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Abstract

Microwave instability in the Low Energy Ring of KEKB was studied using a broad-

band impedance model. The model gave excellent descriptions of longitudinal dynamics

for both positive and negative momentum compactions. Moreover, it predicted that the

threshold of microwave instability was a factor of two lower than the machine nominal

operating bunch current. The prediction was confirmed by a measurement using the

Belle detector. Furthermore, we integrated the longitudinal wakefield into the beam-

beam simulation and applied it to study the combined effects in KEKB. As a result,

the beam-beam simulation became truly three-dimensional with emittance growth in

all three dimensions simultaneously as the beam currents increase. In addition, an

observed mystery of asymmetry in the horizontal scan could also be explained by our

simulations.

Submitted to Phys. Rev. ST Accel. Beams

∗Work supported by the Department of Energy under Contract No. DE-AC02-76SF00515.



1 Introduction

Collisions with a horizontal crossing angle have become an important feature
in the design of modern colliders [1, 2, 3, 4], since the success of KEKB [5] in
achieving the record luminosity of 1.7 × 1034cm−2s−1 in e+e− storage rings.
After many years of technological development, two superconducting crab
cavities were successfully installed two years ago into two storage rings in
KEKB to double its luminosity [6]. Although, the crab crossing improves
the specific luminosity at low beam currents, the luminosity so far remains
below the record of peak luminosity achieved without the crab cavities. It
is extremely important for us to understand why. This provided the initial
motivation for our studies.

In this paper, we would like to have an independent assessment of possible
machine performance and to validate or invalidate the previous results of
simulation. Given the duration of the time of our study, we limited ourselves
to studying an idealized collider. As a consequence, our result should be
considered as an upper limit for the machine performance. Given the nature
of this study, we used different methods where possible. For example, rather
than using the Lorentz boost to treat the crossing angle, we used a Lie
transformation with an intuitively geometrical interpretation.

There are several motivations to include the nontrivial longitudinal beam
dynamics into the beam-beam simulation. First, it is well known that an elec-
tron beam lengthens as its intensity increases in the presence of a longitudinal
wakefield either due to the potential-well distortion or the microwave insta-
bility. Second, the bunch length affects several important beam-beam effects
including the hour-glass effect, phase averaging, and the Piwinski angle. At
present, we use a Gaussian with a measured bunch length to approximate
these effects in the simulation. It is clear that, in general, the longitudinal
bunch shape is not a Gaussian, especially at high intensity, and therefore one
has to include the longitudinal wake in the simulation. A particular motiva-
tion for us is that the aysmmetry in the longitudinal distributions may lead
to the other asymmetries observed [7] at KEKB.

In section 2, We will start with an introduction to the longitudinal beam
dynamics including the wakefield and continue with a study of the potential-
well distortion using the Haissinski integral equation. To understand the mi-
crowave instability, we will briefly introduce the particle-in-cell (PIC) method
for simulation and apply the simulations to construct an impedance model
for the storage rings at KEKB. The results of simulations will be compared

2



to various measurements. At the end of section 2, we will introduce a new
method to measure the energy spreads for the colliding beam and compare
the measurement to a prediction of the simulation.

In the second part of this paper, we will introduce several new features in
our beam-beam simulation including a different treatment of crossing angle
and crab cavity. Finally, we will show the results of our simulations and their
comparisons to the measurements.

2 Longitudinal beam dynamics

Let’s consider an electron in a storage ring executing a small synchrotron os-
cillation in a stationary RF bucket. For simplicity, we introduce a normalized
coordinate system, q = z/σz and p = −δ/σδ, where z is the differential posi-
tion relative to the synchronized particle with energy E0, δ = (E − E0)/E0,
and σz and σδ are the standard deviations of position and relative energy
in the equilibrium Gaussian distribution at zero beam current. Here we use
positive q as the forward direction of the beam. It is well known [8] that
the bunch length σz = αcσδ/ωs, where ωs is the angular frequency of the
synchrotron oscillation and α is the momentum compaction factor. The mo-
tion of the electron is that of a simple harmonic oscillator described by the
Hamiltonian, H = 1

2
(q2 + p2), along with independent variable θ = ωst.

In general, the electron also experiences a collective force induced by the
bunch distribution λ(q). Using the notion of an integrated wakefield W (q) [9]
in a single turn, the dynamics can be described by a Hamiltonian

H =
1

2
(q2 + p2) − In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′λ(q′)W (q′′ − q′), (1)

where

In =
reNb

2πνsγσδ

(2)

is the normalized current, which was introduced by Oide and Yokoya [10].
Nb represents the number of electrons in the bunch, νs is the synchrotron
tune, re is the classic radius of electron, and γ = E0/mc2. Here, the bunch
distribution λ(q) has been normalized, namely

∫ ∞
−∞ λ(q)dq = 1.

It is worth noting that the dynamics effect of the wakefield is scaled by the
normalized current In. Its dependence on the parameters in Eq. (2) clearly
shows that we prefer a higher energy, faster synchrotron oscillation, or larger
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relative energy spread to reduce the effects of the wakefield. Although, it
does not explicitly depend on the momentum compaction factor α, for a
negative α < 0, one needs to use a negative normalized current as well,
namely In < 0. Moreover, if W(q) is given in terms of V/pC, one should
convert In from meter to pC/V.

Furthermore, it can be shown that the evolution of beam density distri-
bution Ψ(q, p) is governed by the Vlasov-Fokker-Planck (VFP) equation

∂Ψ

∂θ
− {H, Ψ}PB = 2β

∂

∂p
(pΨ +

∂Ψ

∂p
), (3)

where β = 1/ωsτd and τd is the longitudinal damping time. We use the
subscript PB to indicate the Poisson Bracket. Actually, H is the Hamiltonian
defined in Eq. (1) with the substitution of λ(q) =

∫ ∞
−∞ Ψ(q, p)dp. As a result,

the VFP equation is a nonlinear integral and partial differential equation.
In general, it can only be solved by numerical methods [11]. In fact, it is a
special form of the Fokker-Planck equation since the damping and diffusion
terms on the right-hand side involve only the partial derivatives of p. This
is a consequence of the fact that the synchrotron radiation causes loss and
quantum diffusion only in the energy of the radiating electron not in its time
of flight.

2.1 Haissinski distributions

Historically, it was Haissinski who discovered that the VFP equation (Eq. 3)
has a static solution in form of [12]

Ψ0(q, p) =
1

κ
√

2π
exp(−H0) = λ0(q) exp(−p2

2
)/
√

2π (4)

Here the subscript “0” indicates that the solution does not explicitly depend
on θ or ∂Ψ/∂θ = 0. Since Ψ0 is a function of the Hamiltonian H0 only, it
commutes with H0 in the Poisson Bracket; therefore the right hand side of
the equation vanishes by itself.

On the other hand, Ψ0 is also factorized into a product of a Gaussian
distribution in p and λ0(q), which makes the right hand side of the equation
vanish separately. Using Eq. (1) for H0 and eliminating the dependence of p
in Eq. (4), we find the well-known Haissinski integral equation

λ0(q) = exp[−q2

2
+ In

∫ q

−∞
dq′′

∫ ∞

−∞
dq′λ0(q

′)W (q′′ − q′)]/κ, (5)
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Figure 1: Haissinski distributions at various positron bunch currents in the
Low Energy Ring of KEKB.

where κ is a constant determined by the normalization condition,
∫ ∞
−∞ λ0(q)dq =

1. At zero current, In = 0, so the solution becomes a Gaussian. In general,
this nonlinear integral equation can be solved numerically using Newton’s
iteration starting from the Gaussian distribution. Haissinski solutions, due
to the wakefield of a broadband resonance model (Q = 1, xr = ωrσz/c = 3,
wake amplitude w0 = 5 × 105m−1), are shown in Fig. 1.

In practice, we know that the Haissinski distribution is not just a possi-
ble solution but also the equilibrium distribution of the VFP equation at a
sufficiently low current. Above a threshold of In, the Haissinski distribution
is no longer a stable solution. In the literature, the associated instability is
commonly referred to as the microwave instability.

2.2 Simulation with macro particles

In general, we have to solve the VFP equation numerically. The equation
can be solved [11] using a two-dimensional grid to represent the distribution
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in phase space. Since we need to deal with distributions in six-dimensional
phase space in the beam-beam simulation, we have to introduce macro par-
ticles to represent the phase-space distribution

Ψ(q, p) =
1

Np

Np∑
i=1

δ(q − qi)δ(p − pi), (6)

where qi, pi are the canonical coordinates of the particles so that the evolution
of Ψ(q, p) can be carried out by tracking the particles.
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Figure 2: A comparison between VFP and PIC codes using the impedance of
SLC damping ring [13]. The number of macro particles is chosen to be the
same as the number of grid points in the VFP solver.

For each step of Δθ, we use three integration steps based on the technique
of splitting operators. First, we apply a kick generated by the wakefield W (q)

Δpi = In

∫ ∞

−∞
dq′λ(q′)W (qi − q′)Δθ. (7)

To speed up the calculation, we deposit the charge of every particle onto two
adjacent grid points with a linear weighting to accumulate λ(q) on a one-
dimensional mesh. The integration is replaced by a summation over the grid
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and the kicks on all the grid points are calculated and stored. For the kick
on the particle, we use a linear interpolation of kicks on the two adjacent
grids. In the second step, we simply have a rotation

qi = cos(Δθ)qi + sin(Δθ)pi,

pi = − sin(Δθ)qi + cos(Δθ)pi, (8)

which is a solution of the free harmonic oscillator. In the final step, we apply
the radiation damping and quantum excitation [14]

Δpi = −2βpiΔθ +
√

12βΔθξ(i), (9)

where ξ is a random number generated by a uniform distribution between -1
to 1. As an example shown in Fig. 2, we make a direct comparison between
the VFP solver[11] and our PIC simulation. One can see from the figure
that there is not much difference and both give a good description of the
saw-tooth instability including its periodicity.

2.3 Impedance models

In general, one needs to collect all possible impedance sources, such as bel-
lows, masks, and collimators, and calculate their impedance, and construct
a wakefield W (q) by adding up all contributions in the entire storage ring.
Clearly, this task is very demanding, could take a long time to complete and
often some impedance is left uncounted. Nevertheless, a detailed impedance
model is being built but is yet to be completed.

For the purpose of the beam-beam simulations, we are not so interested
in the detail of impedance sources as much as the effective longitudinal dis-
tributions so that they can be correctly modeled. Therefore, we will take an
alternative and construct a broadband impedance model from the measured
beam profiles at various beam currents. For simplicity, we choose the Q=1
broadband resonance model.

For a broadband impedance model with a parallel LRC circuit, the non-
vanishing wakefield, for q < 0, is given by [9]

W (q) = w0[cos(Aq) + sin(Aq)/
√

4Q2 − 1] exp(xrq/2Q), (10)

where A = xr

√
1 − 1/4Q2 and xr = ωrσz/c. One can easily convert three

dynamical parameters Q, xr, w0 to their engineering counterparts L, R, C by
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Figure 3: Comparisons of bunch profiles of the measurement using a streak
camera and products of the Haissinski distributions and the corresponding
beam currents.

using

L = w0(σz/xrc)
2, (11)

R = Qw0(σz/xrc), (12)

C = 1/w0. (13)

It has been known from previous work by Ieiri and Koiso [15] that both
rings, like many modern storage rings, were rather inductive. By fitting to a
pure inductance impedance model, they found that L = 96 nH in the LER
and L = 104 nH in the HER respectively. These inductances more or less
fix another parameter in the broadband model. However, there is still a
tradeoff between xr and w0 to be made according to Eq. (11). The necessary
information is provided by the measurement of the positron beam profiles
using a streak camera. The data is shown in the plot on the left of Fig. 3.
It is clear that the measured shapes are essentially Gaussians; we have to
choose xr ≥ 2 to avoid a shoulder in the distributions at high currents. In
the plot on the right of Fig. 3, we show the Haissinski distributions times the
beam currents at the corresponding currents.

The final selection of the parameters xr and w0 are actually made using
a compromise between the fitting to the measured bunch lengths shown in
Fig. 4 and the matching to the beam profiles. We settle on the values of
xr = 3 and w0 = 5× 105m−1. The results of the fitting to the measurements
are shown in the plot on the left of Fig. 4. Note that the PIC simulations
are necessary to fit the measured bunch lengths.
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Figure 4: Comparisons of bunch length from measurement, calculation, and
simulation. The figure on the left is for the LER and the right for the HER.

As one can see from the plot for the LER, the simulated distributions
start to deviate from the Haissinski distributions beyond the value 0.5 mA
of the bunch current. According to the theory of microwave instability, the
threshold is Ith = 0.5mA. At the operating current of 1.0 mA, we have a 20%
increase of energy spread in the simulation as shown in Fig 5.

One pleasant surprise is that the impedance model also gives a good
agreement to the measurement when α switches to be negative. Furthermore,
the simulation with negative α shows an unstable and periodically bursting
mode above 0.6 mA, which is consistent with the observation. The threshold
is nearly doubled if we double the value of negative α = −6.66 × 10−4.

Parameter Description LER HER
L (nH) Inductance 116.7 109.1
R (KΩ) Resistance 22.9 12.5
C (fF) Capacitor 0.22 0.69

Table 1: Parameters of the LRC impedance model for both rings.

For the HER, there are no measurements of bunch shapes so we chose
xr = 2 and w0 = 1.6 × 105m−1. The result of the fitting is shown in the
plot on the right of Fig. 4. The parameters of the impedance models are
tabulated in Table 1. The values of the inductances in the table are slightly
higher than those given by Ieiri and Koiso. They are consistent with the
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Figure 5: Normalized energy spread as a function of the bunch current in the
LER of KEKB. It shows that the threshold of microwave instability is about
0.5 mA.

calculated inductance [16] in PEP-II if we scale them with the ratio of their
circumferences. However, they are nearly a factor of four larger than those
given in the KEKB design report [5]. The discrepancy indicates that there
are missing sources of impedance or the coherent synchrotron radiation may
play a role in the longitudinal dynamics when σz = 5mm.

2.4 Υ(2S) and energy spreads

It is well known that there are many narrow Υ(nS) resonances in the BB̄
system. In particular, Υ(2S) has a mass of m2s = 10.02330 ± 0.00031 GeV
and a full width of Γ = 44 ± 7 keV, which is much less than the nominal
energy spreads of σ+

E = 2.54 Mev and σ−
E = 5.34 MeV in the positron and

electron beams respectively. This narrow resonance allows us to extract the
change of the energy spread in the beams.

In a high energy e+e− collider such as KEKB, the total energy Ecm in the
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center-of-mass and the available energy is given by Ecm =
√

4E+E−, where
E+ and E− are the energy of the colliding positron and electron respectively.
To generate the Υ(2S), one needs to set the energies E+

0 and E−
0 of the rings

such that
m2sc

2 =
√

4E+
0 E−

0 , (14)

for the on-momentum particles. Furthermore, for any pair of off-momentum
particles with their energy off by ΔE+ and ΔE−, they should satisfy the
condition

m2sc
2 =

√
4(E+

0 + ΔE+)(E−
0 + ΔE−), (15)

here we have ignored the width of the resonance. Dividing Eq. (14) from
Eq. (15) and then squaring, we obtain

(δ+ + 1)(δ− + 1) = 1, (16)

where δ± = ΔE±/E±
0 . Since δ± << 1, Eq. (16) essentially reduces to

δ+ + δ− = 0. Now, let’s consider two colliding beams with Gaussian en-
ergy distributions

ρ(δ±) = e−(δ±)2/2(σ±
δ

)2/
√

2πσ±
δ , (17)

and calculate a probability of all colliding pairs that can generate the Υ(2S).
One easily sees that the probability is proportional to a double integral

∫ ∞

−∞
dδ+

∫ ∞

−∞
dδ−ρ(δ+)ρ(δ−)δ(δ+ + δ−) =

1
√

2π
√

(σ−
δ )2 + (σ+

δ )2
. (18)

It is clear that smaller energy spreads of the colliding beams generate more
events on the extremely narrow resonance. This result allows us to measure
the energy spread of the beam from the hadron events that are uniquely
associated with the Υ(2S) resonance. Fortunately, KEKB was operated at
this resonance for its physics run and therefore provided us an excellent
opportunity to measure the change of the energy spread as a function of the
beam current in the LER using the Belle detector.

We started the positron beam current at half of its nominal operating
value for the measurement. The corresponding bunch current was 0.5 mA,
which is the predicted threshold of the microwave instability. Further re-
duction of the current was possible but with a significant reduction of the
luminosity. The electron beam current was kept at its nominal value through-
out the experiment. The result of the measurement and the comparison to
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Figure 6: Ratio of hadron events to Bhabha was measured as a function of
positron bunch current using the Belle detector. The data is normalized to
the measured value at 0.5 mA. The result of simulation is plotted according
to Eq. (18) and the energy spreads at zero currents are used for the normal-
ization.

the simulation are shown in Fig. 6. We have excellent agreement. Since
the luminosity changed as we changed the beam current, it is necessary to
take the ratio to the number of the Bhabha events, which has a very weak
dependence on the energies and is proportional to the luminosity. In the
simulation, we used the impedance models tabulated in Table 1. In order to
make the comparison to the measurement, we also used the energy spreads
at zero beam currents listed in Table 3.

3 Treatment of a crossing angle

A common treatment of crossing angle is to use the “Lorentz Boost” intro-
duced by Hirata [17] in the context of the strong-weak approximation and
later by Ohmi [18] in the strong-strong simulation. Here we will introduce a
different method based on Lie operators.
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3.1 Rotation around y axis

Let’s use x, px, y, py, δ, l to denote the canonical coordinates of a charged
particle, where x, y are the transverse displacements, δ is the relative mo-
mentum deviation, and l is the time of flight (in unit of length) relative to
the synchronous particle. To handle colliding beams with a horizontal cross-
ing angle, we need a transformation that rotates the particles in a single slice
(s = 0) to the head-on frame (s∗ = 0) as illustrated in Fig 7. It is clear that
the axis of the rotation is the y axis. It is well known [19] that this transfor-
mation can be generated by the Lie operator: Ry(φ) = exp(: xps : φ), where

ps =
√

(1 + δ)2 − p2
x − p2

y

φ

x

x*

z*

z

s = 0

s*=0

Figure 7: A rotation around y axis presented by a Lie operator.

The explicit transformation can be obtained by solving the Hamiltonian’s
equations with H = −xps and φ as the independent variable. It can be
written as follows,

x∗ =
xps

cos φ(ps − px tanφ)
,

p∗x = px cos φ + ps sin φ,

y∗ = y +
xpy tanφ

(ps − px tanφ)
,

p∗y = py,

δ∗ = δ,

l∗ = l +
x(1 + δ) tanφ

(ps − px tan φ)
. (19)

13



Since it is the exact solution of the Hamiltonian’s equation, it is symplec-
tic. In addition to the rotation operator, we need the horizontal shift operator
Sx(δx) = exp(: px : δx) and the drift operator Dz(δs) = exp(: ps : δs).

3.2 Colliding process

For every collision, the macro particles are assigned to the slices according
to their longitudinal positions. Since the beam distributions are dynamically
evolved during the collision, the sequence of the colliding slices is identical
to the time sequence.

For a given pair of colliding slices at z± = −l±, we need to compute where
the collision actually occurs: s± = (z±− z∓)/2. Since the reference point for
all particles is the interaction point, we first need to transport the particles in
the slices to the actual collision point by the drift operator D±

z (s±) = Dz(s
±)

so that the hourglass and phase-average effects due to a finite bunch length
are properly included in the simulation.

IP φ

-2 s+ sinφ

Z+

Z-

X+

X-

Figure 8: Two colliding slices (colored) at their actual collision point with an
angle 2× φ. The colors also indicate the coordinates at which the transverse
beam-beam forces are calculated.

As illustrated in Fig. 8, in order to transport the particles to the coor-
dinate system where the beam-beam force is computed, we need to perform
three additional transformations. First, we make a rotationR±

y (φ) = Ry(±φ)
to an upright coordinate and then follow up with a transformation to make
a horizontal shift to the side of the opposing beam using the shift operator
S±

x (s±, φ) = Sx(−2s± sin φ). Finally, we make another rotation R±
y (φ).
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Using the particle distributions of the opposing beam at the collision
point, we compute the beam-beam force by solving the two-dimensional Pois-
son equation [20]. The integrated beam-beam kick is applied as

Δp±x = − e

E±
0

∫
slice

E∓
x ds, (20)

Δp±y = − e

E±
0

∫
slice

E∓
y ds (21)

where Ex and Ey are the transverse electric fields and E0 is the energy of
the synchronous particle. Here we have assumed that the particles are ultra-
relativistic and E0 = cp0.

After the beam-beam kick, we reversed the operations to move the par-
ticles back to the interaction point. The whole process can be summarized
as

T ±(s±, φ) · O∓
BB(x±, y±) · T ±(s±, φ)−1, (22)

where
T ±(s±, φ) = D±

z (s±) · R±
y (φ) · S±

x (s±, φ) · R±
y (φ), (23)

and O∓
BB(x±, y±) represents the operator for the beam-beam kick in Eqs.

(20) and (21). Here we use the map convention. Namely, the operator on
the left acts on a function of the canonical coordinates first and the dot
represents the concatenation of the two maps.

The illustration of two colliding slices is a little over simplified because a
particle is likely not to be on any of the slices. For any given particle, we use
a linear interpolation of the forces between two adjacent slices. Please also
note that φ = −11 mrad to match the KEKB configuration and coordinate
conventions if the superscript ± is used to denote positron and electron beams
respectively.

4 Crab cavity

The main effect of a horizontal crab cavity is to tilt the beam in the x-z
plane. It can be described by a Hamiltonian

Hcrab = qcx sin(kRF l), (24)
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where qc = Vc/E0, kRF = 2πfRF /c, and Vc is the voltage of crab cavity. The
kick to a particle is given by

Δpx = −qc sin(kRF l),

Δδ = qckRF x cos(kRF l). (25)

Parameter Description e+ e−

Vc (MV) Crab voltage -0.8755 -1.618
βc (m) beta x at crab cavity 85 130
Ψc phase to IP π/2 π/2

Table 2: Parameters associated with crab cavities in simulation. The RF
frequency fRF = 509 MHz.

Since a single crab cavity is installed in each ring in KEKB, it mainly
generates a wave of “crab dispersion”

ζx = −qckRF

√
βcβx cos(Ψc − μx/2)

2 sin(μx/2)
, (26)

where Ψc is the difference of betatron phase between the observation point
and the crab cavity and μx/2π is the horizontal tune. This formula is used
to set the crab voltage in the simulation to compensate the crossing angle
at the interaction point. Both crab cavities, though in different rings, are
located in the Nikko site in our simulations. The actual circulating direction
of beams are also implemented in the simulation.

The main parameters for crab cavities are tabulated in Table 2. We have
used other parameters such as vertical beta functions at the cavity in our
simulation. Their values are set according to the design. Since they do not
affect the results of the simulation, we do not list them.

5 Beam-beam simulation

To implement the longitudinal wakefield into the beam-beam simulation,
one needs to change the tracking process in the arc. To keep things simple,
we retain everything about the transverse dimensions and only modify the
longitudinal dynamics according to the algorithms outlined in the subsection
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of “simulation with macro particles”. One has to keep in mind that βδ =
σδ/σz, νs is negative, and l = −z in our canonical coordinates and transform
the coordinates between δ, l and q = −l/σz , p = −δ/σδ. For every turn,
we use 22 steps of θ to keep a thousand steps in one period. Finally, since
the longitudinal distribution is not a Gaussian anymore, we adjust the RF
phase to align longitudinally the beams according to their centers calculated
with the Haissinski distributions. Also, the longitudinal positions of the
colliding slices are adjusted according to the average value of the rms for the
two Haissinski distributions at the beginning of the simulation. Usually, we
initialize a Haissinski distribution of the macro particles to start.

In addition to the impedance models and crab parameters, we have a list
of main parameters of KEKB in Table 3 used in our simulation. One major
difference from our previous simulation without longitudinal wake is that the
bunch length is dynamically determined in the equilibrium. That is why we
list only the zero-current bunch length in the table as an input. Since we
always vary the currents with a fixed ratio, the bunch populations in the
table merely define a reference case. For the results shown later, they are the
second highest points in beam currents. The present operating currents are
near to the third highest points, which are 20% lower.

Parameter Description e+ e−

E (Gev) beam energy 3.5 8.0
N (1010) bunch population 8.66 5.05
β∗

x (cm) beta x at the IP 80.0 80.0
β∗

y (mm) beta y at the IP 5.9 5.9
εx (nm-rad) emittance x 18.0 24.0
εy (nm-rad) emittance y 0.18 0.24
νx x tune 45.508 45.515
νy y tune 43.5801 41.5801
νs z tune 0.024 0.022
σz (mm) bunch length (Ib = 0) 4.58 5.22
σδ (10−4) energy spread (Ib = 0) 7.27 6.68
τt (turn) x, y damping time 4000 4000
τs (turn) z damping time 2000 2000

Table 3: The main parameters of KEKB. The ring circumferences C = 3014
meter and the crossing angle is 2x11 mrad.
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5.1 Specific luminosity

For every simulation, we track 14,000 particles for each beam in 10,000
turns to obtain equilibrium distributions of two colliding beams in the six-
dimensional phase space. The luminosity is numerically calculated with the
overlapping integral. Both crab cavities on and off are simulated with various
beam currents using the same parameters and code. The results are shown
in Fig 9 in specific luminosity compared with the measurements. Clearly, the
results reconfirm the previous prediction that the luminosity should be dou-
bled with the crab crossing. But our simulations do not explain why there is
a significant drop of luminosity at higher beam currents. Our results imply
that there is still room for improvement of KEKB. Most likely, the extra
degradation in the measurements is due to the machine errors such as cou-
pling, dispersions, and chromaticity which are not included our simulations.
Since there are too many possibilities for the imperfections, it is beyond our
investigation.
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Figure 9: Comparison of measured and simulated specific luminosity as a
function of the product of bunch currents with/without crab cavities.
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By including the longitudinal wake, our simulations become truly three-
dimensional. As shown in Fig. 10, the bunch indeed lengthens as the beam
intensity increases. As a result, the horizontal beam sizes increase accordingly
because of the crabbing at the interaction point. At the operating current,
the horizontal beam sizes of the two beams are well matched at 130 microns.
In the vertical plane, both beams are equally around 1 micron in size but
increase significantly above the operating currents, generating long tails as
shown in Fig. 11. The long tails could cause poor beam-beam lifetimes.
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Figure 10: Beam sizes in all three dimensions of colliding beams as a function
of its current increased with a fixed ratio to the other.

Another feature of the longitudinal dynamics is the potential-well dis-
tortion described by the Haissinski distribution. Indeed, the longitudinal
distribution of the electron beam in its equilibrium as shown in Fig 11 is
asymmetric and matches its Haissinski distribution. This is a confirmation
that the longitudinal wake has been implemented in the beam-beam pro-
gram correctly since we know the threshold of microwave instability in HER
is well above 1.0 mA. On the other hand, the distribution of the positron
beam at 1.38 mA deviates from its initial Haissinski solution, which is also

19



expected because the current is well above the threshold as we discussed in
the previous section.

−1000 −500 0 500 1000
0

0.05

0.1

x(μm)
−1000 −500 0 500 1000

0

0.05

0.1

x(μm)

−10 −5 0 5 10
0

0.1

y(μm)
−10 −5 0 5 10
0

0.1

y(μm)

−50 0 50
0

0.05

0.1

z(mm)
−50 0 50
0

0.05

0.1

z(mm)

Figure 11: Equilibrium distributions of colliding bunches at 1.38mA/0.80mA.
Left columns are positron bunch and right for electron bunch.

5.2 Horizontal scan

It was a well known mystery [21] that there was an asymmetry when the hor-
izontal beam-beam scan was performed. The asymmetry became somewhat
smaller after the crab cavities were installed in the rings. To understand this,
we made simulations with horizontal offsets of the electron beam. When the
crab cavities were turned off, we saw an asymmetry in luminosity and the
vertical beam size of the positron beam as shown in Fig 12, while the ver-
tical size of the electron barely changed. The measurement was carried out
in the year of 2004 when the KEKB was operated without the crab cavities.
Aside from a few differences of the lattices, the bunch currents in the mea-
surement was 0.93mA/0.73mA, compared to the values 1.38mA/0.80mA in
the simulation. As a result, some deviations are expected. Because of the
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differences in the bunch currents, we adjusted the scales in the figure for a
better comparison.
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Figure 12: Comparison of the simulation with a typical measurement at high
beam currents. The figure on the left is the bunch luminosity and the right
the vertical size of the positron beam at the IP.

When the crab cavities are on, the asymmetry is significantly reduced to
a negligible level. Clearly, the asymmetry originated from the difference of
longitudinal distributions between positron and electron beams. As shown
in Fig 11, the crossing angle collision merely projected it into the horizontal
plane. Since the crab crossing makes an effective head-on collision, the asym-
metry disappears. We believe that on and off observations of the asymmetry
are a reflection of machine imperfections.

6 Conclusion

Our study of the microwave instability was remarkably successful. We have
shown that the simple broadband impedance models enabled us to explain
many measurements and observations including the bunch shortening and
lengthening, the shapes of beam profiles at various beam currents, and the
thresholds of microwave instability and the bursting modes. Most important,
its prediction of the growth of the energy spread was confirmed by the mea-
surement using the particle detector Belle. The success can be attributed
to several progresses we have made. First, we developed a PIC code and
demonstrated that it can achieve the same accuracy provided by the VFP
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solver. Second, we found that it is critical to use the results of the simu-
lation to fit the measured bunch length because the microwave instability
contributes additional lengthening to the Haissinski solutions. Finally, we
learned that shapes of the distributions were essential to narrow down the
type of impedances.

Using a completely different method of simulation including the longitu-
dinal wakefield, we reconfirm the main results by Ohmi who predicted that
crab cavities would lead to an increase of luminosity by a factor of two.
However, the luminosity of our simulation should be considered as an upper
bound of the achievable value since the machine errors are not included in
the simulation. The fact that the actual luminosity is significantly less than
the predicted value shows a lack of understanding of the beam-beam limit.
Our study indicates that the beam-beam limit may well be determined by
the machine imperfections, most likely from the linear optics and stability of
the storage rings.

Longitudinal impedances are successfully implemented and integrated
into the beam-beam simulation. The simulation becomes truly three dimen-
sional. The potential-well distortion and bunch lengthening are included.
When the crossing angle is not compensated, we have shown that the asym-
metry in the horizontal beam-beam scan is a result of the asymmetry in the
longitudinal distributions.

In general, one should not simply fit the measured bunch profiles to
Haissinski distributions because the microwave instability could enlarge the
bunch further at higher currents as we have seen in the LER. We believe that
at the operating current of 1.0 mA, the positron beam at KEKB is above the
threshold of microwave instability. As a result, its energy spread increases
about 20%, which may enhance the efforts of synch-betatron resonances.

Although the microwave instability does not cause any intrinsic emittance
growth in the transverse dimensions, it does lead to larger effective beam sizes
when dispersion and crab dispersion are present. This effect could lead to
larger vertical beam sizes at the interaction point and therefore degrade the
luminosity.
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