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Abstract

Gravitational instability of the distribution of stars in a
galaxy is a well-known phenomenon in astrophysics. This
report is an attempt to analyze this phenomenon by apply-
ing standard tools developed in accelerator physics. It is
found that a nonrotating galaxy would become unstable if
its size exceeds a certain limit that depends on its mass den-
sity and its velocity spread.

INTRODUCTION

There are some notable examples in the past when de-
velopments in astrophysics are later found to be connected
to important topics in accelerator physics. The two ma-
jor topics in accelerator physics, nonlinear dynamics and
collective effects, each has its origin traced back to astro-
physics.

On nonlinear dynamics, Poincaré was believed to be the
first to note the behavior of chaos. In 1887, he entered a
contest sponsored by the king of Sweden and Norway, and
the problem was to prove that the solar system as a three-
body system was dynamically stable. He failed to prove it,
but his work won the prize. Poincaré also introduced the
concept of Poincaré section,
which accelerator physicists
use everyday as they try to
describe the turn-by-turn mo-
tion of single-particles in syn-
chrotrons and storage rings.
Indeed, what a beam posi-
tion monitor detects in these
circular accelerators is a spe-
cial case of Poincaré section.
Dynamic aperture and chaotic
motion are also typically ob-
served as Poincaré sections.

Henri Poincaré (1854-
1912)

On collective effects, one notable preview from astro-
physics was the impressive work by Maxwell. In 1857,
Maxwell won the Adams Prize when he proved analyti-
cally that the Saturn ring can not be stable unless it consists
of many small satellites instead of a single solid piece. To-
day, we call this mechanism of Maxwell “negative mass
instability” in accelerator physics.

Following these ground-breaking pioneers, one might
ask if today, after years of evolution, might there be some
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accelerator physics studies that
can be applied to astrophysics
in return. One such attempt is
ventured here. We will try to
apply modern accelerator tech-
niques [1] to the well-known
problem [2] of a gravitational
instability of a galaxy. If this
approach turns out fruitful, a
large arsenal of analysis tools
can potentially be transported
from accelerator physics to
this and other problems in as-
trophysics.

James Clerk Maxwell
(1831-1879)

The fact that there is a gravitational instability is rather
obvious. Consider a uniform distribution of stars in an in-
finite space. As a first picture, let all stars be initially sta-
tionary in space. Now consider a statistical fluctuation of
the star distribution so that there is a slight excess of stars
in a small region of space. This excess of stars generates an
inward gravitational pull on the surrounding stars, yielding
an increase of this excess as the stars begin to move. The
initial small excess therefore grows, leading to an instabil-
ity.

As will be seen later, this instability is counteracted by a
spread in the stars’ initial velocities. This spread of veloc-
ities can be represented by a “temperature” or a “pressure”
of the galaxy. Its net effect is to counteract the gravitational
instability and stabilize the galaxy under favorable condi-
tions. In accelerator physics, this stabilizing mechanism is
attributed to Landau damping.

Consider a distribution of stars in a galaxy described
by a mass-density distribution ρ(~x,~v, t) in the phase space
(~x,~v) at time t. We wish to analyze the stability of this
distribution of stars under the influence of their collective
gravitational force. To simplify the problem, we will use
a flat Euclidean space-time and will consider Newtonian,
nonrelativistic dynamics only. In other words, we ignore
both the special theory and the general theory of relativity.

DISPERSION RELATION
Consider a particular star in the galaxy. The equations of

motion of this star are

~̇x = ~v

~̇v = G

∫
d~v′

∫
d~x′ ρ(~x′, ~v′, t)

~x′ − ~x

|~x′ − ~x|3 (1)

where G is the gravitational constant. These equations do
not depend on the mass of the star under consideration.
Whether it is a star or a dust particle does not matter.
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Following standard treatment in accelerator physics,
evolution of ρ is described by the Vlasov equation [3]

∂ρ

∂t
+

∂ρ

∂~x
·~̇x+

∂ρ

∂~v
·~̇v

=
∂ρ

∂t
+

∂ρ

∂~x
·~v+

∂ρ

∂~v
·G

∫
d~v′

∫
d~x′ρ(~x′, ~v′,t)

~x′ − ~x

|~x′−~x|3
= 0 (2)

To examine the stability of the system, let the galaxy dis-
tribution be given by an unperturbed distribution ρ0 plus
some small perturbation. Let the unperturbed distribution
ρ0 depend only on ~v,

ρ0 = ρ0(~v) (3)

This unperturbed distribution is uniform in the infinite 3-D
space. The function ρ0(~v) is so far unrestricted. On the
other hand, we allow the small perturbation around ρ0 to
depend on t and ~x. For the galaxy to be stable, the deviation
must not grow in time for all possible initial deviations.

We Fourier decompose the perturbation and write

ρ(~x,~v, t) = ρ0(~v) + ∆ρ(~v) e−iωt+i~k·~x (4)

where ~k is the wavenumber vector and ω is the angular fre-
quency of the perturbation. We anticipate that for a given ~k
(real), there will be a specific solution for ω (complex). The
imaginary part of ω is the instability growth rate (growth
rate if Im(ω) > 0, damping rate if Im(ω) < 0). Our job is
to find ω(~k) as a function of ~k. If we find for any ~k that its
corresponding Imω(~k) > 0, the galaxy is unstable.

Substituting Eq.(4) into Eq.(2) and keeping only first or-
der in ∆ρ yield

−i(ω−~v·~k)∆ρ(~v)+G

(∫
d~v′∆ρ(~v′)

)
∂ρ0(~v)

∂~v
·~q(~k) = 0

(5)
where ~q is the Fourier transform of the Newton kernel
~x/|~x|3, and might be called the “graviton propagator” fol-
lowing a terminology in quantum field theory. In fact,

~q(~k) =
4πi

|~k|2
~k (6)

In accelerator physics, the Newton kernel ~x/|~x|3 stands for
the wake function while its Fourier transform ~q stands for
the impedance. A comparison of the languages used in
these different fields looks like Table 1.

Equation (5) can be rewritten as

∆ρ(~v) = −iG

(∫
d~v′∆ρ(~v′)

) ∂ρ0(~v)
∂~v · ~q(~k)

ω − ~v · ~k
(7)

Integrating both sides over ~v and canceling out the common
factor of

∫
d~v′∆ρ(~v′) then gives a dispersion relation that

must be satisfied by ω and ~k,

1 = −iG

∫
d~v

∂ρ0(~v)
∂~v · ~q(~k)

ω − ~v · ~k
(8)

Given ρ0(~v), we solve this dispersion relation for ω as a
function of ~k.

Table 1: Comparison of different languages.

kernel in propagator in
coordinate space momentum space

gravitational
instability

~x
|~x|3

4πi~k

|~k|2

accelerator wakefields impedances

physics W‖(z),W⊥(z) Z‖(ω), Z⊥(ω)

quantum exchange gauge propagators
field theory particles

UNIFORM ISOTROPIC GALAXY
We next consider an unperturbed distribution that de-

pends only on the magnitude of ~v, i.e., let

ρ0 = ρ0(|~v|2) (9)

This is a uniform isotropic (uniform in ~x, isotropic in ~v)
galaxy. Normalization condition is

∫∞
0

4πv2dvρ0(v2) =
ρm = mass density of stars per unit volume.

Substituting Eqs.(6) and (9) into Eq.(8) then gives

1 =
8πG

|~k|2
∫

d~v ρ′0(|~v|2)
~v · ~k

ω − ~v · ~k
(10)

One must refrain from performing the integration over
~v at this time because that integral involves a singularity.
Proper treatment of the singularity follows that of Landau
damping [4], a general phenomenon that occurs in several
branches of physics. The treatment amounts to adding an
infinitesimal positive imaginary part to ω, i.e. ω → ω + iε.
The integral around the singularity,

∫
du

1
u− ω

→
∫

du
1

u− ω − iε

becomes an integration along the contour C1 as in Fig.1(a).
Using complex variable analysis, we know we can de-

form the integration contour from C1 to C2, as shown in

Figure 1: Integration contour dictated by Landau damping
analysis.



Fig.1(b). Around the singularity pole, the contour traces
out a perfect, left-right symmetric, infinitesimally small,
half-circle. The integral then contains two terms, a prin-
cipal value term from integration along the real axis of C2

and a residue term from the contribution of the half-circle:
∫

du
1

u− ω
→ P.V.

(∫
du

1
u− ω

)
− iπ × (residue)

The P.V. is well-defined and has no singularity. Because
of the residue term, the integral, which seems to be real in
first appearance, actually contains an imaginary part! This
is Landau damping mechanism in action.

To be specific, we next take a uniform distribution of ρ0,

ρ0(v2) =
{

3ρm

4πv3
0

if v2 < v2
0

0 otherwise
(11)

This distribution is analogous to the “waterbag model” in
accelerator physics. The quantity v2

0 is related to the “tem-
perature” of the galaxy. The dispersion relation now be-
comes

λ =
1

2 + x ln
∣∣∣x−1
x+1

∣∣∣ + iπxH(1− |x|)
(12)

where

λ =
6πGρm

k2v2
0

and x =
ω

kv0
(13)

In accelerator physics, λ is replaced by the impedance. One
simplification for the gravitational instability is that λ is a
real quantity, while the impedance is complex in general.

STABILITY CONDITION

We next need to compute the instability growth rate, i.e.
Imω as a function of k. The star distribution ρ0(~v) would
be unstable if, for any ~k, its corresponding ω has a posi-
tive imaginary part. We need to compute x as a function
of λ using Eq.(12) in order to obtain ω as a function of k.
Unfortunately Eq.(12) gives λ as a function of x, and its in-
version to give x as a function of λ is difficult. To deal with
this difficulty, we apply another technique of accelerator
physics as follows.

In general x is complex, but at the edge of instability
when the system is barely unstable, x is real. The edge
of instability can therefore be seen by plotting the right-
hand-side of Eq.(12) as x is scanned along the real axis
from −∞ to ∞. Fig.2 shows the result of such a scan.
The horizontal and vertical axes are the real and imaginary
parts of the right-hand-side of Eq.(12) respectively. As x
is scanned from −∞ to ∞, the right-hand-side of Eq.(12)
traces out a cherry-shaped diagram, including the “stem”
of the cherry running from −∞ to 0 along the real axis.
The cherry curve defines the boundary between stable and
unstable regions. If λ, the left-hand-side of Eq.(12), lies
inside this cherry diagram (including the stem), the galaxy

Figure 2: Stability diagram for the galaxy distribution.

distribution is stable. If it lies outside, the galaxy is unsta-
ble. Since λ is necessarily real and positive, the stability
condition therefore reads

λ <
1
2

(14)

Equation (14) indicates that a hot galaxy (high temper-
ature, i.e. large v0) is more stable than a cold one. This
is expected due to the Landau damping mechanism. It also
indicates that the star distribution is most unstable for long-
wavelength perturbations (small k). The threshold wave-
length is given by

xth =
2π

kth
where kth =

√
12πGρm

v0
(15)

Perturbations with wavelength longer than xth are unstable.
One might expect that the galaxy will have a dimension of
the order of xth because if the galaxy had a larger dimen-
sion, it would have broken up due to the instability until it
is reduced to the stable size.

It might be instructive to relate v0 to an internal “pres-
sure” and a “temperature” of the galaxy distribution,

P =
2
3
ρm〈v2〉 =

2
5
ρmv2

0 , T =
m

kB

P

ρm
(16)

where kB is the Boltzmann constant.

INSTABILITY GROWTH RATE
When λ > 1/2, ω will be complex with a positive

imaginary part. The instability growth rate is given by
τ−1 = Im(ω). We need to find τ−1 as a function of k.
To do so, we first scale the variables by

u =
kv0√

6πGρm
, v =

τ−1

√
6πGρm

(17)

and then
1
u2

=
1

2− 2
(

v
u

)
tan−1

(
u
v

) (18)

Fig.3 shows the result.
As seen from Fig.3, the growth rate vanishes (v = 0)

when u =
√

2, corresponding to λ = 1/2, i.e. at the insta-
bility boundary. Figure 3 also shows that instability occurs
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Figure 3: v vs u according to Eq.(18).

fastest for small u, i.e. small k or long-wavelength pertur-
bations. The growth rate at u = 0 has v =

√
2/3, or

(τ−1)max =
√

4πGρm (19)

The result that fastest instability occurs for perturbations
of infinitely long wavelength (k = 0) depends on our as-
sumption of Newtonian dynamics of action-at-a-distance.
Under this assumption, perturbation at one location in-
stantly affects locations infinitely far away. If this assump-
tion is appropriately removed, it is expected that the insta-
bility of long-wavelength perturbations will be weakened.

With the condition λ < 1
2 , stable galaxies must have a

dimension smaller than a critical value, i.e.

galaxy dimension <
2πv0√

12πGρm
(20)

Stability is provided through Landau damping. When the
velocity spread v0 → 0, no galaxies can be stable. Equa-
tions (19) and (20) are our main results. In terms of the
galaxy pressure, stability requires

(galaxy dimention)× ρm <

√
5π

6
P

G
(21)

Figure 4 shows four traces, each is the locus of the sta-
bility contour when x is scanned from −∞ to ∞ while y
is held fixed ( ω

kv0
= x + iy, with y representing a nonzero

growth rate). The four traces correspond, starting with the
inner most one, to y = 0.001, 0.01, 0.1, 0.3. When y = 0,
the trace reproduces Fig.2.

OTHER DISTRIBUTIONS
So far we have assumed a somewhat nonrealistic water-

bag distribution (11) for the galaxy’s temperature. A few
other examples are given below:

Case 1: ρ0(v2) = ρmv0
π2(v2+v2

0)2

Case 2: ρ0(v2) = 3ρmv2
0

4π(v2+v2
0)5/2

Case 3: ρ0(v2) = 4ρmv3
0

π2(v2+v2
0)3

Case 4: ρ0(v2) = ρm

4π
√

2π v3
0
e−v2/2v2

0

Figure 5 shows the stability diagrams for the various
cases. For the galaxy to be stable, the parameter λ must be
small than 3

2 , 3
4 , 1

2 and 3, for cases 1, 2, 3, 4, respectively.
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Figure 4: Contours of constant growth rates.
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Figure 5: Upper: Stability diagrams for galaxy distribu-
tions are plotted in red, blue, green for Cases 1, 2, 3, re-
spectively. Lower: Case 4.

NUMERICAL ESTIMATES AND
DISCUSSIONS

For a numerical application, we take estimates from the
Milky Way [2, 5],

ρm = 2× 10−23 g/cm3, v0 = 200 km/s

Using the result of the water-bag model, we obtain a short-
est growth time of 7×106 years for perturbations with very
long wavelengths. For stability, the galaxy dimension must
be smaller than 14000 light-years, which seems to be con-
sistent with the size of the Milky Way.

It is conceivable that the same analysis can be applied to
the dynamics of galaxies in a galaxy cluster, instead of stars
in a galaxy. In that case, ρ(~x,~v, t) describes the distribution
of galaxies in the galaxy cluster. We might then take

ρm = 10−28 g/cm3, v0 = 1000 km/s



Figure 6: Simulation result of a 1-D nonrotating galaxy
model. (a) Initial phase space distribution of 500 stars, (b)
Final distribution after 2000/2π periods, (c) Plot of galaxy
emittance

√
[(v/ω0A)2 + (z/A)2]/2 as a function of the

step number t/∆t, showing no sign of instability.

We obtain a growth time of 3 × 109 years. The galaxy
cluster dimension should be smaller than 3 × 107 light-
years. These values do not seem to be unreasonable.

We give a few further discussions below [6]:

• The case studied so far is that of a galaxy initially with
infinite size. One direction of extension is to consider
finite galaxies. A 1-D nonrotating galaxy model has
been implemented for this purpose. In this model,
each star is an infinite plane and is allowed to make fi-
nite motion only in the z-dimension. An unperturbed
distribution with finite temperature to balance out the
gravitational pull is found. The temperature turns out
to be sufficient to provide stability to the galaxy by the
Landau damping mechanism. A computer code was
written to simulate the motion of stars in this galaxy.
The result is shown in Fig.6.

• We have also implemented a 2-D rotating model. In
this model, each star is a line mass infinitely long
in z-dimension and free to move in the x- and y-
dimensions. An unperturbed distribution is found
when the rotating centrifugal force exactly balances
the gravitational pull. This rotation requires stars to
have different initial velocities. It turns out that the
corresponding velocity spread is sufficient to stabilize
the galaxy. A simulation of this galaxy is shown in
Fig.7.

• Application can be extended to two colliding galax-
ies, drawing analogy to the two stream instabilities
in accelerator physics. A small accidental ripple in
the density distribution in one galaxy gets imprinted
onto the oncoming galaxy; the perturbation on the sec-

Figure 7: Simulation result of the 2-D rotating galaxy. (a)
Initial distribution of 500 stars in the x-y space, (b) Final
distribution after 1000/2π periods, (c) Plot of galaxy emit-
tance

√
[(x/A)2 + (ẋ/ω0A)2]/2 as a function of the step

number t/∆t, showing no sign of instability.

ond galaxy then enhances the initial ripple on the first
galaxy by gravitational interaction, leading to instabil-
ity.

• Still further extensions might take into account the
special relativity and general relativity to replace
Newtonian gravity. The special theory of relativity
will circumvent the action-at-a-distance problem. To
include general relativity, the Euclidean space-time
metrics will become dependent upon ρ, and the prob-
lem becomes nonlinear.
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