L1

(
−s234
−s34

)

s2
34

− ln

(
s412

s12

)
− ln

(
s234

s34

)


+ 2
[2 4]

〈2 4〉




〈2 3〉
[1 4]


s24

L0

(
−s412
−s12

)

s12
+ ln

(
s412

s12

)
+

〈1 4〉
[2 3]


s24

L0

(
−s234
−s34

)

s34
+ ln

(
s234

s34

)





+
〈1 4〉 〈2 3〉 [2 4]

〈2 4〉




L0

(
−s412
−s41

)

s41
+

L0

(
−s234
−s23

)

s23




− 1

2

1

〈2 4〉2
[〈3 4〉 (s24 − s41)

[1 2]
+
〈1 2〉 (s24 − s23)

[3 4]

]
+ 2i A

(0)
4 (φ†, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q) . (4.13)
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The slc and f primitive amplitudes for the φq̄qQ̄Q (−+−+) are simply related to those for

(−++−), because two of the external legs can be exchanged at the cost of a minus sign,

Aslc
4 (φ, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) = −Aslc

4 (φ, 1−q̄ , 2+
q , 4+

Q̄
, 3−Q) , (4.14)

Af
4(φ, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) = −Af

4(φ, 1−q̄ , 2+
q , 4+

Q̄
, 3−Q) . (4.15)

These relations were used already in constructing the partial amplitudes (2.14)–(2.17).

The result for any color or helicity component of A(1)
4 (H, 1q̄, 2q, 3Q̄, 4Q) can be readily

obtained using eqs. (4.1)–(4.4).

4.2.2 φq̄qgg

The results for the infrared- and ultraviolet-finite helicity amplitude φq̄qgg (−+++) can

be extracted from ref. [49]. We give them here for completeness:

− iAL
4 (φ, 1−q̄ , 2+

q , 3+, 4+) =
1

2

〈1 2〉 〈1|(3 + 4)|2]

〈2 3〉 〈3 4〉 〈4 1〉 +
1

2

〈1 3〉 [3 4]

〈2 3〉 〈3 4〉

+ 2
〈1|(3 + 4)|2]2

〈3 4〉 〈4 1〉 〈3|(1 + 4)|2]
− 2

〈1|(2 + 3)|4]2〈2|(1 + 3)|4]

〈1 2〉 〈2 3〉 s123 〈3|(1 + 2)|4]

− 2
[2 4]3 m4

H

[1 2] s412 〈3|(1 + 2)|4] 〈3|(1 + 4)|2]
− 1

3

〈1 3〉 [3 4] 〈4 1〉
〈1 2〉 〈3 4〉2

, (4.16)

−iAR
4 (φ, 1−q̄ , 2+

q , 3+, 4+) = −1

2

[〈1|(2 + 3)|4]

〈2 3〉 〈3 4〉 +
〈1 2〉 [2 3] 〈3 1〉
〈2 3〉 〈3 4〉 〈4 1〉

]
, (4.17)

−iAf
4(φ, 1−q̄ , 2+

q , 3+, 4+) =
1

3

〈1 3〉 [3 4] 〈4 1〉
〈1 2〉 〈3 4〉2

. (4.18)
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For φq̄qgg (−++−) we obtain,

− iAL
4 (φ, 1−q̄ , 2+

q , 3+, 4−) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−)

×
[
V L

1 − Ls−1 (s23, s34; s234)− Ls−1 (s41, s12; s412)
]

+
〈1 4〉3

〈1 2〉 〈3 4〉 〈1 3〉
[
Ls−1 (s12, s23; s123) + Ls−1 (s34, s41; s341)

]

+

[
4

3

〈1 3〉2 〈4|(1+2)|3]3

〈1 2〉 〈3 4〉 − 〈1 2〉 [2 3]2 〈3 4〉 〈4|(1+2)|3] − 1

3

〈1 2〉2 [2 3]3 〈3 4〉2
〈1 3〉

]
L2

(
−s123
−s12

)

s3
12

+

[
1

2

〈1 3〉2〈2 4〉〈4|(1+2)|3]2

〈1 2〉 〈2 3〉 〈3 4〉 +
〈1 3〉〈1 4〉〈4|(1+2)|3]2

〈1 2〉 〈3 4〉 +
1

2

〈1 2〉〈3 4〉[2 3]2〈1 4〉
〈1 3〉

]
L1

(
−s123
−s12

)

s2
12

− 1

2

〈1 2〉 〈3 4〉 〈2 4〉 [2 3]2

〈2 3〉
L1

(
−s234
−s34

)

s2
34

+
〈1 4〉2 〈4|(1 + 2)|3]

〈1 2〉 〈3 4〉
L0

(
−s123
−s12

)

s12

− 2
〈1 4〉 〈2 4〉 [2 3]

〈2 3〉




L0

(
−s123
−s12

)

s12
+

L0

(
−s234
−s34

)

s34




− 5

6

[
2 A

(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−) +
〈1 4〉3

〈1 2〉 〈3 4〉 〈1 3〉

]
ln
(
−s123
−s12

)

+
5

6

〈1 4〉2 〈4|(1 + 2)|3]

s12 〈1 2〉 〈3 4〉 − 1

6

〈1 4〉2 [2 3] 〈3 4〉
〈2 3〉 〈1 3〉 〈4|(1 + 3)|2]

+
2

3

〈1 4〉 [2 3] 〈3 4〉
[1 2] 〈2 3〉 〈1 3〉

− 2

3

〈1 4〉 〈2 4〉 〈4|(1 + 3)|2]

s12 〈2 3〉 〈3 4〉 +
1

3

[2 3] 〈4|(1 + 3)|2]〈4|(2 + 3)|1]

s123 [1 2]2 〈2 3〉

− 1

6

〈4|(2 + 3)|1](〈4|1|2] + 2 〈4|3|2])(2 〈4|1|2] + 〈4|3|2])2

s123 [1 2]2 〈2 3〉 〈3 4〉 〈4|(1 + 3)|2]
+

1

2

[2 3] 〈2|(1 + 4)|3]

[1 4] 〈2 3〉 [3 4]

+
1

2

〈4|(1 + 3)|2]〈4|(1 + 2)|3]

s123 〈2 3〉 [1 2]
− 1

2

〈1 4〉2 [1 3]

s12 〈2 3〉 + 2i A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+, 4−) , (4.19)

with

V L
1 = − 1

ε2

[(
µ2

−s23

)ε

+

(
µ2

−s34

)ε

+

(
µ2

−s41

)ε]
+

13

6ε

(
µ2

−s12

)ε

+
119

18
− δR

6

− Ls2me
−1

(
s123, s234; s23,m

2
H

)
− Ls2me

−1

(
s341, s412; s41,m

2
H

)

− Ls2me
−1

(
s412, s123; s12,m

2
H

)
, (4.20)
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−iAR
4 (φ, 1−q̄ , 2+

q , 3+, 4−) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−) × V R

+
〈1 4〉2
〈2 3〉 〈1 3〉

[
Ls−1 (s12, s23; s123) + Ls−1 (s34, s41; s341)

]

− 1

2

〈1 2〉2 [2 3]2 〈3 4〉2
〈2 3〉 〈1 3〉

L1

(
−s123
−s12

)

s2
12

+
1

2

〈2 4〉3 〈1|(3 + 4)|2]2

〈1 2〉 〈2 3〉 〈3 4〉
L1

(
−s234
−s34

)

s2
34

− 2
〈1 2〉 〈3 4〉 〈1 4〉 [2 3]

〈2 3〉 〈1 3〉
L0

(
−s123
−s12

)

s12
− 2
〈1 4〉 〈2 4〉 [2 3]

〈2 3〉
L0

(
−s234
−s34

)

s34

− 3

2

〈1 4〉2
〈2 3〉 〈1 3〉 ln

(
−s123
−s12

)
− i

2
A

(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−) ln
(
−s234
−s34

)

+
1

2

[
〈1 4〉 [2 3] 〈3 4〉
[1 2] 〈2 3〉 〈1 3〉 +

[2 3] [1 3] 〈2|(1 + 4)|3]

[3 4] [1 4] 〈2|(3 + 4)|1]
− 〈4|(1 + 3)|2]〈4|(1 + 2)|3]

s123 〈2 3〉 [1 2]

+
〈1 4〉2 〈2 4〉2 (s21 + s23 + s24)

〈1 2〉 〈2 3〉 〈3 4〉2 〈2|(1 + 4)|3]
− s2

341 [2 3] 〈2 4〉3
s34 〈2 3〉 〈3 4〉 〈2|(1 + 4)|3]〈2|(3 + 4)|1]

]
,

(4.21)

with

V R = − 1

ε2

(
µ2

−s12

)ε

− 3

2ε

(
µ2

−s12

)ε

− 7

2
− δR

2
− Ls2me

−1

(
s234, s341; s34,m

2
H

)
, (4.22)

and

−iAf
4(φ, 1−q̄ , 2+

q , 3+, 4−) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−)×
[
− 2

3ε

(
µ2

−s12

)ε

− 10

9

]

+
1

3

[
〈1 2〉2 [2 3]3 〈3 4〉2

〈1 3〉 − 〈4|(1 + 2)|3]3 〈1 3〉2
〈1 2〉 〈3 4〉

]
L2

(
−s123
−s12

)

s3
12

− 1

3

[
〈1 4〉2
〈2 3〉 〈1 3〉 +

〈1 4〉2 〈2 4〉
〈1 2〉 〈2 3〉 〈3 4〉

]
ln
(
−s123
−s12

)
− 1

2

〈1 4〉2 [2 3]

s12 〈1 3〉

+
1

6

〈1 4〉 (〈4|1|2]〈4|(1 + 3)|2] − 〈4|3|2]2)

[1 2] 〈3 4〉 〈1 3〉 s123
+

1

6

〈1 4〉3s123

s12 〈1 2〉 〈3 4〉 〈1 3〉 . (4.23)
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For the φq̄qgg (−+−+) case,

−iAL
4 (φ, 1−q̄ , 2+

q , 3−, 4+) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4+)

×
[
V L

1 −
13

6
ln
(
−s412
−s12

)
− Ls−1 (s34, s41; s341)− Ls−1 (s12, s23; s123)

]

+
〈1 4〉2 〈2 3〉3

〈1 2〉 〈3 4〉 〈2 4〉3
[
Ls−1 (s23, s34; s234) + Ls−1 (s41, s12; s412)

]

+
2

3

〈1 2〉2 〈3 4〉2 [2 4]3

〈1 4〉
L2

(
−s412
−s12

)

s3
12

− 1

2

〈1 2〉 〈2 3〉 〈3 4〉 [2 4]2

〈2 4〉
L1

(
−s234
−s34

)

s2
34

+

[
1

2

〈1 4〉 〈3|(1+2)|4]2

〈2 4〉 − 1

3

〈1 3〉 〈1 4〉 〈3|(1+2)|4]2

〈1 2〉 〈3 4〉 − 2

3

〈1 3〉 〈1 2〉 〈3 4〉 [2 4]2

〈1 4〉

]
L1

(
−s412
−s12

)

s2
12

−
[
〈1 2〉 [2 4] 〈3|(1 + 4)|2]2

〈1 4〉 [1 2]
+

1

2

〈1 4〉 〈2 3〉2 [2 4]2

〈2 4〉

]
L1

(
−s412
−s41

)

s2
41

−
[

[2 4] 〈3 4〉 〈1|(2 + 3)|4]2

〈1 4〉 [3 4]
+

1

2

〈1 4〉 〈2 3〉2 [2 4]2

〈2 4〉

]
L1

(
−s234
−s23

)

s2
23

+

[
3
〈1 3〉2 〈3|(1+2)|4]

〈1 2〉 〈3 4〉 + 2
〈1 3〉 〈3|(1+2)|4]2

〈1 2〉 〈3 4〉 [1 4]
+

1

3

〈1 3〉2 [2 4]

〈1 4〉 − 〈3|(1+2)|4]2

[1 4] 〈2 4〉

]
L0

(
−s412
−s12

)

s12

+ 3
〈2 3〉 〈1 3〉 [2 4]

〈2 4〉




L0

(
−s234
−s23

)

s23
+

L0

(
−s412
−s41

)

s41




+
〈2 3〉 [2 4] (〈1 2〉 〈3 4〉+ 2 〈1 4〉 〈2 3〉)

〈2 4〉2
L0

(
−s234
−s34

)

s34

−
[

1

3

〈1 3〉3
〈1 2〉〈3 4〉〈1 4〉 +

1

2

〈2 3〉 〈1 3〉2
〈1 2〉〈2 4〉〈3 4〉 +

〈2 3〉2[2 4]

〈2 4〉2[1 4]
+ 2

〈2 3〉3 〈1 4〉 [2 4]

〈2 4〉2〈3 4〉〈1 2〉[1 4]

]
ln
(
−s412
−s12

)

+
〈1 2〉2 〈3 4〉 [2 4]

〈2 4〉2 〈1 4〉 [3 4]
ln
(
−s234
−s23

)
+
〈3 4〉2 〈1 2〉 [2 4]

〈2 4〉2 〈1 4〉 [1 2]
ln
(
−s412
−s41

)

− 5

6

〈1 3〉2 [2 4]

s12 〈1 4〉 −
1

3

〈1 3〉2 〈3|(1 + 2)|4]

s12 〈1 2〉 〈3 4〉 − 1

3

〈1 3〉 [2 4] (2〈3|4|2] + 〈3|1|2])

s412 〈1 4〉 [1 2]

+
1

2

[
[2 4] 〈3|(1 + 2)|4]〈3|(2 + 4)|1]

s412 [1 4] [1 2] 〈2 4〉 − 〈1 3〉2 [1 4]

s12 〈2 4〉 −
〈1 3〉 [2 4] 〈3 4〉
〈1 4〉 [1 2] 〈2 4〉 +

〈1 2〉 [2 4]2

[2 3] [3 4] 〈2 4〉

]

+
〈1 3〉 [2 4] 〈1|(2 + 3)|4]

s23 〈1 4〉 [3 4]
− 〈1 3〉 [2 4] 〈3|(1 + 4)|2]

s41 〈1 4〉 [1 2]
− [2 4]2 〈3 4〉 〈2 3〉

s41 〈2 4〉 [1 2]

+ 2i A
(0)
4 (φ†, 1−q̄ , 2+

q , 3−, 4+) , (4.24)
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−iAR
4 (φ, 1−q̄ , 2+

q , 3−, 4+) = A
(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4+) × V R

+
〈1 2〉2 〈3 4〉2

〈1 4〉 〈2 4〉3
[
Ls−1 (s23, s34; s234) + Ls−1 (s41, s12; s412)

]

− 1

2

〈1 2〉2 〈3 4〉2 [2 4]2

〈1 4〉 〈2 4〉
L1

(
−s412
−s12

)

s2
12

+
[2 4] 〈3 4〉 〈1|(2 + 3)|4]2

〈1 4〉 [3 4]

L1

(
−s234
−s23

)

s2
23

−
[
〈1 2〉 〈3 4〉 [2 4]3

[2 3]
+

1

2

〈2 3〉3 〈1|(3 + 4)|2]2

〈1 2〉 〈3 4〉 〈2 4〉

]
L1

(
−s234
−s34

)

s2
34

− 1

2

〈1 4〉 〈2 3〉2 [2 4]2

〈2 4〉




L1

(
−s412
−s41

)

s2
41

−
L1

(
−s234
−s23

)

s2
23


− 〈1 2〉2 〈3 4〉2 [2 4]

〈1 4〉 〈2 4〉2
L0

(
−s412
−s12

)

s12

+
〈2 3〉 [2 4] (2 〈1 2〉 〈3 4〉 + 〈1 4〉 〈2 3〉)

〈2 4〉2
L0

(
−s412
−s41

)

s41
− 〈1 2〉2 〈3 4〉 [2 4]

〈2 4〉2 〈1 4〉 [3 4]
ln
(
−s234
−s23

)

+

[
〈3 4〉 〈1 2〉 [2 4]

〈2 4〉2 [2 3]
+

1

2

〈2 3〉 〈1 3〉2
〈1 2〉 〈2 4〉 〈3 4〉

]
ln
(
−s234
−s34

)
− 1

2

[2 4] 〈3|(1 + 2)|4]〈3|(1 + 4)|2]

s41s412 [1 2]

− 1

2

[2 4]2 〈3 4〉 〈2 3〉
s41 〈2 4〉 [1 2]

− 1

2

〈1 3〉 〈2 3〉2 〈1|(3 + 4)|2]

s34 〈3 4〉 〈1 2〉 〈2 4〉 +
1

2

〈2 3〉 [2 4] 〈1|(3 + 4)|2](s23 + s34)

s34s234 [2 3] 〈2 4〉

+
1

2

[2 4]2 〈1|(2 + 3)|4]

s234 [2 3] [3 4]
− 〈1 2〉 [2 4] 〈3 4〉 〈1|(2 + 3)|4]

s23 〈1 4〉 [3 4] 〈2 4〉 +
〈1 3〉 [2 4]

[2 3] 〈2 4〉 , (4.25)

and

−iAf
4(φ, 1−q̄ , 2+

q , 3−, 4+) = −iA
(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4+)×
[
− 2

3ε

(
µ2

−s12

)ε

− 10

9

]

− 1

3

[
〈1 4〉2 〈3|(1 + 2)|4]3

〈1 2〉 〈3 4〉 +
〈1 2〉2 [2 4]3 〈3 4〉2

〈1 4〉

]
L2

(
−s412
−s12

)

s3
12

− i

3
A

(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4+) ln
(
−s412
−s12

)
+

1

2

〈1 3〉2 [2 4]

s12 〈1 4〉

+
1

6

〈1 3〉 (〈3|1|2]〈3|(1 + 4)|2] − 〈3|4|2]2)

[1 2] 〈3 4〉 〈1 4〉 s412
+

1

6

〈1 3〉3s412

s12 〈1 2〉 〈3 4〉 〈1 4〉 . (4.26)

4.2.3 φq̄gqg

For φq̄gqg, we have the “reflection” relation AR
4 (1q̄, 3, 2q, 4) = AL

4 (1q̄, 4, 2q , 3), so we do not

need to quote AR
4 separately.

Again we take the results for the infrared- and ultraviolet-finite helicity amplitude

– 38 –



φq̄gqg (−+++) from ref. [49]:

−iAL
4 (φ, 1−q̄ , 2+, 3+

q , 4+) =
1

2

[
〈1 3〉 〈1|(3 + 4)|2]

〈2 3〉 〈3 4〉 〈4 1〉 +
〈1 3〉2 [3 4]

〈1 2〉 〈2 3〉 〈3 4〉

]

− 2
〈1|(2 + 3)|4]2

〈1 2〉 〈2 3〉 s123
, (4.27)

Af
4(φ, 1−q̄ , 2+, 3+

q , 4+) = 0. (4.28)

The results for φq̄gqg (−++−) are given by

− iAL
4 (φ, 1−q̄ , 2+, 3+

q , 4−) = −iA
(0)
4 (φ, 1−q̄ , 2+, 3+

q , 4−)

×
{

V L
2 − Ls−1 (s41, s12; s412)− Ls−1 (s23, s34; s234)

}

+
1

2

〈1 3〉2 〈4|(1 + 2)|3]2

〈1 2〉 〈2 3〉
L1

(
−s123
−s12

)

s2
12

− 1

2

〈1 2〉 〈3 4〉2 [2 3]2

〈2 3〉
L1

(
−s234
−s34

)

s2
34

− 2
〈1 4〉 [2 3] 〈3 4〉

〈2 3〉




L0

(
−s123
−s12

)

s12
+

L0

(
−s234
−s34

)

s34




− i

2
A

(0)
4 (φ, 1−q̄ , 2+, 3+

q , 4−) ln
(
−s123
−s12

)
− 1

2

s341 [2 3] [1 3]

[3 4] [1 4] 〈2|(3 + 4)|1]
− 1

2

〈4|(1 + 3)|2]2

s123 [1 2] 〈2 3〉

− 〈1 4〉 [2 3] 〈3 4〉
s12 〈2 3〉 +

1

2

〈1 4〉2 (s13 + s23)

s12 〈1 2〉 〈2 3〉 − 1

2

[2 3] 〈3 4〉 〈2|(1 + 4)|3]

〈2 3〉 [3 4] 〈2|(3 + 4)|1]
, (4.29)

with

V L
2 = − 1

ε2

[(
µ2

−s34

)ε

+

(
µ2

−s41

)ε]
+

13

6ε

(
µ2

−s123

)ε

+
119

18
− δR

6

− Ls2me
−1

(
s412, s123; s12,m

2
H

)
− Ls2me

−1

(
s123, s234; s23,m

2
H

)
, (4.30)

and

Af
4(φ, 1−q̄ , 2+, 3+

q , 4−) = A
(0)
4 (φ, 1−q̄ , 2+, 3+

q , 4−)

[
− 2

3ε

(
µ2

−s123

)ε

− 10

9

]
. (4.31)
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The results for φq̄gqg (−−++) are

− iAL
4 (φ, 1−q̄ , 2−, 3+

q , 4+) = −iA
(0)
4 (φ, 1−q̄ , 2−, 3+

q , 4+)

×
{

V L
3 − Ls−1 (s34, s41; s341)− Ls−1 (s12, s23; s123)

}

− 1

2

〈2 4〉2 〈1|(2 + 3)|4]2

〈3 4〉 〈1 4〉
L1

(
−s234
−s23

)

s2
23

+
1

2

〈2 3〉2 [3 4]2 〈1 4〉
〈3 4〉

L1

(
−s341
−s41

)

s2
41

+ 2
〈1 2〉 〈2 3〉 [3 4]

〈3 4〉




L0

(
−s234
−s23

)

s23
+

L0

(
−s341
−s41

)

s41


− i

2
A

(0)
4 (φ, 1−q̄ , 2−, 3+

q , 4+) ln
(
−s234
−s23

)

− 1

2

〈2|(1 + 3)|4]2

s341 [1 4] 〈3 4〉 +
1

2

s123 [1 3] [3 4]

[1 2] [2 3] 〈4|(2 + 3)|1]
− 1

2

〈1 2〉2 〈2 4〉 (s14 + s24 + s34)

〈1 4〉 〈2 3〉 〈3 4〉 〈4|(1 + 2)|3]

− 1

2

s2
123 〈2 4〉2 [3 4]

s23 〈3 4〉 〈4|(2 + 3)|1]〈4|(1 + 2)|3]
+ 2i A

(0)
4 (φ†, 1−q̄ , 2−, 3+

q , 4+) , (4.32)

with

V L
3 = − 1

ε2

[(
µ2

−s34

)ε

+

(
µ2

−s41

)ε]
− 3

2ε

(
µ2

−s341

)ε

− 7

2
− δR

2

− Ls2me
−1

(
s412, s123; s12,m

2
H

)
− Ls2me

−1

(
s123, s234; s23,m

2
H

)
, (4.33)

and

Af
4(φ, 1−q̄ , 2−, 3+

q , 4+) = 0. (4.34)

Using eqs. (2.9) and (4.7), one can obtain any color or helicity component of the

A(1)
4 (H, 1q̄ , 2q, 3±, 4∓) amplitudes.

4.3 Numerical results

In order to facilitate comparisons with future work, we present here numerical values, at

a single phase-space point, for the bare, unrenormalized primitive amplitudes computed

in the paper. We choose the same kinematic point as in ref. [20], the configuration H →
q̄1q2Q̄3Q4 in which the Higgs (or φ) and parton four-momenta take the values

kφ = (−1.0000000000, 0.00000000000, 0.00000000000, 0.00000000000),

k1 = (0.30674037867,−0.17738694693,−0.01664472021,−0.24969277974),

k2 = (0.34445032281, 0.14635282800,−0.10707762397, 0.29285022975), (4.35)

k3 = (0.22091667641, 0.08911915938, 0.19733901856, 0.04380941793),

k4 = (0.12789262211,−0.05808504045,−0.07361667438,−0.08696686795).

We substitute µ = mH = 1, and use the ’t Hooft-Veltman scheme [86], in which δR = 1

(in accord with ref. [20]). Discussions of the conversion between different dimensional

regularization schemes can be found in refs. [85, 88, 20]. The dependence on δR in our
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φq̄qQ̄Q ε−2 ε−1 ε0

(−++−) lc +0.10641628412 +0.25970964611 +1.94930173285

−0.04813723405 i +0.28524492960 i +0.66145729341 i

(−++−) slc +0.10641628412 +0.47949272770 +0.82337543420

−0.04813723405 i +0.18582640802 i +0.78352094637 i

(−++−) f 0 +0.07094418941 +0.33148585003

−0.03209148937 i +0.11853569045 i

(−+−+) lc −1.88930338066 −1.08479447284 +8.36061276059

−0.26775736353 i −6.20837676158 i −4.87467657230 i

(−+−+) slc −1.88930338066 −4.98679990840 −4.95070751222

−0.26775736353 i −6.76137989415 i −19.34119382028 i

(−+−+) f 0 −1.25953558711 −3.53445587012

−0.17850490902 i −4.53733741427 i

Table 1: Numerical values of φq̄qQ̄Q primitive amplitudes at kinematic point (4.35).

φq̄qgg ε−2 ε−1 ε0

(−++−) L −0.06141673303 +0.37791957375 −0.34558862143

−0.16247914884 i −0.54354042568 i −12.10809400189 i

(−++−) R −0.02047224434 +0.12098146140 +0.89774344141

−0.05415971628 i −0.19438585924 i +5.07992303199 i

(−++−) f 0 −0.01364816290 +0.08454550896

−0.03610647752 i −0.11688473115 i

(−+−+) L −4.75526937444 −43.39451947571 −67.30255141380

+10.54678423393 i +7.81850845690 i −40.68074759818 i

(−+−+) R −1.58508979148 −14.85133091493 −33.50442466808

+3.51559474465 i +3.46337394880 i +5.37244309382 i

(−+−+) f 0 −1.05672652765 −9.74999749954

+2.34372982976 i +1.83728897650 i

Table 2: Numerical values of φq̄qgg primitive amplitudes at kinematic point (4.35).

formulae agrees with the shift in Hq̄qQ̄Q and Hq̄qgg amplitudes between HV and FDH

regularization schemes that is quoted in ref. [20].

In tables 1, 2 and 3 we present numerical values for the unrenormalized primitive

amplitudes computed in the paper. Note that the overall phases are convention-dependent.

Phase-independent quantities can be constructed by dividing by the corresponding tree

amplitude. The tree amplitude is identified as −1/2 of the ε−2 slc entry in table 1, the

negative of the ε−2 R entry in table 2, and −1/2 of the ε−2 L entry in table 3.

In table 4 we give the numerical value of the virtual correction to the color- and

helicity-summed cross section for the Hq̄qQ̄Q process, according to eq. (2.18) but omitting

an overall factor of 2C2cΓg6(N2
c − 1)Nc. The result is constructed from the one-loop
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φq̄gqg ε−2 ε−1 ε0

(−++−) L −0.07267563934 +0.04895177312 −1.94503280260

−0.06793690983 i −0.38207096287 i −4.71626523954 i

(−++−) f 0 −0.02422521311 +0.02361126144

−0.02264563661 i −0.12053858081 i

(−−++) L +23.05418438416 +92.96105880288 +154.70151920223

+0.47135348735 i +74.35776389434 i +298.96823152311 i

(−−++) f 0 0 0

Table 3: Numerical values of φq̄gqg primitive amplitudes at kinematic point (4.35).

Hq̄qQ̄Q cross section ε−2 ε−1 ε0

1 −12.9162958212 −13.1670303819 47.5186460764

1/N2
c 12.9162958212 75.7028593906 172.3194296444

nf/Nc 0 −8.6108638808 −27.9973052106

Table 4: Numerical value of the one-loop correction to the Hq̄qQ̄Q cross section at kinematic

point (4.35), omitting an overall factor of 2C2cΓg6(N2
c − 1)Nc from eq. (2.18).

amplitudes given in this paper and the tree amplitudes (A.4). The dependence on the

number of colors Nc and massless quark flavors nf is shown explicitly. If one substitutes

Nc = 3 and nf = 5, adds the contributions, and multiplies by 1/4 × (N 2
c − 1)Nc, then the

result agrees with that for process A in table I of ref. [20]. (The factor of 1/4 arises because

a factor of A2 ≡ (2C)2 is extracted instead of C2 in ref. [20].)

To convert the bare, unrenormalized amplitudes presented here to renormalized ones

in an MS-type subtraction scheme, one should subtract the quantity

4 g2 cΓ

2ε

[
11

3
Nc −

2

3
nf

]
A(0)

4 (4.36)

from the corresponding one-loop amplitude A(1)
4 in eq. (2.11) or (2.20). After this subtrac-

tion, the rational parts of the 1/ε poles are purely infrared, and take the form of a sum

over contributions from each external parton,

g2

(4π)2
4

[
−3

4

(
Nc −

1

Nc

)]A(0)
4

ε
for φq̄qQ̄Q, (4.37)

g2

(4π)2
2

[
−3

4

(
Nc −

1

Nc

)
− 1

2

(
11

3
Nc −

2

3
nf

)]A(0)
4

ε
for φq̄qgg, (4.38)

in accordance with the general form of infrared singularities of one-loop amplitudes [89].

A final contribution that needs to be included is the one-loop correction to the Hgg

effective operator of eq. (2.1), which shifts its coefficient from C to C× [1+11αs/(4π)] [62].

At the level of the NLO virtual cross section, this effect can be taken into account by an
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addition to eqs. (2.11) and (2.20) of the form

11
g2

(4π)2
A(0)

4 . (4.39)

4.4 Pseudoscalar Higgs amplitudes and cross section for Aq̄qgg

As a byproduct of our calculation of the φ-amplitudes, we can obtain the respective am-

plitudes where the scalar Higgs boson H has been replaced by a pseudoscalar Higgs boson,

A. Pseudoscalar Higgs bosons are present in many extensions of the SM, such as the

MSSM. Here we assume that we are in a kinematic regime where the production of the

A boson plus jets can also be treated in the large mt limit. As mentioned earlier, the

overall constant C is different for the A case [49]. Otherwise, the only difference between

the two computations is that instead of taking the sum of the φ- and φ†- components, the

pseudoscalar amplitudes are given by their difference divided by i, according to eq. (2.8).

Furthermore, we can combine our results with those of Ellis, Giele and Zanderighi

(EGZ) [20], to obtain the color- and helicity-summed cross section for Aq̄qgg. EGZ used a

semi-numerical method to compute the color- and helicity-summed cross section for Hq̄qgg,

which we may write schematically as,

σEGZ =
∑

λ

[
A(0)∗

H (λ)A(1)
H (λ) +A(0)

H (λ)A(1)∗
H (λ)

]
= 2 Re

{∑

λ

[
A(0)∗

H (λ)A(1)
H (λ)

]}
. (4.40)

Here by AH(λ) we denote a Hq̄qgg amplitude in a helicity configuration λ, and the sum

is over all possible helicity configurations. In every summation in this subsection there

is also an implicit sum over colors which is given by eq. (2.23), but for simplicity we do

not write it out here. The helicity sum includes the two independent MHV configurations

(−++−) and (−+−+) analyzed in this paper, and their conjugate ones (obtained by

parity). Moreover, they include configurations (−+−−), (−+++) and their conjugates.

These last configurations require NMHV φ amplitudes, which we did not compute here,

and which would be needed to provide a full analytic description of the one-loop Hq̄qgg

and Aq̄qgg helicity amplitudes. However, we will see that because the contribution of the

latter configurations to the Hq̄qgg cross section is encoded in σEGZ, it is possible to use

this result instead for the purpose of computing the Aq̄qgg cross section.

Note that we can rewrite eq. (4.40) as

σEGZ = 4Re

{∑

λ′

[
A

(0)∗
H (λ′)A

(1)
H (λ′)

]}
, (4.41)

with λ′ now labelling each of the four helicity configurations with fixed helicities for the

antiquark-quark pair, q̄−q+, namely (−+±±). Also, from eq. (4.41) we see that σEGZ

contains the NMHV Hq̄qgg amplitudes in the quantity

σNMHV
EGZ ≡ 4 Re

{
A

(0)∗
H (λ−)A

(1)
H (λ−) + A

(0)∗
H (λ+)A

(1)
H (λ+)

}
⊂ σEGZ, (4.42)
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with λ− ≡ (−+−−) and λ+ ≡ (−+++). We can extract σNMHV
EGZ from eq. (4.41), know-

ing the Hq̄qgg MHV amplitudes inferred from our formulæ (4.16)–(4.34). Hence we will

consider σNMHV
EGZ known from now on, and we will use it in order to compute the color-

and helicity-summed cross section for Aq̄qgg, σA. Similarly to eqs. (4.40) and (4.41), σA

is given by

σA = 2 Re

{∑

λ

[
A

(0)∗
A (λ)A

(1)
A (λ)

]}
= 4 Re

{∑

λ′

[
A

(0)∗
A (λ′)A

(1)
A (λ′)

]}
, (4.43)

with AA(λ) denoting the pseudoscalar Aq̄qgg amplitudes.

Because σA is expressed as a sum over λ′, we focus on the four configurations (−++−),

(−+−+) and (−+−−), (−+++). We can straightforwardly compute the terms coming

from the first two (MHV) configurations using our results from section 4.2 and eq. (2.8),

as mentioned in the beginning of this section. For the last two (NMHV) configurations, we

need to compute the quantity

σNMHV
A ≡ 4Re

{
A

(0)∗
A (λ−)A

(1)
A (λ−) + A

(0)∗
A (λ+)A

(1)
A (λ+)

}
. (4.44)

Let’s look at each amplitude in this expression separately. The tree amplitudes are simple,

because A
(0)
A = (A

(0)
φ − A

(0)

φ† )/i, and A
(0)

φ† (λ−) = A
(0)
φ (λ+) = 0. Therefore, from eqs. (2.7)

and (2.8), we have

A
(0)
A (λ−) =

1

i
A

(0)
φ (λ−) =

1

i
A

(0)
H (λ−) , (4.45)

A
(0)
A (λ+) = −1

i
A

(0)

φ† (λ+) = −1

i
A

(0)
H (λ+) . (4.46)

We choose to express the one-loop amplitudes A
(1)
A (λ−) and A

(1)
A (λ+) using eqs. (2.7)

and (2.8) in the following way

A
(1)
A (λ−) =

1

i

[
A

(1)
φ (λ−)−A

(1)

φ† (λ−)
]

=
1

i

[
A

(1)
H (λ−)− 2A

(1)

φ† (λ−)
]
, (4.47)

A
(1)
A (λ+) =

1

i

[
A

(1)
φ (λ+)−A

(1)

φ† (λ+)
]

=
1

i

[
−A

(1)
H (λ+) + 2A

(1)
φ (λ+)

]
. (4.48)

Substituting eqs. (4.45)–(4.48) into (4.44) we find that

σNMHV
A = 4 Re

{(
1

i
A

(0)
H (λ−)

)∗ 1

i

[
A

(1)
H (λ−)− 2A

(1)

φ† (λ−)
]

+

(
−1

i
A

(0)
H (λ+)

)∗ 1

i

[
−A

(1)
H (λ+) + 2A

(1)
φ (λ+)

]}

= 4 Re
{
A

(0)∗
H (λ−)A

(1)
H (λ−) + A

(0)∗
H (λ+)A

(1)
H (λ+)

}

− 8 Re
{

A
(0)∗
H (λ−)A

(1)

φ† (λ−) + A
(0)∗
H (λ+)A

(1)
φ (λ+)

}

= σNMHV
EGZ − 8 Re

{
A

(0)∗
φ (λ−)A

(1)

φ† (λ−) + A
(0)∗

φ† (λ+)A
(1)
φ (λ+)

}
. (4.49)
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We notice that the first term in (4.49) is given by eq. (4.42), and the second term contains

only tree and finite one-loop helicity amplitudes with φ and φ†. The required NMHV tree

amplitudes (see e.g. refs. [17, 63, 66]) are given in eqs. (A.6), (A.7), (A.9) and (A.10). The

finite one-loop amplitudes are given in eqs. (4.16)–(4.18) and (4.27)–(4.28). Therefore,

we know all the ingredients necessary to obtain the full color- and helicity-summed cross

section for Aq̄qgg, albeit only semi-numerically. Our results of section 4.2 can be used to

convert σEGZ into σA.

4.5 Interference with VBF production

Our amplitudes for Hq̄qQ̄Q can be used to calculate analytically part of the interference

between the qQ → HqQ gluon fusion process and the tree-level vector boson fusion pro-

cesses. Both these processes have the same initial and final states. However, at tree level

one has a color-octet exchange and the other a color-singlet exchange. So there is no inter-

ference at tree level. (For identical quarks, the exchange term does produce an interference,

but it is extremely small [59].) At one loop, however, the color-singlet part of the one-loop

correction to the gluon-fusion Hq̄qQ̄Q amplitude can interfere with the tree-level VBF

amplitude, and we will provide an analytic formula for this contribution. This is only part

of the virtual correction; the other part comes from the interference between the tree-level

gluon fusion and one-loop VBF Hq̄qQ̄Q amplitudes. In addition, there is a real correction.

The sum of all three terms has been computed numerically in refs. [23, 24] and it is quite

small.

We obtain the color-singlet part of Hq̄qQ̄Q from the corresponding φ-amplitude,

A4;s(φ, 1q̄, 2q, 3Q̄, 4Q), using eq. (2.7). From the color decomposition (2.11), contracted

with δ ı̄1
i2

, we see that the color-singlet part is given by

A4;s(φ, 1q̄, 2q, 3Q̄, 4Q) = A4;1(φ, 1q̄ , 2q, 3Q̄, 4Q) + A4;2(φ, 1q̄, 2q, 3Q̄, 4Q). (4.50)

Using eqs. (2.14)–(2.17) we get

A4;s(φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) =

N2
c − 1

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 3+

Q̄
, 4−Q) + Alc

4 (φ, 1−q̄ , 2+
q , 4−

Q̄
, 3+

Q)
]
, (4.51)

A4;s(φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) =
N2

c − 1

N2
c

[
Alc

4 (φ, 1−q̄ , 2+
q , 3−

Q̄
, 4+

Q) + Alc
4 (φ, 1−q̄ , 2+

q , 4+
Q̄

, 3−Q)
]
, (4.52)

in terms of the leading-color primitive amplitude Alc
4 (φ, 1q̄ , 2q, 3Q̄, 4Q). The relevant tree-

level Hq̄qQ̄Q VBF amplitudes involve only ZZ fusion, not WW or WZ; they are given

by

A
(0)
4;VBF(H, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) = 2i
m2

Z

v

〈1 4〉 [2 3]

(s12 −m2
Z)(s34 −m2

Z)
, (4.53)

A
(0)
4;VBF(H, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) = A

(0)
4;VBF(H, 1−q̄ , 2+

q , 4+
Q̄
, 3−Q), (4.54)
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with v the vacuum expectation value of the Higgs field. Finally, the color-singlet virtual

interference between the two processes is

2α2
sN

2
c Re

[
A

∗(0)
4;VBF(H, 1q̄, 2q, 3Q̄, 4Q)A4;s(H, 1q̄, 2q, 3Q̄, 4Q)

]
. (4.55)

Equation (4.55) is to be understood with an implicit summation over all allowed polariza-

tion states of the external quarks. We implemented eq. (4.55) numerically and obtained

agreement [60] with this part of the full interference computed in ref. [23].

4.6 Consistency checks

It is important to verify that the methods and the results presented in this paper yield

the correct answers for the Hq̄qQ̄Q and Hq̄qgg amplitudes. We have used three types of

independent and non-trivial checks on our expressions. They are based on collinear limits

that the amplitudes should satisfy, symmetries under which they should remain invariant,

and numerical comparisons with previously computed expressions. For Hq̄qgg only the

first two types of checks were possible, whereas for Hq̄qQ̄Q all of them were performed,

providing an even more solid check. We have found that our amplitudes agree with all the

checks, and we outline the process further in the remainder of this section.

4.6.1 Collinear behavior

A powerful handle on the correctness of the amplitudes is their collinear behavior. When

two neighboring external legs become collinear, an n-point amplitude has to correctly fac-

torize onto an (n−1)-point amplitude, multiplied by the corresponding splitting amplitude

for the two collinear legs. In the case of one-loop amplitudes, the factorization is onto a

sum of possible factorizations with the loop belonging either to the splitting amplitude, or

to the remaining (n−1)-point amplitude [72]. There is also a sum over the helicity h of the

intermediate state P carrying momentum k2
P ≈ 0. For the φq̄qQ̄Q amplitudes, in the limit

that momenta k1 and k2 become collinear the factorization is onto a φQ̄Qg amplitude,

A
(1)
4 (φ, 1q̄, 2q, 3Q̄, 4Q)

1‖2−→
∑

h=±

[
A

(1)
3 (φ, 3Q̄, 4Q, P h)× Split

(0)
−h(1q̄, 2q; z)

+ A
(0)
3 (φ, 3Q̄, 4Q, P h)× Split

(1)
−h(1q̄, 2q; z)

]
, (4.56)

with kP = k1 + k2, k1 ≈ zkP , and k2 ≈ (1 − z)kP . The splitting amplitudes depend

on the longitudinal momentum fraction z, which is the momentum fraction carried by

leg 1, a real variable with 0 < z < 1. (It is unrelated to the complex variable z used

for the shifts performed in the previous sections.) Replacing φ with H in eq. (4.56), we

get the collinear behavior of the Higgs amplitudes, while the 3 ‖ 4 collinear limit can

be obtained by exchanging q and Q. The 1 ‖ 2 and 3 ‖ 4 limits are the only collinear

limits of A
(1)
4 (φ, 1q̄ , 2q, 3Q̄, 4Q) that exhibit universal singular behavior; there is no splitting

amplitude for quarks of different flavor.
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The extension of eq. (4.56) to the φq̄qgg amplitudes is straightforward. In this case

however, there are additional factorization channels, including channels where a gluon

becomes collinear with an adjacent quark or gluon. For example, for the 2 ‖ 3 and 3 ‖ 4

collinear limits we have

A
(1)
4 (φ, 1q̄, 2q, 3, 4)

2‖3−→
∑

h=±

[
A

(1)
3 (φ, 1q̄, P

h
q , 4)× Split

(0)
−h(2q, 3; z)

+ A
(0)
3 (φ, 1q̄, P

h
q , 4) × Split

(1)
−h(2q, 3; z)

]
, (4.57)

A
(1)
4 (φ, 1q̄, 2q, 3, 4)

3‖4−→
∑

h=±

[
A

(1)
3 (φ, 1q̄, 2q, P

h)× Split
(0)
−h(3, 4; z)

+ A
(0)
3 (φ, 1q̄, 2q, P

h)× Split
(1)
−h(3, 4; z)

]
, (4.58)

and similarly for the Hq̄gqg amplitudes. Eqs. (4.56)–(4.58) apply separately to the primi-

tive amplitude components lc, slc, L, R and f, after extracting the respective pieces of the

one-loop three-parton amplitudes [49] and splitting amplitudes [72].

We have checked that our expressions factorize correctly according to eqs. (4.56)–(4.58)

and their analogues, for all possible non-trivial (singular) collinear limits.

4.6.2 Symmetries

The one-loop amplitudes we computed in this paper are MHV four-point amplitudes, with

an equal number of positive- and negative-helicity external legs. As a consequence, they

have to satisfy certain non-trivial symmetries, that become manifest only after assembling

together all the pieces into a full answer.

The symmetries of the four-quark Hq̄qQ̄Q primitive amplitudes can be summarized in

the following form:

• reflection or quark-exchange symmetry

A
(1)
4 (H, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) = A
(1)
4 (H, 4−q̄ , 3+

q , 2+
Q̄

, 1−Q), (4.59)

A
(1)
4 (H, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) = A

(1)
4 (H, 3−q̄ , 4+

q , 1−
Q̄

, 2+
Q), (4.60)

• parity conjugation symmetry

A
(1)
4 (H, 1−q̄ , 2+

q , 3+
Q̄

, 4−Q) = A
(1)
4 (H, 2−q̄ , 1+

q , 4+
Q̄

, 3−Q)
∣∣∣
〈i j〉↔[j i]

, (4.61)

A
(1)
4 (H, 1−q̄ , 2+

q , 3−
Q̄

, 4+
Q) = A

(1)
4 (H, 2−q̄ , 1+

q , 4−
Q̄

, 3+
Q)
∣∣∣
〈i j〉↔[j i]

. (4.62)

The reflection symmetry properties (4.59)–(4.60) are satisfied by the component φ and φ†

amplitudes as well, whereas the conjugation symmetry (4.61)–(4.62) only holds for the H

amplitudes.
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For the two-quark-two-gluon Hq̄qgg and Hq̄gqg primitive MHV amplitudes, although

there is no reflection symmetry, the following parity conjugation symmetries hold:

• Hq̄qgg conjugation symmetry

A
(1)
4 (H, 1−q̄ , 2+

q , 3+, 4−) = A
(1)
4 (H, 2−q̄ , 1+

q , 4+, 3−)
∣∣∣
〈i j〉↔[j i]

, (4.63)

A
(1)
4 (H, 1−q̄ , 2+

q , 3−, 4+) = A
(1)
4 (H, 2−q̄ , 1+

q , 4−, 3+)
∣∣∣
〈i j〉↔[j i]

, (4.64)

• Hq̄gqg conjugation symmetry

A
(1)
4 (H, 1−q̄ , 2+, 3+

q , 4−) = A
(1)
4 (H, 3−q̄ , 4+, 1+

q , 2−)
∣∣∣
〈i j〉↔[j i]

, (4.65)

A
(1)
4 (H, 1−q̄ , 2−, 3+

q , 4+) = A
(1)
4 (H, 3−q̄ , 4−, 1+

q , 2+)
∣∣∣
〈i j〉↔[j i]

. (4.66)

The fact that the symmetries (4.59)–(4.66) have to be respected provides a non-trivial

check on the amplitudes. Since our computation is done by obtaining separate, in general

non-symmetric, pieces of the amplitude (e.g., the coefficient of a single log in a particular

channel), it is only after putting them all together that the symmetry becomes manifest.

Therefore, it is the combination of many non-symmetric ingredients that gives rise to a

symmetric final answer. An error that spoils the symmetry can be detected by this check.

We have checked that our amplitudes obey all the required symmetries.

4.6.3 Numerical comparison

Ref. [20] computed the virtual cross section for the H → qq̄QQ̄ process to next-to-leading

order accuracy (one-loop diagrams, not counting the top quark loop vertex) using a semi-

numerical approach. They also obtained analytic expressions for the aforementioned cross

section summed over colors and helicities.

Using our color- and helicity-decomposed φ-amplitudes presented in our paper, we have

constructed the same quantity and have compared with their analytical results numerically.

The result at the phase-space point (4.35) was given in table 4, but we have also found

agreement with their analytical formulae for all the randomly-generated phase-space points

that we examined.

5. Conclusions

In this paper we have presented analytic results for the one-loop amplitudes for a Higgs plus

four quarks, and for a Higgs plus two quarks and two opposite-helicity gluons. We have

obtained the cut-containing and rational pieces of the answer separately, using unitarity

for the former and on-shell recursion for the latter. We have also shown in specific exam-

ples how to compute the various ingredients, and presented a way to deal with spurious
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poles without fully eliminating them from the completed-cut terms. Our expressions are

relatively compact and in agreement with various consistency checks as well as previous

results. We believe that they will provide a useful input for faster numerical programs

computing NLO cross sections relevant for the LHC, and will be an important ingredient

for future higher-point calculations. Together with the NMHV Hq̄qgg case, and the re-

maining helicity amplitudes for Hgggg (beyond those already been computed [48, 50, 51])

they provide the one-loop corrections to Higgs plus four partons, and can be used to com-

pute the gluon fusion contribution to the H + 2 jets final state at the LHC, as well as its

interference with the vector boson fusion channel. Further NLO studies will be important

for understanding SM backgrounds, and enhancing the potential for the discovery of new

physics in the upcoming experiments at the LHC.
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A. Tree amplitudes

In this appendix, we record various tree amplitudes entering the main computations and

results.

As mentioned in section 3.4.1, the φq̄q and φ†q̄q amplitudes for massless quarks vanish

by fermion chirality conservation and angular momentum conservation. The φgg and φ†gg

tree amplitudes are given by

A
(0)
2 (φ, 1+, 2+) = A

(0)
2 (φ, 1±, 2∓) = 0 ,

A
(0)
2 (φ, 1−, 2−) = −i 〈1 2〉2 , (A.1)

A
(0)
2 (φ†, 1−, 2−) = A

(0)
2 (φ†, 1±, 2∓) = 0 ,

A
(0)
2 (φ†, 1+, 2+) = −i [1 2]2 .

The φq̄qg and φ†q̄qg amplitudes are

A
(0)
3 (φ, 1−q̄ , 2+

q , 3+) = 0 ,

A
(0)
3 (φ, 1−q̄ , 2+

q , 3−) = −i
〈1 3〉2
〈1 2〉 , (A.2)

A
(0)
3 (φ†, 1−q̄ , 2+

q , 3−) = 0 ,

A
(0)
3 (φ†, 1−q̄ , 2+

q , 3+) = −i
[2 3]2

[1 2]
,
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while the φggg amplitudes are

A
(0)
3 (φ, 1+, 2+, 3+) = A

(0)
3 (φ, 1−, 2+, 3+) = 0 ,

A
(0)
3 (φ, 1−, 2−, 3+) = i

〈1 2〉3
〈2 3〉 〈3 1〉 ,

A
(0)
3 (φ, 1−, 2−, 3−) = −i

(m2
H)2

[1 2] [2 3] [3 1]
, (A.3)

A
(0)
3 (φ†, 1−, 2−, 3−) = A

(0)
3 (φ, 1+, 2−, 3−) = 0 ,

A
(0)
3 (φ†, 1+, 2+, 3−) = −i

[1 2]3

[2 3] [3 1]
,

A
(0)
3 (φ†, 1+, 2+, 3+) = i

(m2
H)2

〈1 2〉 〈2 3〉 〈3 1〉 .

The φq̄qQ̄Q and φ†q̄qQ̄Q tree amplitudes are given by

A
(0)
4 (φ, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q) = −i

〈1 4〉2
〈1 2〉 〈3 4〉 ,

A
(0)
4 (φ, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q) = −A
(0)
4 (φ, 1−q̄ , 2+

q , 4+
Q, 3−

Q̄
) , (A.4)

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+
Q̄
, 4−Q) = −i

[2 3]2

[1 2] [3 4]
,

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3−
Q̄
, 4+

Q) = −A
(0)
4 (φ†, 1−q̄ , 2+

q , 4+
Q̄

, 3−Q) .

For the case of φq̄qgg and φ†q̄qgg we have

A
(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4+) = 0 ,

A
(0)
4 (φ, 1−q̄ , 2+

q , 3+, 4−) = −i
〈1 4〉2 〈2 4〉
〈1 2〉 〈2 3〉 〈3 4〉 ,

A
(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4+) = i
〈1 3〉3

〈1 2〉 〈3 4〉 〈4 1〉 , (A.5)

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3−, 4−) = 0 ,

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+, 4−) = −i
[2 3]2 [1 3]

[1 2] [3 4] [4 1]
,

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3−, 4+) = i
[2 4]3

[1 2] [2 3] [3 4]
,
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and for the NMHV cases,

A
(0)
4 (φ, 1−q̄ , 2+

q , 3−, 4−) = −i
〈3|(1 + 4)|2]2 〈4 1〉

[2 4] s412

[
1

s12
+

1

s41

]

− i
〈4|(1 + 3)|2]2 〈1 3〉

[2 3] s12 s123
+ i

〈1|(3 + 4)|2]2

〈1 2〉 [2 4] [2 3] [3 4]
, (A.6)

A
(0)
4 (φ†, 1−q̄ , 2+

q , 3+, 4+) = −i
〈1|(2 + 3)|4]2 [2 3]

〈1 3〉 s123

[
1

s12
+

1

s23

]

+ i
〈1|(2 + 4)|3]2 [2 4]

〈1 4〉 s12 s412
− i

〈1|(3 + 4)|2]2

[1 2] 〈1 3〉 〈1 4〉 〈3 4〉 . (A.7)

The amplitudes for φq̄gqg and φ†q̄gqg are,

A
(0)
4 (φ, 1−q̄ , 2+, 3+

q , 4−) = −i
〈1 4〉2
〈1 2〉 〈2 3〉 ,

A
(0)
4 (φ, 1−q̄ , 2−, 3+

q , 4+) = −i
〈1 2〉2
〈3 4〉 〈4 1〉 , (A.8)

A
(0)
4 (φ†, 1−q̄ , 2+, 3+

q , 4−) = i
[2 3]2

[3 4] [4 1]
,

A
(0)
4 (φ†, 1−q̄ , 2−, 3+

q , 4+) = i
[3 4]2

[1 2] [2 3]
,

and for the NMHV cases,

A
(0)
4 (φ, 1−q̄ , 2−, 3+

q , 4−) = −i
〈4|(1 + 2)|3]2

[1 2] [2 3] s123
− i
〈2|(1 + 4)|3]2

[3 4] [4 1] s341
, (A.9)

A
(0)
4 (φ†, 1−q̄ , 2+, 3+

q , 4+) = i
〈1|(2 + 3)|4]2

〈1 2〉 〈2 3〉 s123
+ i
〈1|(3 + 4)|2]2

〈3 4〉 〈4 1〉 s341
. (A.10)

Our φq̄qgg and φq̄gqg tree amplitudes, after dividing by i, agree with the ones (implicit)

in refs. [17, 18, 66]. For the φ†q̄qgg and φ†q̄gqg tree amplitudes, after dividing by i, our

amplitudes agree with the ones in refs. [17, 18], but have the opposite sign from those in

ref. [66]. (The relative sign between φ and φ† amplitudes matters in reconstructing the H

amplitudes.) Our φq̄qg . . . g and φ†q̄qg . . . g tree amplitudes are uniformly opposite in sign

to ref. [63].

B. Li and Ls−1 functions and scalar integrals

The definitions for the L0, L1, L2 and Ls−1, Ls2me
−1 functions used in the formulæ presented

above are

L0(r) =
ln r

1− r
, L1(r) =

ln r + 1− r

(1− r)2
, L2(r) =

ln r − (r − 1/r)/2

(1− r)3
, (B.1)

– 51 –



Ls−1

(
s, t; m2

)
= Li2

(
1− s

m2

)
+ Li2

(
1− t

m2

)
+ ln

( −s

−m2

)
ln

( −t

−m2

)
− π2

6
, (B.2)

Ls2me
−1

(
s, t; m2

1,m
2
3

)
= − Li2

(
1− m2

1

s

)
− Li2

(
1− m2

1

t

)
− Li2

(
1− m2

3

s

)

− Li2

(
1− m2

3

t

)
+ Li2

(
1− m2

1m
2
3

st

)
− 1

2
ln2

(−s

−t

)
, (B.3)

with

Li2(x) = −
∫ x

0
dz

ln(1− z)

z
. (B.4)

The one-mass and easy two-mass box integrals are related to the Ls−1 functions by,

I1m
4 (s, t; m2) =

−2i cΓ

st

{
− 1

ε2

[(
µ2

−s

)ε

+

(
µ2

−t

)ε

−
(

µ2

−m2

)ε]

− Ls−1(s, t; m2)

}
, (B.5)

I2me
4 (s, t; m2

1,m
2
3) =

−2i cΓ

st−m2
1m

2
3

{
− 1

ε2

[(
µ2

−s

)ε

+

(
µ2

−t

)ε

−
(

µ2

−m2
1

)ε

−
(

µ2

−m2
3

)ε]

− Ls2me
−1 (s, t; m2

1,m
2
3)

}
. (B.6)

The one-mass and two-mass triangle integrals are related to each other,

I1m
3 (s) =

−icΓ

ε2

1

(−s)

(
µ2

−s

)ε

, (B.7)

I2m
3 (s1, s2) =

−icΓ

ε2

1

(−s1)− (−s2)

[(
µ2

−s1

)ε

−
(

µ2

−s2

)ε]
, (B.8)

and contain terms of the form ln(−si)/ε; hence their coefficients are dictated by the known

infrared poles of the amplitude.

The bubble integral is given by,

I2(s) =
icΓ

ε(1− 2ε)

(
µ2

−s

)ε

, (B.9)

and contains a single logarithm, ln(−s), at order ε0.
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