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Casher and Susskind have noted that in the light-front description, spontaneous

chiral symmetry breaking in quantum chromodynamics (QCD) is a property of

hadronic wavefunctions and not of the vacuum. Here we show from several physi-

cal perspectives that, because of color confinement, quark and gluon QCD conden-

sates are associated with the internal dynamics of hadrons. We discuss condensates

using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-

Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement

with the Casher and Susskind model and the explicit demonstration of “in-hadron”

condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism

for QCD bound states. These results imply that QCD condensates give zero con-

tribution to the cosmological constant, since all of the gravitational effects of the

in-hadron condensates are already included in the normal contribution from hadron

masses.

I. INTRODUCTION

Hadronic condensates play an important role in quantum chromodynamics. Two impor-

tant examples are 〈q̄q〉 ≡ 〈∑Nc

a=1 q̄aq
a〉 and 〈GµνG

µν〉 ≡ 〈∑N2
c−1

a=1 Ga
µνG

a µν〉, where q is

a light quark (i.e., a quark with current-quark mass small compared with the QCD scale

ΛQCD), Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gscabcA

b
µA

c
ν , a, b, c are color indices, and Nc = 3. (For most

of the paper we focus on QCD at zero temperature and chemical potential, T == µ = 0.)

For QCD with Nf light quarks, the 〈q̄q〉 = 〈q̄
L
q

R
+ q̄

R
q

L
〉 condensate spontaneously breaks
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the global chiral symmetry SU(Nf )L × SU(Nf )R down to the diagonal, vectorial subgroup

SU(NF )diag, where Nf = 2 (or Nf = 3 since s is a moderately light quark). Thus in the usual

description, one identifies 〈q̄q〉 ∼ Λ3
QCD and 〈GµνG

µν〉 ∼ Λ4
QCD, where ΛQCD ' 300 MeV.

These condensates are conventionally considered to be properties of the QCD vacuum and

hence to be constant throughout spacetime. A consequence of the existence of such vacuum

condensates is contributions to the cosmological constant from these condensates that are

1045 times larger than the observed value. If this disagreement were really true, it would be

an extraordinary conflict between experiment and the Standard Model.

A very different perspective on QCD condensates was first presented in a seminal paper

by Casher and Susskind [1] published in 1974. These authors argued that “spontaneous

symmetry breaking must be attributed to the properties of the hadron’s wavefunction and

not to the vacuum” [1]. The Casher-Susskind argument is based on the Weinberg’s infinite-

momentum-frame [5] Hamiltonian formalism of QCD, which is equivalent to light-front (LF)

quantization and Dirac’s front form [6] rather than the usual instant form. Casher and

Susskind also presented a specific model in which spontaneous chiral symmetry breaking

occurs within the confines of the hadron wavefunction due to a phase change supported by

the infinite number of quark and quark pairs in the light-front wavefunction. In fact, the

Regge behavior of hadronic structure functions requires that LF Fock states of hadron have

Fock states with an infinite number of quark and gluon partons [7, 8]. Thus, in contrast

to formal discussions in statistical mechanics, infinite volume is not required for a phase

transition in relativistic quantum field theories.

Spontaneous chiral symmetry breaking in QCD is often analyzed by means of an ap-

proximate solution of the Schwinger-Dyson equation for a massless quark propagator; if the

running coupling αs = g2
s/(4π) exceeds a value of order 1, this yields a nonzero dynamical

(constituent) quark mass Σ [9]. Since in the path integral, Σ is formally a source for the

operator q̄q, one associates Σ 6= 0 with a nonzero quark condensate. However, the Dyson-

Schwinger equation, by itself, does not incorporate confinement and the resultant property

that quarks and gluons have maximum wavelengths [10]; further, it does not actually deter-

mine where this condensate has spatial support or imply that it is a spacetime constant.

In contrast, let us consider a meson consisting of a light quark q bound to a heavy

antiquark, such as a B meson. One can analyze the propagation of the light quark q in the

background field of the heavy b̄ quark. Solving the Dyson-Schwinger equation for the light

quark, one obtains a nonzero dynamical mass and thus a nonzero value of the condensate

〈q̄q〉. But this is not a true vacuum expectation value; instead, it is the matrix element

of the operator q̄q in the background field of the b̄ quark; i.e., one obtains an “in-hadron”

condensate.
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The concept of “in-hadron condensates” was in fact established in a series of pioneering

papers by Roberts et al. [11–13] using the Bethe-Salpeter/Dyson-Schwinger analysis for

bound states in QCD in conjunction with the Banks-Casher relation −〈q̄q〉 = πρ(0), where

ρ(λ) denotes the density of eigenvalues ±iλ of the (antihermitian) Euclidean Dirac operator

[14]. These authors reproduced the usual features of spontaneous chiral symmetry breaking

using hadronic matrix elements of the Bethe-Salpeter eigensolution. For example, the pion

matrix element fπ〈0|ψ̄γ5ψ|π〉 was shown to be finite at mq → 0; it effectively replaces the

usual vacuum chiral condensate.

In this paper we show from several physical perspectives that, because of color confine-

ment, quark and gluon QCD condensates can be regarded as being associated with the

dynamics of hadron wavefunctions, rather than the vacuum itself. Thus we analyze the

condensates 〈q̄q〉 and 〈GµνG
µν〉 and address the question of where they have spatial (and

temporal) support. We argue, in agreement with the original work of Casher and Susskind [1],

that these condensates have spatial support restricted to the interiors of hadrons, as a conse-

quence of the fact that they are due to quark and gluon interactions, and these particles are

confined within hadrons. Higher-order condensates such as 〈(q̄q)2〉, 〈(q̄q)GµνG
µν〉, etc. are

also present, and our discussion implicitly also applies to these [15]. Our analysis includes

consideration of condensed matter analogs, the AdS/CFT correspondence, and the Bethe-

Salpeter/Dyson-Schwinger approach for bound states. Our analysis highlights the difference

between chiral models where mesons are treated as elementary fields, and QCD in which all

hadrons are composite systems. We note that an important consequence of the “in-hadron”

nature of QCD condensates is that QCD gives zero contribution to the cosmological con-

stant, since all of the gravitational effects of the in-hadron condensate are already included

in the normal contribution from hadron masses.

We emphasize the subtlety in characterizing the formal quantity 〈0|O|0〉 in the usual

instant form, where O is a product of quantum field operators, by recalling that one can

render this automatically zero by normal-ordering O. This subtlety is especially delicate in a

confining theory, since the vacuum state in such a theory is not defined relative to the fields in

the Lagrangian, quarks and gluons, but instead relative to the actual physical, color-singlet,

states. In the front form, the analysis is simpler, since the physical vacuum is automatically

trivial, up to zero modes. The light-front method provides a completely consistent formalism

for quantum field theory. For example, it is straightforward to calculate the coupling of

gravitons to physical particles using the light-front formalism; in particular, one can prove

that the anomalous gravitational magnetic moment vanishes, Fock state by Fock state [2], in

agreement with the equivalence principle [3]. Furthermore, the light-front method reproduces

quantum corrections to the gravitational form factors computed in perturbation theory [4].
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II. A CONDENSED MATTER ANALOGY

A formulation of quantum field theory using a Euclidean path-integral (vacuum-to-

vacuum amplitude), Z, provides a precise meaning for 〈O〉 as

〈O〉 = lim
J→0

δ ln Z

δJ
, (2.1)

where J is a source for O. The path integral for QCD, integrated over quark fields and

gauge links using the gauge-invariant lattice discretization exhibits a formal analogy with

the partition function for a statistical mechanical system. In this correspondence, a conden-

sate such as 〈q̄q〉 or 〈GµνG
µν〉 is analogous to an ensemble average in statistical mechanics.

To develop a physical picture of the QCD condensates, we pursue this analogy. In a super-

conductor, the electron-phonon interaction produces a pairing of two electrons with opposite

spins and 3-momenta at the Fermi surface, and, for T < Tc, an associated nonzero Cooper

pair condensate 〈ee〉T [16], (here 〈...〉T means thermal average). Since this condensate has a

phase, the phenomenological Ginzburg-Landau free energy function

F = |∇Φ|2 + c2(Φ
∗Φ) + c4(Φ

∗Φ)2 (2.2)

uses a complex scalar field Φ to represent it. The formal treatment of a phase transition

such as that in a superconductor begins with a partition function calculated for a finite

d-dimensional lattice, and then takes the thermodynamic (infinite-volume) limit. The non-

analytic behavior associated with the superconducting phase transition only occurs in this

infinite-volume limit; for T < Tc, the (infinite-volume) system develops a nonzero value of the

order parameter, namely 〈Φ〉T , in the phenomenological Ginzburg-Landau model, or 〈ee〉T ,

in the microscopic Bardeen-Cooper-Schrieffer theory. In the formal statistical mechanics

context, the minimization of the |∇Φ|2 term implies that the order parameter is a constant

throughout the infinite spatial volume.

However, the infinite-volume limit is an idealization; in reality, superconductivity is ex-

perimentally observed to occur in finite samples of material, such as Sn, Nb, etc., and the

condensate clearly has spatial support only in the volume of these samples. This is evident

from either of two basic properties of a superconducting substance, namely, (i) zero-resistance

flow of electric current, and (ii) the Meissner effect, that

|B(z)| ∼ |B(0)|e−z/λL (2.3)

for a magnetic field B(z) a distance z inside the superconducting sample, where the London

penetration depth λL is given by λ2
L = mec

2/(4πne2), where n = electron concentration;
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both of these properties clearly hold only within the sample. The same statement applies to

other phase transitions such as liquid-gas or ferromagnetic; again, in the formal statistical

mechanics framework, the phase transition and associated symmetry breaking by a nonzero

order parameter at low T occur only in the thermodynamic limit, but experimentally, one

observes the phase transition to occur effectively in a finite volume of matter, and the

order parameter (e.g., magnetization M) has support only in this finite volume, rather than

the infinite volume considered in the formal treatment. Similarly, the Goldstone modes

that result from the spontaneous breaking of a continuous symmetry (e.g., spin waves in a

Heisenberg ferromagnet) are experimentally observed in finite-volume samples. There is, of

course, no conflict between the experimental measurements and the abstract theorems; the

key point is that these samples are large enough for the infinite-volume limit to be a useful

idealization. Finite-size scaling methods that make this connection precise are standard tools

in studies of phase transitions and critical phenomena [17].

There is another important distinction between condensed matter physics and relativistic

quantum field theories. The proton eigenstate in QCD is a summation over Fock states

|P 〉 =
∞∑

n=3

Ψn/P (xi, k⊥i, λi)|n〉 (2.4)

where xi denotes the fraction of the total proton momentum carried by the parton i, k⊥,i

denotes the transverse momentum, λi denotes the helicity, and the summation extends over

states with an unlimited number of gluons and sea quarks and antiquarks. In fact, the Regge

behavior, F2(x,Q2) ∼ ∑
R βRx1−αR , of hadronic structure functions [18] at small x requires

that the hadronic wavefunction has Fock states |n〉 with an infinite number of quark and

gluon partons. For example, Mueller [7] has shown that the BFKL (Balitsky-Fadin-Kuraev-

Lipatov) behavior of the structure functions at x → 0 is a result of the infinite range of

gluonic Fock states. The relation between Fock states of different n is given by an infinite

tower of ladder operators [8]. In the analysis by Casher and Susskind [1], spontaneous

chiral symmetry breaking occurs within the confines of the hadron wavefunction due to a

phase change supported by the infinite number of quark and quark pairs in the light-front

wavefunction. Thus, as noted above, unlike the usual discussion in condensed matter physics,

infinite volume is not required for a phase transition in relativistic quantum field theories.

III. A PICTURE OF QCD CONDENSATES

The condensed-matter physics discussion above helps to motivate our analysis for QCD.

The spatial support for QCD condensates should be where the particles are whose interac-
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tions give rise to them, just as the spatial support of a magnetization M , say, is inside, not

outside, of a piece of iron. The physical origin of the 〈q̄q〉 condensate in QCD can be argued

to be due to the reversal of helicity (chirality) of a massless quark as it moves outward and

reverses its three-momentum at the boundary of a hadron due to confinement [19]. This

argument suggests that the condensate has support only within the spatial extent where the

quark is confined; i.e., the physical size of a hadron. Another way to motivate this is to

note that in the light-front Fock state picture of hadron wavefunctions [1, 20, 21], a valence

quark can flip its chirality when it interacts or interchanges with the sea quarks of multi-

quark Fock states, thus providing a dynamical origin for the quark running mass. In this

description, the 〈q̄q〉 and 〈GµνG
µν〉 condensates are effective quantities which originate from

qq̄ and gluon contributions to the higher Fock state light-front wavefunctions of the hadron

and hence are localized within the hadron. There is a natural relation with the nucleon

sigma term, σπN = (1/2)(mu + md)〈N |q̄q|N〉 (where here the nucleon states are normalized

as 〈N(p′)|N(p)〉 = (2π)3δ3(p−p′)). The in-hadron quark condensate is also connected with

the pion mass according to the Gell-Mann-Oakes-Renner relation [22]

m2
π = −(mu + md)

f 2
π

〈q̄q〉 (3.1)

where the average is taken in the hadronic state rather than the vacuum; using the current-

quark masses mu + md ' 12 MeV, one has |〈q̄q〉|1/3 ' 240 MeV.

IV. CHIRAL SYMMETRY BREAKING IN THE ADS/CFT MODEL

The Anti-De Sitter/conformal field theory (AdS/CFT) correspondence between string

theory in AdS space and CFT’s in physical spacetime has been used to obtain an analytic,

semi-classical model for strongly-coupled QCD which has scale invariance and dimensional

counting at short distances and color confinement at large distances [23]. Color confinement

can be imposed by introducing hard-wall boundary conditions at z = 1/ΛQCD (z = AdS fifth

dimension) or by modification of the AdS metric. This AdS/QCD model gives a good rep-

resentation of the mass spectrum of light-quark mesons and baryons as well as the hadronic

wavefunctions [24]. One can also study the propagation of a scalar field X(z) as a model for

the dynamical running quark mass [24]. The AdS solution has the form [25]

X(z) = a1z + a2z
3 , (4.1)

where a1 is proportional to the current-quark mass. The coefficient a2 scales as Λ3
QCD and is

the analog of 〈q̄q〉; however, since the quark is a color nonsinglet, the propagation of X(z),
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and thus the domain of the quark condensate, is limited to the region of color confinement.

The AdS/QCD picture of effective confined condensates is in agreement with results from

chiral bag models [26], which modify the original MIT bag by coupling a pion field to the

surface of the bag in a chirally invariant manner. Since the effect of a2 depends on z, the

AdS picture is inconsistent with the usual picture of a constant condensate.

V. EMPIRICAL DETERMINATIONS OF THE GLUON CONDENSATE

The renormalization-invariant quantity 〈(αs/π)GµνG
µν〉, where

GµνG
µν = 2

∑
a

(|Ba|2 − |Ea|2)) , (5.1)

can be determined empirically by analyzing vacuum-to-vacuum current correlators con-

strained by data for e+e− → charmonium and hadronic τ decays [27]-[29]. Some recent values

(in GeV4) include 0.006 ± 0.012 [29](a), 0.009 ± 0.007 [29](b), and −0.015 ± 0.008 [29](c).

These values show significant scatter and even differences in sign. These are consistent with

the picture in which the vacuum gluon condensate vanishes; it is confined within hadrons,

rather than extending throughout all of space, as would be true of a vacuum condensate.

VI. SOME OTHER FEATURES OF QCD CONDENSATES

In the picture discussed here, QCD condensates would be considered as contributing

to the masses of the hadrons where they are located. This is clear, since, e.g., a proton

subjected to a constant electric field will accelerate and, since the condensates move with

it, they comprise part of its mass. Similarly, when a hadron decays to a non-hadronic

final state, such as π0 → γγ, the condensates in this hadron contribute their energy to

the final-state photons. Thus, over long times, the dominant regions of support for these

condensates would be within nucleons, since the proton is effectively stable (with lifetime

τp >> τuniv ' 1.4 × 1010 yr.), and the neutron can be stable when bound in a nucleus. In

a process like e+e− → hadrons, the formation of the condensates occurs on the same time

scale as hadronization. In accord with the Heisenberg uncertainty principle, these QCD

condensates also affect virtual processes occurring over times t <∼ 1/ΛQCD.

Moreover, in our picture, condensates 〈q̄q〉 in different hadrons may be chirally rotated

with respect to each other, somewhat analogous to disoriented chiral condensates in heavy-

ion collisions [30]. This picture of condensates can, in principle, be verified by careful lattice

gauge theory measurements. Note that the lattice measurements that have inferred nonzero
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values of 〈q̄q〉 were performed in finite volumes [31], although these were usually considered

as approximations to the infinite-volume limit.

VII. APPLICATION TO OTHER ASYMPTOTICALLY FREE GAUGE

THEORIES

Having discussed QCD, we next consider, as an exercise, how this approach to condensates

would apply to several hypothetical asymptotically free gauge theories. We begin with a

vectorial gauge theory with the gauge group SU(Nc), allowing Nc to be generalized to values

Nc ≥ 3. First, consider a theory of this type with no fermions, so that only 〈GµνG
µν〉 need

be considered. This condensate would then have support within the interior of the glueballs.

Second, consider a theory with Nf = 1 massless or light fermion transforming according to

some nonsinglet representation R of SU(Nc). The 〈q̄q〉 and 〈GµνG
µν〉 condensates in this

theory would have support in the interior of the mesons, baryons, and glueballs (or mass

eigenstates formed from glueballs and mesons). Here, the condensate 〈q̄q〉 does not break

any non-anomalous global chiral symmetry, so there would not be any Nambu-Goldstone

boson (NGB). In both of these theories, the sizes of the mesons, baryons, and glueballs are

' 1/Λ, where Λ is the confinement scale.

We next consider asymptotically free chiral gauge theories (which are free of gauge and

global anomalies) with massless fermions transforming as representations {Ri} of the gauge

group. The properties of strongly coupled theories of this type are not as well understood

as those of vectorial gauge theories [32]-[34]. One possibility is that, as the energy scale

decreases from large values and the associated running coupling g increases, it eventually

becomes large enough to produce a (bilinear) fermion condensate, which thus breaks the

initial gauge symmetry [34]. This is expected to form in the most attractive channel (MAC)

R1 × R2 → Rcond., which maximizes the quantity ∆C2 = C2(R1) + C2(R2) − C2(Rcond.),

where C2(R) is the quadratic Casimir invariant. Depending on the theory, several stages of

self-breaking may occur [34, 35]. Let us consider an explicit model of this type, with gauge

group SU(5) and massless left-handed fermion content consisting of an antisymmetric rank-2

tensor representation, ψij
L , and a conjugate fundamental representation, χi,L. This theory is

asymptotically free and has a formal U(1)ψ ×U(1)χ global chiral symmetry; both U(1)’s are

broken by SU(5) instantons, but the linear combination U(1)′ generated by Q = Qψ − 3Qχ

is preserved. The MAC for condensation is

10× 10 → 5̄ (7.1)
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with ∆C2 = 24/5, and the associated condensate is

〈εijk`nψ
jk T
L Cψ`n

L 〉 , (7.2)

which breaks SU(5) to SU(4). Thus, as the energy scale decreases and the running α =

g2/(4π) grows, at a scale Λ at which α∆C2 ∼ O(1), this condensate is expected to form.

Without loss of generality, we take i = 1, and note

〈ε1jk`nψ
jk T
L Cψ`n

L 〉 ∝ 〈ψ23 T
L Cψ45

L − ψ24 T
L Cψ35

L + ψ25 T
L Cψ34

L 〉 (7.3)

The nine gauge bosons in the coset SU(5)/SU(4) gain masses of order Λ. The six compo-

nents of ψij
L involved in the condensate (7.3) also gain dynamical masses of order Λ. These

components bind to form an SU(4)-singlet meson whose wavefunction is given by the oper-

ator in (7.3). This binding involves the exchange of the various (perturbatively massless)

gauge bosons of SU(4). The condensate (7.3) breaks the global U(1)′, but the would-be

resultant NGB is absorbed by the gauge boson corresponding to the diagonal generator in

SU(5)/SU(4). According to the picture discussed here, the condensate (7.3) would have spa-

tial support in the meson with the same wavefunction. Aside from the SU(4)-singlet χ1,L,

the remaining massless fermion content of the SU(4) theory is vectorial, consisting of a 4,

ψ1j
L , and a 4̄, χj,L, j = 2...4. The formal global flavor symmetry of this effective SU(4) theory

at energy scales below Λ is

U(1)L × U(1)R = U(1)V × U(1)A , (7.4)

and the U(1)A is broken by SU(4) instantons. This low-energy effective field theory is asymp-

totically free, so that at lower energy scales, the coupling α that it inherits from the SU(5) the-

ory continues to increase, and the theory confines and produces the condensate 〈ψ1j T
L Cχj,L〉,

which preserves the gauged SU(4) and global U(1)V . We infer that 〈ψ1j T
L Cχj,L〉 and the

SU(4) gluon condensate 〈GµνG
µν〉 have spatial support in the SU(4)-singlet baryon, meson,

and glueball states of this theory.

Although the present picture associates condensates in a confining gauge theory G with

G-singlet hadrons, these condensates can affect properties of G-singlet particles if they both

couple to a common set of fields. For example, the 〈F̄F 〉 condensate and the corresponding

dynamical mass ΣF of technifermions in a technicolor (TC) theory give rise to the masses

of the (TC-singlet) quarks and leptons via diagrams involving exchanges of virtual extended

technicolor gauge bosons. Our analysis could also be extended to supersymmetric gauge

theories, but we shall not pursue this here.
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VIII. THE CASE OF AN INFRARED-FREE GAUGE THEORY

Our discussion is only intended to apply to asymptotically free gauge theories. However,

we offer some remarks on the situation for a particular infrared-free theory here, namely a

U(1) gauge theory with gauge coupling e and some set of fermions ψi with charges qi. Here

there are several important differences with respect to an asymptotically free non-Abelian

gauge theory. First, while the chiral limit of QCD, i.e., quarks with zero current-quark

masses, is well-defined because of quark confinement, a U(1) theory with massless charged

particles is unstable, owing to the well-known fact that these would give rise to a divergent

Bethe-Heitler pair production cross section. It is therefore necessary to break the chiral

symmetry explicitly with bare fermion mass terms mi. If the running coupling α1 = e2/(4π)

at a given energy scale µ were sufficiently large, α1(µ) >∼ O(1), an approximate solution

to the Schwinger-Dyson equation for the propagator of a fermion ψi with mi << µ would

suggest that this fermion gains a nonzero dynamical mass Σi [9] and hence, presumably,

there would be an associated condensate 〈ψ̄iψi〉 (no sum on i). However, in analyzing SχSB,

it is important to minimize the effects of explicit chiral symmetry breaking due to the bare

masses mi. The infrared-free nature of this theory means that for any given value of α1 at

a scale µ, as one decreases mi/µ to reduce explicit breaking of chiral symmetry, α1(mi) also

decreases, approaching zero as mi/µ → 0. Since α1(mi) should be the relevant coupling to

use in the Schwinger-Dyson equation, it may in fact be impossible to realize a situation in

this theory in which one has small explicit breaking of chiral symmetry and a large enough

value of α1(mi) to induce spontaneous chiral symmetry breaking. A full analysis would

require knowledge of the bound state spectrum of the hypothetical strongly coupled U(1)

theory, but this spectrum is not reliably known.

IX. FINITE TEMPERATURE QCD

So far, we have discussed QCD and other theories at zero temperature (and chemical

potential or equivalently here, baryon density). For QCD in thermal equilibrium at a finite

temperature T , as T increases above the deconfinement temperature Tdec, both the hadrons

and the associated condensates eventually disappear, although experiments at CERN and

BNL-RHIC show that the situation for T >∼ Tdec is more complicated than a weakly coupled

quark-gluon plasma. The picture of the QCD condensates here is especially close to ex-

periment, since, although finite-temperature QCD makes use of the formal thermodynamic,

infinite-volume limit, actual heavy ion experiments and resultant transitions from confined

to deconfined quarks and gluons take place in the finite volume and time interval provided
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by colliding heavy ions. Indeed, one of the models that has been used to analyze such

experiments involves the notion of a color-glass condensate [36].

X. QCD AND THE COSMOLOGICAL CONSTANT

One of the most challenging problems in physics is that of the cosmological constant Λ

(recent reviews include [38]-[40]). This enters in the Einstein gravitational field equations as

[41, 42]

Rµν − 1

2
gµνR− Λgµν = (8πGN)Tµν , (10.1)

where Rµν , R, gµν , Tµν , and GN are the Ricci curvature tensor, the scalar curvature, the

metric tensor, the stress-energy tensor, and Newton’s constant. One defines

ρΛ =
Λ

8πGN

(10.2)

and

ΩΛ =
Λ

3H2
0

=
ρΛ

ρc

, (10.3)

where

ρc =
3H2

0

8πGN

, (10.4)

and H0 = (ȧ/a)0 is the Hubble constant in the present era, with a(t) being the Friedmann-

Robertson-Walker scale parameter [41, 43]. Long before the current period of precision

cosmology, it was known that ΩΛ could not be larger than O(1). In the context of quantum

field theory, this was very difficult to understand, because estimates of the contributions

to ρΛ from (i) vacuum condensates of quark and gluon fields in quantum chromodynamics

(QCD) and the vacuum expectation value of the Higgs field hypothesized in the Standard

Model (SM) to be responsible for electroweak symmetry breaking, and from (ii) zero-point

energies of quantum fields appear to be too large by many orders of magnitude. Observations

of supernovae showed the accelerated expansion of the universe and are consistent with the

hypothesis that this is due to a cosmological constant, ΩΛ ' 0.76 [44–46].

Here, using our observations concerning QCD condensates, we propose a solution to

problem (i) of the contributions by these condensates to ρΛ, which, in the conventional

approach, are much too large [50]. The QCD condensates form at times of order 10−5 sec.

in the early universe, as the temperature T decreases below the confinement-deconfinement

temperature Tdec ' 200 MeV. As noted above, for T << Tdec, in the conventional quantum

field theory view, these condensates are considered to be constants throughout space. If
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one accepts this conventional view, then these condensates would contribute (δρΛ)QCD ∼
Λ4

QCD, so that (δΩΛ)QCD ' 1045. On the contrary, if one accepts the argument that these

condensates (and also higher-order ones such as 〈(q̄q)2〉 and 〈(q̄q)GµνG
µν〉) have spatial

support within hadrons, not extending throughout all of space, then one makes considerable

progress in solving the above problem, since the effect of these condensates on gravity is

already included in the baryon term Ωb in Ωm and, as such, they do not contribute to ΩΛ.

Another excessive type-(i) contribution to ρΛ is conventionally viewed as arising from

the vacuum expectation value of the Standard-Model Higgs field, vEW = 2−1/4G
−1/2
F = 246

GeV, giving (δρΛ)EW ∼ v4
EW and hence (δΩΛ)EW ∼ 1056. Similar numbers are obtained

from Higgs vacuum expectation values in supersymmetric extensions of the Standard Model

(recalling that the supersymmetry breaking scale is expected to be the TeV scale). However,

it is possible that electroweak symmetry breaking is dynamical; for example, it may result

from the formation of a bilinear condensate of fermions F (called technifermions) subject to

an asymptotically free, vectorial, confining gauge interaction, commonly called technicolor

(TC), that gets strong on the TeV scale [52]. In such theories there is no fundamental

Higgs field. Technicolor theories are challenged by, but may be able to survive, constraints

from precision electroweak data. By our arguments above, in a technicolor theory, the

technifermion and technigluon condensates would have spatial support in the technihadrons

and techniglueballs and would contribute to the masses of these states. We stress that,

just as was true for the QCD condensates, these technifermion and technigluon condensates

would not contribute to ρΛ. Hence, if a technicolor-type mechanism should turn out to be

responsible for electroweak symmetry breaking, then there would not be any problem with

a supposedly excessive contribution to ρΛ for a Higgs vacuum expectation value. Indeed,

stable technihadrons in certain technicolor theories may be viable dark-matter candidates

[55].

We next comment briefly on type-(ii) contributions. The formal expression for the energy

density E/V due to zero-point energies of a quantum field corresponding to a particle of

mass m is

E/V =

∫
d3k

(2π)3

ω(k)

2
, (10.5)

where the energy is ω(k) =
√

k2 + m2. However, first, this expression is unsatisfactory, be-

cause it is (quadratically) divergent. In modern particle physics one would tend to regard this

divergence as indicating that one is using an low-energy effective field theory, and one would

impose an ultraviolet cutoff MUV on the momentum integration, reflecting the upper range

of validity of this low-energy theory. Since neither the left- nor right-hand side of eq. (10.5)

is Lorentz-invariant, this cutoff procedure is more dubious than the analogous procedure for

12



Feynman integrals of the form
∫

d4k I(k, p) in quantum field theory, where I(k, p1, ..., pn) is a

Lorentz-invariant integrand function depending on some set of 4-momenta p1, ..., pn. If, nev-

ertheless, one proceeds to use such a cutoff, then, since a mass scale characterizing quantum

gravity (QG) is MPl = G
−1/2
N = 1.2×1019 GeV, one would infer that (δρΛ)QG ∼ M4

Pl/(16π2),

and hence (δΩΛ)QG ∼ 10120. With the various mass scales characterizing the electroweak

symmetry breaking and particle masses in the Standard Model, one similarly would obtain

(δΩΛ)SM ∼ 1056. Given the fact that eq. (10.5) is not Lorentz-invariant, one may well ques-

tion the logic of considering it as a contribution to the Lorentz-invariant quantity ρΛ [56, 57].

Indeed, one could plausibly argue that, as an energy density, it should instead be part of T00

in the energy-momentum tensor Tµν . Phrased in a different way, if one argues that it should

be associated with the Λgµν term, then there must be a negative corresponding zero-point

pressure satisfying p = −ρ, but the source for such a negative pressure is not evident in eq.

(10.5).

The light-front quantization of the Standard Model provides another perspective. In this

case, the Higgs field has the form [58] φ = ω +ϕ where ω is a classical zero mode determined

by minimizing the Yukawa potential V (φ) of the SM Lagrangian, and ϕ is the quantized field

which creates the physical Higgs particle. The coupling of the leptons, quarks, and vector

bosons to the zero mode ω give these particles their masses. The electroweak phenomenology

of the LF-quantized Standard Model is, in fact, identical to the usual formulation [58]. In

contrast to the conventional instant-form approach, the vacuum is trivial in the light-front

formulation [59, 60], and there is no zero-point fluctuation in the light-front theory, since ω

is a classical quantity. Although this eliminates any would-be type-(ii) contributions of zero-

point fluctuations to the cosmological constant, the contribution to the electroweak action

from the Standard Model Yukawa potential V (ω) evaluated at its minimum would, as in the

conventional analysis, yield an excessively large type-(i) contribution (δΩΛ)EW ∼ 1056. Thus

the light-front formulation of the Standard Model based on a fundamental elementary Higgs

field evidently does not solve the problem with type-(i) electroweak contributions to ΩΛ.

However, as we have noted above, theories with dynamical electroweak symmetry breaking,

such as technicolor, are able to solve the problem with type-(i) contributions.

XI. CONCLUDING REMARKS

We have argued from several physical perspectives that, because of color confinement,

quark and gluon QCD condensates are localized within the interiors of hadrons. Our analysis

is in agreement with the Casher and Susskind model and the explicit demonstration of “in-

hadron condensates” by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism
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for QCD bound states. We also discussed this physics using condensed matter analogues,

the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound

states.

In-hadron condensates provide a solution to what has hitherto commonly been regarded

as an excessively large contribution to the cosmological constant by QCD condensates. We

have argued that these condensates do not, in fact, contribute to ΩΛ; instead, they have

spatial support within hadrons and, as such, should really be considered as contributing to

the masses of these hadrons and hence to Ωb. We have also suggested a possible solution to

what would be an excessive contribution to ΩΛ from a hypothetical Higgs vacuum expecta-

tion value; the solution would be applicable if electroweak symmetry breaking occurs via a

technicolor-type mechanism.
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