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In this talk, we report on a recent next-to-leading order QCD calculation of the production of
a W boson in association with three jets at hadron colliders. The computation is performed
by combining two programs, BlackHat for the computation of the virtual one-loop matrix
elements and Sherpa for the real emission part. The addition of NLO corrections greatly
reduces the factorization and renormalization scale dependence of the theory prediction for
this process. This result demonstrates the applicability of unitarity-based methods for hadron
collider physics.

1 Introduction

The production of a vector boson in association with jets is an important process at the LHC.
Apart from its interest as a test of QCD, it contributes significantly to the background of many
Standard Model processes (tt̄ production, single top production, and Higgs decay to two vector
bosons) and new physics processes. Successful measurements of these processes require a reliable
theoretical description of the vector boson+ jets processes.

Leading-order QCD predictions for processes with jets suffer from a large dependence on the
renormalization and factorization scales. This problem can be tamed by adding next-to-leading
order (NLO) corrections. Such corrections are composed of two parts. The real corrections to
an n-parton process arise when an additional parton is emitted, in an (n + 1)-parton process.
One-loop n-parton amplitudes generate the virtual part of the NLO correction.

BlackHat 1 is a numerical implementation in C++ of so-called on-shell methods for comput-
ing one-loop amplitudes. The starting point for a one-loop amplitude A with massless propaga-
tors is its general decomposition in terms of scalar integrals,

A =
∑

i

ci
4I

i
4 +

∑

i

ci
3I

i
3 +

∑

i

ci
2I

i
2 + R , (1)

where Ii
2, Ii

3, Ii
4 are scalar bubble, triangle and box integrals. The ‘rational term’ R is a rational

function of spinor products and does not contain any logarithms. The objective of on-shell
methods is to determine the coefficients ci

n of the integrals and R without using Feynman
diagrams. We refer the reader to the literature 2 for more details on these methods.

In our numerical implementation, the coefficients of the integrals are determined using the
analytic approach of Forde 3, which is related to other recent methods 4. The rational term is
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Figure 1: NLO Differential cross section dσ(W → eν+ ≥ n − jets)/dEnth−jet

T
for n = 1, 2 compared with the

measured cross section. The upper panels contain the LO and NLO parton level predictions and the CDF data
points with their statistical and total uncertainties represented by the inner and outer error bars respectively.
The distributions normalized by the NLO prediction are shown in the lower panels. The scale uncertainty of the
different predictions is represented by the shaded grey (NLO) and orange (LO) bands. The dotted black line

represents our leading color approximation.

number of jets CDF LC NLO NLO

1 53.5 ± 5.6 58.3+4.6
−4.6 57.8+4.4

−4.0

2 6.8 ± 1.1 7.81+0.54
−0.91 7.62+0.62

−0.86

3 0.84 ± 0.24 0.908+0.044
−0.142 —

Table 1: Comparison of the total cross sections in pb for W +n jets with Enth-jet
T

> 25 GeV from CDF to
NLO QCD. For 1 and 2 jets the cross sections with and without LC approximation are displayed to show the
quality of the approximation. For the three jets result, only the LC NLO result is currently available, but we
expect a similarly small deviation for the full NLO result. The experimental statistical, systematic and luminosity

uncertainties have been combined for the CDF results.

computed using on-shell recursion relations for one-loop amplitudes 5. Numerical stability of the
implementation is achieved by using high-precision libraries 6 when (and only when) necessary.
This stability has been demonstrated elsewhere 7.

Sherpa 8 is a C++ Monte Carlo event generator. It can compute the real part of the NLO
corrections in an automated way 9 using Catani and Seymour’s dipole subtraction method 10.
In addition, the subtraction term integrated over the unresolved phase space is provided. The
results presented below have been integrated over the relevant phase space using Sherpa.

For the W + 3 jets virtual cross section we used a leading-color (LC) approximation for the
finite part of the virtual amplitude. This approximation amounts to neglecting the terms in the
ratio of the virtual terms to the tree cross section that are suppressed by factors of 1/N2

C (color
suppressed) or Nf/Nc (virtual quark loop). This approximation has been shown to be very good
in the following section for W + 1,2 jets 11, so we expect it to be valid for W + 3 jets. A related,
but different, approximation that includes only a subset of partonic subprocesses has been used
in another computation12 of W + 3 jets. The benefit of our approximation is that the number of
(color ordered) primitive amplitudes to evaluate is significantly reduced. We checked agreement
between the primitive amplitudes we used here and those found in a different calculation 13.

2 W+3 jets at the Tevatron

We compare the NLO prediction for W + 1,2,3 jets with data from the CDF experiment 14 at
the Tevatron. For the analysis we have used the same cuts as in the CDF analysis with the
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Figure 2: The left panel shows the NLO Differential cross section dσ(W → eν+ ≥ 3 − jets)/dE3rd−jet

T
compared

with the measured cross section. Its upper part shows the LO and NLO parton level predictions (within the
LC approximation for the virtual part) and the CDF data points with their statistical and total uncertainties
represented by the inner and outer error bars respectively. The normalized distributions are shown in the lower
part of the left panel. The scale uncertainties are represented by the shaded grey (NLO) and orange (LO) bands.
The right panel shows the scale dependence of the total cross section on the renormalization and factorization

scale µ, taken equal and varied between 1/4 and 4 times the mass of the W boson.

SISCone 15 jet algorithm instead of the JETCLU 16 cone algorithm used by CDF, as the latter
is not infrared safe. We set an event-by-event renormalization and factorization scale according

to µ =
√

m2
W + P 2

T (W ).

In Figure 1 we present the transverse energy distribution of the n-th jet for W + 1,2 jets
jets production. The NLO result agrees with the previously available results from MCFM 17.
The lower part of these plots shows the reduced scale dependence of the NLO prediction. The
dotted black line demonstrates the validity of our LC approximation across the whole ET range.
The plot in Figure 2 shows a good agreement between the NLO prediction (within our LC
approximation) for the ET distribution of the third jet and the experimental data. The second
plot of Figure 2 displays the improvement of the scale dependence of the cross section when
NLO corrections are added. More details on the setup of our analysis can be found elsewhere 11.

3 W+3 jets at the LHC

We repeated the same analysis for the LHC with a center-of-mass energy of 14 TeV. For this
analysis, we chose cuts suggested by the ATLAS and CMS technical design reports: Ee

T > 20

GeV, |ηe| < 2.5, 6ET > 30 GeV, MW
T > 20 GeV, and Ejet

T > 30 GeV. Here the Ei
T s are

transverse energies, 6ET is the missing transverse energy, MW
T the transverse mass of the eν

pair, and η the pseudorapidity. The ET -ordered jets are required to have a rapidity in the range
|η| < 3. We used SISCone 15 with R = 0.4. Figure 3 shows the distributions in the scalar

transverse energy sum HT and in the three-jet mass Mjjj =
√

(kj1 + kj2 + kj3)
2 for W− + 3 jets

at the LHC.
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Figure 3: The NLO prediction for the scalar transverse energy sum HT (left panel) and the three-jet mass Mjjj

(right panel) compared to the LO prediction. The LC approximation has been used for the virtual contribution
to the NLO result. The scale uncertainties are represented by the bands in the lower parts of the plots.
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