
SPEAR s SPEAR SPEA

SLAC-PUB-13563 May 2009

August 1987

Stanford Synchrotron Radiation Laboratory, SSRL

Stanford University, Stanford, California 94305

3 GeV BOOSTER SYNCHROTRON for SPEAR

Conceptual Design Report

August 1987

Stanford Synchrotron Radiation Laboratory, SSRL
Stanford University, Stanford, California 94305
Prepared for U.S. Department of Energy under Contract # DE - AC03 - 82 ER 13000

CONTENTS

1.	INTRODUCTION	. 1
	1.1 Overview 1.2 Rational for a Dedicated Synchrotron Booster Injector 1.3 Review Process for the Injector 1.4 R & D Effort for this Injector	. 6 . 9
2.	GENERAL DESCRIPTION OF INJECTOR AND PARAMETERS	12
	2.1 Performance Goals	14
3.	CONCEPTUAL DESIGN OF INJECTOR SYSTEM	17
	3.1 Lattice Design and Beam Characteristics 3.2 Technical Components 3.2.1 Preaccelerator Linac 3.2.2 Magnet System 3.2.3 Acceleration System 3.2.4 Vacuum System 3.2.5 Instrumentation and Controls 3.2.6 Injection and Ejection 3.2.7 Utilities 3.3 Shielding and Support Buildings 3.4 Safety	27 27 35 48 51 54 57 58 60
	APPENDIX	64

1 Introduction

1.1 Overview

Synchrotron light can be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material sciences, biology and medicine.

The first SLAC storage ring enhanced for synchrotron radiation research was the SPEAR ring. This development began in 1972, with the first beam line becoming operational in mid-1974. SPEAR has a 234 meter circumference and operates at energies up to 3.5 GeV with currents up to 100 milliamps. The storage ring can accommodate 16 insertion device beam lines (not including all bending magnet beam line possibilities) without interference with a high physics energy experiment operating in the ring's West Pit. Additional beam lines can be implemented upon the completion of the high energy physics program.

Although SPEAR's emittance, 460 nm-rad at 3 GeV, for the regular mode of operation is larger than those of the most modern synchrotron radiation sources, a low emittance configuration, with a design emittance of 130 nm-rad, was tested in 1984. The existing SPEAR injection system, however, makes its utilization on a day-to-day basis difficult because of limitations in the present injection configuration. Modifications of the injection system are described in this Conceptual Design Report.

At present, SSRL operates 21 experimental stations on nine beam lines on the SPEAR storage ring. In the next two years, one more beam line (X)

and one station will be added to SPEAR. A layout of the SPEAR facilities is shown in Figure 1. The experimental stations of SSRL are used by more than 500 scientists from 99 different institutions in 32 states and 11 foreign countries. These institutions include 51 universities, 15 private corporations and 12 government laboratories.

Particle beams usually circulate in the ultrahigh vacuum environment of a storage ring for several hours. After the beam current has decayed to a low value new particles are injected from a separate accelerator referred to as the injection system.

Injection of particles into the SPEAR storage ring has been traditionally performed from the existing 2 mile linear accelerator at the SLAC. This injector has been specified and designed for very high particle energies and is too big an injector for a 3 GeV storage ring. To obtain reasonable injection efficiencies it is necessary to accelerate the particles in the linear accelerator to about 10 to 15 GeV and then decelerate them again to the low injection energy of 2.3 GeV. This sequence of acceleration and deceleration is necessary to assure that a significant amount of particles survive the electromagnetic interaction with the accelerator sections while traveling over 2 miles during acceleration. As a result of this complicated acceleration process it has been difficult to run the injector in a reproducible way and injection into SPEAR has been less reliable than is desirable or readily achievable.

This situation is expected to get aggravated in the SLC phase of operation which started in fall of 1986. In this mode of operation intense bunches of positrons and electrons are accelerated in the SLAC linear accelerator to energies up to about 50 GeV. After acceleration they are guided through two transport lines, one for the positron bunch and one for the electron bunch, which after 1400 m aim at each other. At that point both the electron and the positron bunches collide and produce the high energy reactions to be studied by the high energy physics community. During this mode of operation of the linear accelerator low energy injection into SPEAR is highly interruptive for the high energy physics program and as a consequence, only two SPEAR fills per day are planned to be available. With this schedule still the high energy physics program is interrupted for 2 hours every 12

Fig. 1: Layout of the SSRL Facilities at SPEAR

hours. The running costs of the linac during these two hours are very high for SSRL since the linac must be kept operating at full power so as not to change the delicate thermal balance in the accelerating sections for SLC operation.

This schedule greatly limits the synchrotron radiation experimental program at SSRL. To keep SPEAR operating at a high performance level and develop improvements, machine physics shifts must be available. For such machine developments it is crucial that on-demand injection be available. In the SLC era, however, this is not the case and if the beam is lost during machine physics the efforts are stopped until the next 12 hourly scheduled injection. This makes machine physics experimentation and scheduling extremely inefficient.

The nature of this interruption comes from the required precision control of the SLC beams at 50 GeV. To accelerate the very high intensity beams during SLC operation many strong quadrupoles are required along the linear accelerator to prevent a beam break-up. These quadrupoles are much too strong to allow the passage of a 2 to 3 GeV beam for SPEAR and, therefore, must be turned off. While this is not a problem for SPEAR injection, it takes considerable time to recover from SPEAR injection back to SLC operation. This is because it generally is difficult to reproduce exact beam conditions after magnet strengths have been changed. Recovery from machine physics runs at PEP as well as at SPEAR traditionally have been difficult because of this reason. A change in the injection energy at SPEAR and at PEP is therefore done very rarely. A change in the injection energy requires at least several hours to be set up. For the SLC to obtain beam collision again after a SPEAR injection, the position of the electron as well as the positron beam must be reproduced at the end of the 2 mile linac to 0.1 mm and an angle of 1 microradian.

Consequently, dedicated injector for SPEAR appears to be the proper facility to both preserve the goals of the high energy physics community with the SLC and to assure the availability of photons for the synchrotron radiation user community. In addition such a dedicated injector can be optimized for SPEAR injection alone and therefore can provide greatly improved injection conditions. Since the operating costs of this injector

will be much less than those for the 2 mile SLAC accelerator, SSRL should be able to provide synchrotron radiation for a much larger fraction of the year than it can now.

In this Conceptual Design Report, CDR, an injection system which would allow the accumulation of electrons into SPEAR at an operating energy of up to 3.0 GeV is described. To obtain optimum performance of a storage ring dedicated to the production of synchrotron radiation a full energy particle injector is highly desirable. That is, means the particles are injected into the storage ring at the operating energy. The feature of full energy injection provides several advantages. All storage ring components are left in their running conditions during injection since it is not necessary to change the storage ring energy from the operating energy to the injection energy. If the injection energy were different from the operating energy the excitation of the ring magnets would have to be changed for injection and a special magnet training routine must be followed to establish the desired magnetic fields again in the presence of hysteretic effects. For a large number of experiments it is very critical, however, to keep the photon beam as stable as possible over a long period of time which is very difficult to achieve when magnetic fields in the storage ring must be changed. In case of a full energy injection the photon beam steering is done once and will stay adjusted over many shifts.

For economic reasons often an injection energy lower than the operating energy of the storage ring is chosen. In case of a full energy injector, however, higher beam currents can be stored in the storage ring than would be possible at lower energies. All known instabilities allow higher storage ring beam currents to be reached as the beam energy is increased. Moreover, since magnet field training is not necessary the remaining beam current from the previous fill is not lost, the time for beam injection is reduced and the efficiency of the storage ring for the production of synchrotron radiation is significantly enhanced.

1.2 Rational for a Dedicated Synchrotron Booster Injector

To obtain full energy injection different types of injectors can be utilized. In particular, a linear accelerator as well as a booster synchrotron can serve as such a full energy injector. In this proposal a booster synchrotron is proposed in order to take advantage of several favorable features with respect to a full energy linear accelerator. To achieve a beam energy of one GeV or higher a booster synchrotron can be constructed at a significantly lower cost than a linear accelerator.

With present day technology a 3 GeV linear accelerator would require at least 30 accelerating sections, each 10 feet long, and one 100 MW klystron for each of these sections. This type of klystron has been developed at SLAC for the SLC project and is not available yet from industry. With 35 MW klystrons, which are available from industry, the linac would require 51 stations to reach 3 GeV. The length of such linacs would be 120 m or 190 m respectively and thereby longer than the circumference of the proposed booster synchrotron. The space available next to SPEAR would not allow the placement of such linacs. The costs for such linacs has been estimated to be more than twice the cost of the equivalent components in a booster synchrotron. In addition the operating and maintenance costs are significantly higher for a linear accelerator than for a booster synchrotron. Assuming a 20,000 hour lifetime on average for each klystron and a running time of 5,000 hours per year, 7.5 klystrons must be replaced every year at a cost of more than \$400K. In contrast the proposed booster involves only four klystrons, three lower power linac klystrons and one DC klystron for the synchrotron itself.

For these reasons it has been decided to propose a 3 GeV booster synchrotron as a dedicated injector into SPEAR. Such a booster fits well in the space available next to SPEAR (Figure 2).

The technology involved in the construction of a synchrotron is similar to that of the storage ring and therefore the operation and maintenance of both rings is simplified which enhances its reliability. Of course, in the case of a synchrotron, a preinjector in the form of a small linear accelerator or microtron is needed. In this proposal a three section linac is assumed

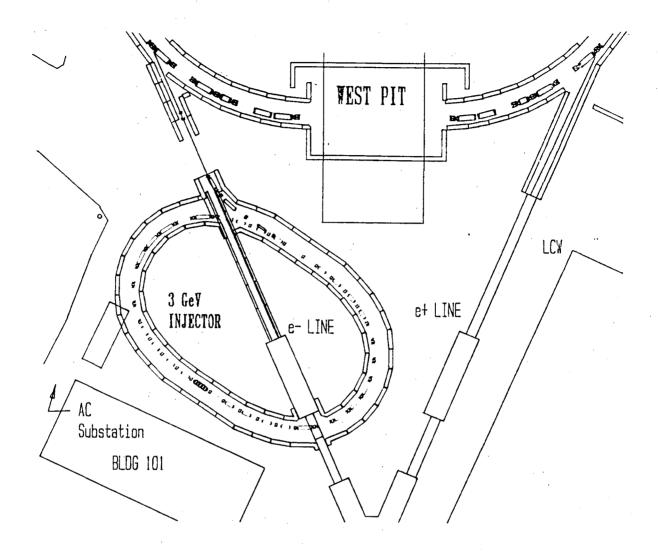


Fig. 2: General Layout of the Injector - SPEAR Complex

which is much easier to operate and maintain. The beam characteristics for a preinjector linac to inject into a booster synchrotron are very much relaxed compared to injection into a low emittance storage ring.

In a linac/synchrotron injection system full energy injection is assured virtually at all times. If a full-energy linear accelerator is used, a loss of any klystron reduces the energy of the linac and therefore the injection

energy into the storage ring is reduced until this klystron is replaced. In the proposed scheme the loss of one linac klystron would only reduce the injection energy into the synchrotron from the preinjector which, however, has no effect on the ultimate energy the synchrotron can reach. The only detrimental effect would be some increase in the storage ring injection time since the synchrotron probably would no longer be able any more the same beam current at the reduced preinjector energy. The operating parameters of the storage ring, however, need not be altered.

Of course, the loss of the synchrotron klystron would prohibit any further acceleration and injection. In this proposal we have therefore assumed that the RF system be the same as for the storage ring so that RF components and spares can be shared.

In addition to these operational and maintenance considerations it should be noted that injection into a booster synchrotron from a linear accelerator is much easier than direct injection from a linac into a low emittance storage ring. This is because a much simpler solution for the focusing lattice in the booster synchrotron can be chosen. The beam in such a lattice does not require the tight magnet field and alignment tolerances of a storage ring and allows for a larger physical and dynamic aperture. This significantly reduces the quality of the beam required from the linac preaccelerator and makes the operation of the short preinjector system relatively easy.

On the other hand, for injection into a high brilliance storage ring with limited aperture the injection system must provide a beam of high quality. Beam parameters like beam energy, beam size, and energy spread must be closely controlled for successful injection. This requires a powerful control system if direct injection from a high energy linac is desired. In a synchrotron the beam size and energy spread are determined by the design of the lattice and are therefore well known while the beam energy itself is well defined and controlled by the fact that the synchrotron acts like an energy defining spectrometer. In a linear accelerator these parameters can vary greatly if not closely controlled at all times.

Even in a well adjusted linear accelerator the beam parameters are ultimately determined by the source characteristics. Therefore, should it become desirable to use positrons in the storage ring it would be difficult

to obtain a high injection efficiency with a linac injector because of the large positron beam emittance which is a consequence of the production process. The beam emittance and energy spread is well determined in a synchrotron due to synchrotron radiation damping, and independent of the nature of the particles or their sources. Both quantities can be made equal and significantly smaller in a booster synchrotron than in a linear accelerator to facilitate injection into the low emittance storage ring.

In this proposal the synchrotron lattice has been designed for a relatively small beam emittance to provide easy injection into the storage ring. The general design concepts for the 3.0 GeV booster synchrotron are described in the following sections of this CDR.

1.3 Review Process for the Injector

In late 1985 it became more and more apparent that the filling of the SPEAR storage ring would cause major interference with the SLAC SLC program since it requires a reconfiguration of the SLAC linac. To recover from this linac reconfiguration is time consuming and therefore costly both from an economic and a scientific point of view. With only two fills per day the interruption of the high energy physics program would be 2 hours for each fill or 16.7% of the time would not be available for high energy physics because of the filling of SPEAR. Moreover the linac cannot be operated for most of the year for fiscal reasons.

To protect SSRL's research program the SSRL directorate decided to propose a dedicated injector for SPEAR. After internal reviews the proposal was discussed with various committees and review panels. A list of these reviews in chronological order and other action relevant to the proposed SPEAR injector is given below:

1) March 11, 1986: SLAC reviews injector proposal and in a preliminary statement agrees with technical plan, cost and schedule.

- 2) Stanford University administration authorized SSRL to submit a proposal for the SPEAR injector in the form of a Schedule 44
- 3) April 15, 1986: DOE/Headquarters review of SSRL's FY1988 Budget Call including SEP II and Injector Proposal
- 4) April 25, 1986: Formal submission of Schedule 44 to DOE
- 5) May 14, 1986: SSRL users organization executive committee discussed injector proposal and stated in its report to the SSRL director "..support first priority for a new injector system....
- 6) May 27, 1986: SLAC concludes its review of injector proposal
- 7) May 28, 1986: Director's Review of the whole SEP II proposal by outside 12 member committee chaired by Marvin Weber of LLNL. The report states "Of the various proposal elements, the 3 GeV SPEAR injector and the 12-m PEP undulator beam line were rated at the top or near-top by all panelists."
- 8) June 9, 1986: SSRL Science Policy Board reviewed, among other SSRL plans, the injector proposal and supported it.
- 9) June 26, 1986: DOE validation Review at DOE headquarters chaired by Mr.Ramsey (DOE). Submission of conceptual design report.
- 10) February 1987: The SPEAR injector has been included in the President's budget for FY'1988 at \$13.5 M over three years.
- 11) February 24, 1987: Status report of injector project during annual DOE review of the SEP-I project at SSRL
- 12) March 13, 1987: Submit new CDR and bottoms-up cost estimate.
- 13) March 25, 1987: SSRL program review at DOE headquarters

- 14) April 21, 1987: DOE program review
- 15) August 13, 1987: DOE Construction Review
- 16) September 14, 1987: Technical Review

1.4 R & D Effort for this Injector

The design of the SPEAR injector synchrotron is based on well known and well tested techniques as developed over more than 30 years. No Research and Development is, therefore, required. The project schedule, however, has been adjusted to allow the fabrication of engineering models for some of the major components like magnets and a vacuum chamber to verify the technical solution before a large number of these components are fabricated.

2 General Description of Injector and Parameters

2.1 Performance Goals

The specifications of the injection system were determined to achieve the following objectives:

The system must provide an electron beam to SPEAR at a maximum energy of at least 3.0 GeV.

It must be an independent system that does not interfere with the operation of any other facility or experiment not associated with SPEAR.

The actual SPEAR filling time should be less than 5 minutes to achieve a circulating current of 100 ma.

The operation of the injector synchrotron should be reliable, easy to operate and of low maintenance so as to allow the integration of the injector operation with the SPEAR operation.

The dedicated SPEAR injector system consists of a short linear accelerator with a beam energy of at least 100 MeV as a preinjector, a 3 GeV slow cycling synchrotron and a beam transport line feeding the particles into the existing SPEAR injection lines. In the first stage the injector is limited to electrons. If positrons should be desired later, a positron option discussed below could be exercised. The "additional cost" is obvious. The energy of the synchrotron has been chosen to match the usual operating energy of SPEAR for synchrotron light users and the injector therefore is a

full energy injector allowing maximum use of the synchrotron light source. With a circumference of about 100 m it is possible to place the synchrotron just next to the SPEAR storage ring (Figure 2). At this location the high costs of tunnel construction can be avoided by constructing above-ground radiation shielding as for the SPEAR ring itself.

The preinjector linac is a slow cycling linac which can produce a string of S-band bunches in a single linac pulse. These bunches are stored around the booster synchrotron and then accelerated to the storage ring energy by slowly ramping the booster magnets to higher fields. At the final energy the bunches then are transferred from the booster to the desired buckets in the storage ring.

The total filling time for SPEAR to a circulating current of 100 ma is expected to take less than 5 minutes, assuming a storage efficiency of only 25%. This filling time is very short and is also compatible with our separate effort to increase the current capability of SPEAR to 150 or even 200 ma. Should it ever become necessary to use positrons, additional equipment must be installed. This positron option requires the extension of the electron linac to say 200 to 300 MeV, the addition of a positron converter, a positron focusing system and a 200 to 300 MeV positron linac. The need to use positrons in SPEAR for synchrotron light production has not been positively established yet. Therefore, we propose to construct only an electron injector at this time to minimize costs and construction time.

After acceleration of the electrons to the operating energy of the storage ring the bunches are transferred to the storage ring. At this point the question must be asked if it would be possible to inject, say, every five minutes so as to keep the storage ring current constant. Since this would be desirable, further studies are in order to demonstrate this feasibility. There is no fundamental problem from the injector point of view. In the storage ring, however, the already stored beam would be affected by the pulsed fields of the injection kickers which might be incompatible with experimentation. The scheme might work if the experiments can be interrupted for, say, 5 to 10 seconds every 5 to 10 minutes. In any case, having a dedicated injector, such schemes can be tried out and used if desirable.

2.2 General Design Concept of the Injector

The booster magnet lattice and ring dimensions are shown in Figure 3. The lattice is based on a simple FODO arrangement of the magnets with 18 equal FODO cells forming the total ring. A total of two bending-magnet-free FODO cells provide the space for injection and ejection components, a radio frequency cavity and other minor ring components. Additional space for ring components is provided in the two arc cells adjacent to the straight sections. To minimize the occurrence of synchro-betatron instabilities the dispersion function is chosen to vanish in the straight sections. This is accomplished by using a so-called dispersion suppressor lattice employing different bending angles in the last four bending magnets at the end of the arcs as shown in Figure 3.

Some general parameters of the injection system are compiled in Table 1.

Table 1
General Parameters of the Injection System

Design Energy	3.0	${ m GeV}$
Circumference	100.445	m
Particles	${f electrons}$	
Cycling Rate	2	$\mathbf{H}\mathbf{z}$
Intensity	$1.0 * 10^{11}$	e-/sec
Number of Bunches	≤ 8	•
Preinjector	$\overline{\text{linac}}$	
Linac Frequency	2856	${ m MHz}$
Energy of preinjector	≥ 100	${ m MeV}$
Storage Ring Filling Rate (for 25% filling efficiency)	≥ 20.0	mamp/min

The preinjector linac system is designed to cycle at up to 10 pps which is sufficient for all injection modes considered. Each linac pulse consists of one or more equidistant S-band bunches. These bunches are stored in the booster synchrotron and then accelerated to the storage ring energy

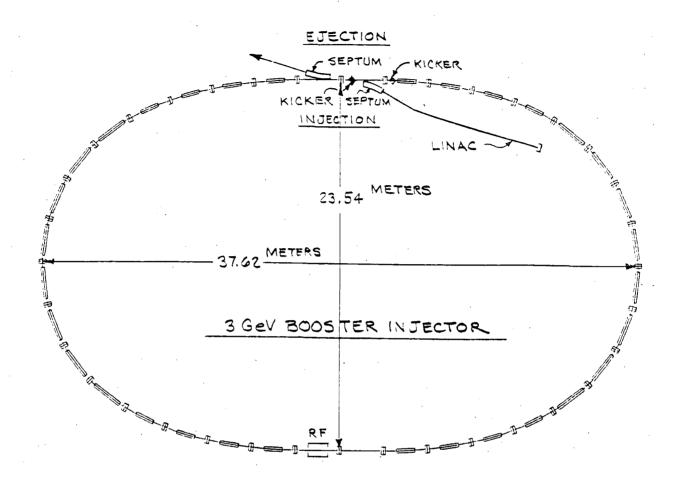


Fig. 3: SPEAR Injector Lattice

by ramping the booster magnets to higher fields. At the final energy the bunches are then transferred from the booster to the desired buckets in the storage ring.

The electrons are generated from a special gun which is designed to deliver a high peak beam current thus avoiding the need for an elaborate prebunching and bunching section in the linac. The linac will consist of standard S-band accelerating structures of the SLAC type. The linac sections will be fed by pulsed S-band klystrons to produce a total beam energy of at least 100 MeV.

For a slow cycling rate of only 2.0 Hz in the synchrotron the total filling time to accumulate a circulating current of 100 ma in the storage ring is expected to be less than 5 minute assuming a particle transfer efficiency of only 25%. During operation in top on mode, when only part of the full beam current needs to be accumulated, the filling times are still shorter. This filling time is very short even if the storage ring current is increased to 200 ma or more since with time the injection efficiency is expected to increase with increased operational experience and understanding of the accelerators.

2.3 Injection Process

The acceleration cycle starts with the injection at 100 MeV of one or more S-band bunches from the preinjector linac after which the magnetic fields of the booster are raised to the energy of the storage ring. At that point the beam is ejected from the booster and transferred to the storage ring. Subsequently the booster magnet current is reduced again to the preinjection value. The actual acceleration time takes about 0.25 seconds for a cycling rate of 2 Hz. Although the damping time at injection is more than 20 seconds long it is quickly reduced as the beam energy is increased and during the short acceleration time to 3.0 GeV the beam has gone through several damping times. At the end of the acceleration cycle the beam parameters therefore are fully determined by the synchrotron radiation in the booster synchrotron and not anymore by the preinjector beam characteristics. This is particular important for positron injection into the storage ring as mentioned previously.

3 Conceptual Design of the Injector System

Basically the design of a synchrotron is similar to that of a storage ring, however, with much relaxed requirements.

For the design of a booster synchrotron a very simple lattice can be employed and special design efforts can be directed toward ease of operation and high reliability. After some special attention during commissioning, a synchrotron must eventually operate without the constant presence of an operator.

3.1 Lattice Design and Beam Characteristics

The design of the synchrotron in this proposal makes use of a simple FODO lattice which has been used for most synchrotrons constructed so far and has proven to be very reliable in its performance. The whole ring consists of 18 separated function FODO cells of which 8 are regular cells, 8 cells have shortened bending magnets to provide automatic matching of the dispersion function into a dispersion free section, and 2 cells are totally free of bending magnets, providing the space needed for injection and ejection components, the RF-system and other machine components (Figure 3). The actual ring lattice deviates slightly from a fully regular FODO aray. In the bending magnet free sections the central quadrupole has been shifted toward one side to accommodate the installation of the RF cavity. The results in a small assymmetry of the lattice functions which, however, does not result in a degradation of performance due to the insensitivity of the design to any kind of errors.

The detailed structure and geometrical dimensions of the synchrotron are compiled in Table 2:

Table 2
Geometry of the Synchrotron

Circumference (m) 100.34 Diameter (m) long x short 37.647 x 23.587

The lattice structure for one quarter of the ring starting at the arc symmetry point of Figure 3 is given symbolically by:

QDH QDH QDH QDH QDH	D0 D5 D6	SD SD D6	D0 D6	В В1	D1 D6	QFH QFH D5 D5	QFH QFH	D0 QFH	SF D5	D0 SF	B D6	D1 B1	QDH D6	D5 QDH	QDH
QFH QDH QDH QDH QDH	D5 D5 D0	D5 D6	B1 D0	D6	D5 D1	DR QFH QFH QFH	QFH QFH	D5 D0	SF SF	D6 D0	B2 B1 B		D6 D5 QDH ODH		

D3

0.75

The parameters of these lattice elements are:

DRIFT: length (m)	D0 0.125 D5 0.15	D1 0.25 D6 0.5	D2A 2.00	D2B 3.00
BEND MAGNET: length (m) bending radius (m)	B 2.000 7.63944	B1 1.200 7.63944	B2 1.200 11.45916	
HALF QUADRUPOLES: length (m)	QFH 0.1436	QDH 0.1436	•	
SEXTUPOLES:* length (m)	SF 0.08	SD 0.08		

^{*} In the lattice structure the sextupoles are treated as thin lens elements.

All regular FODO cells are 5.574 m long. To minimize the number of magnet power supplies only two quadrupole families are required in this lattice for focusing and control of the operating tunes. All bending magnets are powered by one single power supply. For chromaticity control, two families of sextupoles are sufficient. Finally a set of vertical and horizontal orbit correctors are placed around the ring to allow the control and correction of orbit distortions. In Figure 4 and 5 the betatron and dispersion functions are shown for one quarter of the ring and some relevant lattice parameters are compiled in Table 3. The dispersion function was chosen to vanish in the straight sections for ease of injection and, particularly in the RF section, in order to minimize synchro-betatron oscillations and instabilities.

Table 3

Lattice Parameters

Lattice Type	FODO
Magnet Structure	separated function
Cell Length (m)	5.5744
Total Number of FODO cells	18
Max. Value of Betatron Functions (x/y) (m)	13.0 / 15.4
Max. value of Dispersion Function(m)	1.51
Tunes (x/y)	$5.25 \ / \ 3.17$
Momentum Compaction Factor	0.05404
Natural Chromaticities (x/y)	-6.38 /-5.09
Beam Emittance (mm * mrad) @ 3.0 GeV	0.478
Beam Energy Spread (%)	0.092
Beam Emittance (mm * mrad)	$0.053 * E^2(GeV^2)$
Beam Energy Spread	0.000305 * E(GeV)

The chromatic aberrations after chromaticity corrections are very small. The energy acceptance is at least 2.5% (Figure 6) based on lattice considerations only and not considering RF limitations. All chromatic and geometric aberrations are very small as is to be expected for such a lattice.

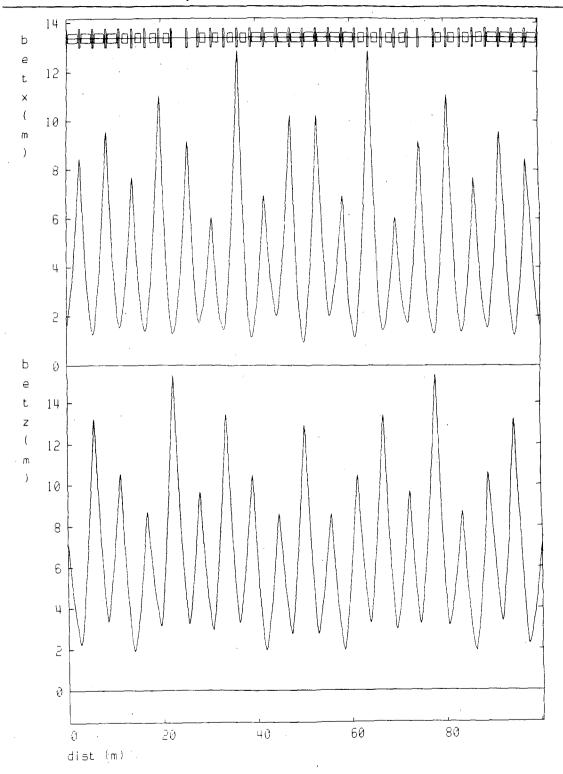


Fig. 4: Betatron Function

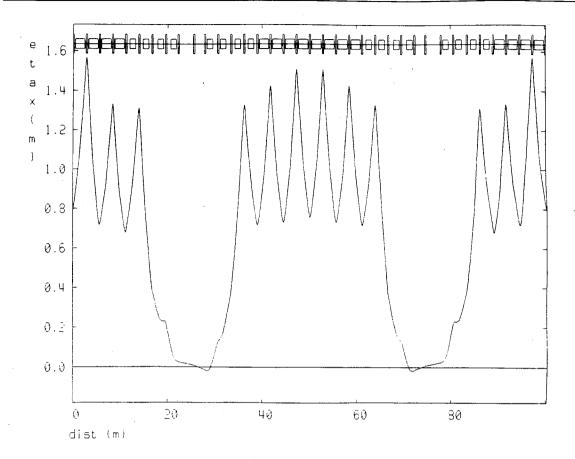


Fig. 5: Dispersion Function

As a result of these weak chromatic and geometric aberrations the dynamic aperture (Figure 7) is much larger than the physical aperture of the vacuum enclosure and provides, therefore, a large margin for unforseen errors.

For ease of injection and specifically in preparation for possible positron injection at a later date a rather large vacuum chamber cross section has been chosen. In Figure 8 the beam stay clear region (BSC) is shown both for the horizontal and vertical plane. The BSC is the maximum cross section a beam may have before particles get lost on the physical or dynamic aperture, whichever is smaller.

The minimum physical aperture or beam stay clear, as shown in Figure 8, is based on the assumption that eventually it will be desired to accelerate positrons injected at 250 MeV. This requires an acceptance in the

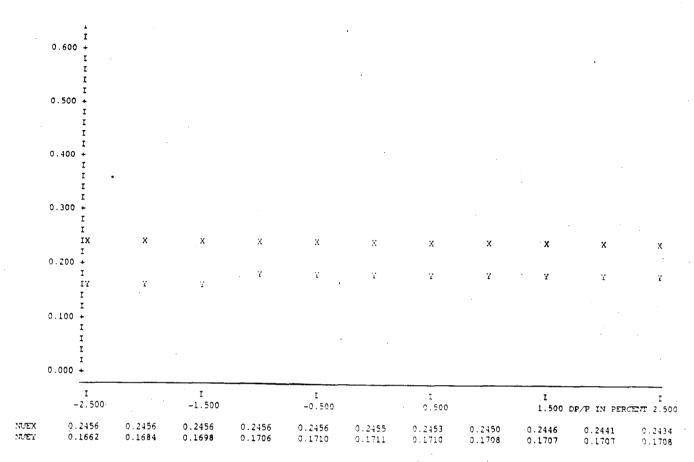


Fig. 6: Tune Variation with Energy

storage ring of at least 18 mm·mrad horizontally and 10 mm·mrad vertically. During acceleration the beam reaches the equilibrium beam size as determined by the quantum excitation due to synchrotron radiation and radiation damping. The particle distribution becomes a gaussian distribution and scales linearly with the energy. The beam size is defined as one standard deviation of the gaussian distribution. The vacuum chamber aperture must accommodate at least 5 units of the standard beam size in addition to an allowance for orbit distortions to retain a useful beam lifetime. In this design the beam sizes are smaller than the aperture up to 3.50 GeV. In more detail the beam sizes under various assumptions (see Table 4) have been calculated and have been used to determine the BSC. Extreme beam sizes as required for positron injection or for a higher end energy of 3.5 GeV

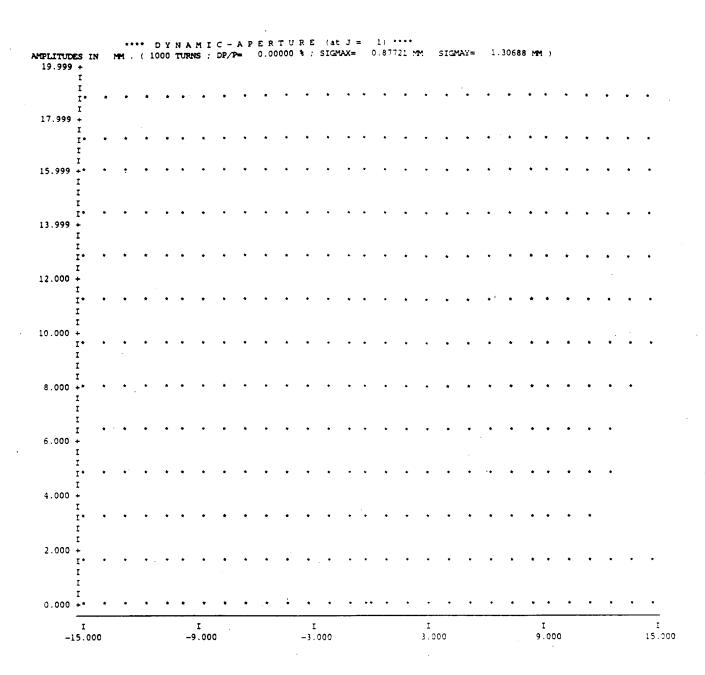


Fig. 7: Dynamic Aperture

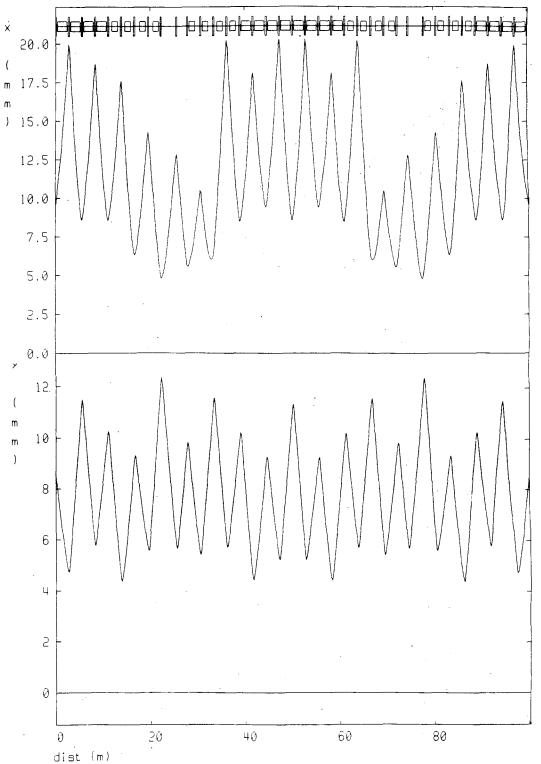


Fig. 8: Beam Stay Clear in the Booster Injector

have been used to determine the required vacuum chamber aperture.

Table 4

Beam Size under Different Conditions

Electron Beam: at injection (100 MeV):

Beam Emittance (both planes) Energy Spread Max. Beam Width Max. Beam Height (quad)	0.10 mm * mrad 1.0% 14.5 mm 1.1 mm
at a higher energy of 3.0 GeV:	
Beam Emittance (1 σ)	$0.65\mathrm{mm}*\mathrm{mrad}$
Max. Beam Width $(\pm 5\sigma)$	$32.3 \mathrm{mm}$
Max. Beam Height (quad)	22.4 mm
Max. Beam Height (bend)	20.4 mm
Positron Beam: at injection (250 MeV):	
Beam Emittance (Horizontal)	18.0 mm * mrad
Beam Emittance (Vertical)	10.0 mm * mrad
Energy Spread	1.0%
Max. Beam Width	40.5 mm
Max. Beam Height (quad)	24.8 mm
Max. Beam Height (bend)	$22.7~\mathrm{mm}$

at the higher energy of 3.50 GeV:

same as electrons because of damping

The maximum beam width for any beam considered is about 40 mm and the maximum beam height in the quadrupoles and in the bending magnets is less than 25 mm. A circular free aperture of 50 mm diameter for the quadrupole vacuum chamber and a clear height of the bending magnet vacuum chambers of 32 mm is, therefore, assumed for this ring, leaving 10 mm in both planes for orbit distortions. The dynamic aperture has been determined to be much larger than the physical aperture in both planes.

A summary of general parameters of the ring and the lattice functions are given in Table 5:

Table 5
Synchrotron Parameter

Energy	3.0	${ m GeV}$
Circumference	100.339	m
Cycling Rate	2	$\mathbf{H}\mathbf{z}$
Revolution		
Frequency	2987.79	${f kHz}$
Time	335	nsec
Lattice	FODO	·
Cell length	5.5744	m
Beam Emittance	.478	mm * mrad
Energy Spread	0.092	%
Energy Loss/Turn	0.896	${ m MeV}$
Tunes: $\nu_{\rm x}$	$\bf 5.250$	
$ u_{ m y}$	3.170	
Lattice Functions		
$eta_{ exttt{xmax}}$	13.0	m
$eta_{ exttt{ymax}}$	15.4	m
$\eta_{ ext{xmax}}$	1.57	m
Natural Chromaticity		
$\xi_{\mathbf{x}}$	-6.38	
$\xi_{\mathbf{y}}$	-5.09	
RF frequency	358.53	${ m MHz}$
Harmonic number	120	
Momentum Comp. Factor	0.05404	
Transverse damping time	2.241	msec
Vacuum chamber aperture		
x:(quad) (diameter)	50	mm
y:(bend) (height)	32	$\mathbf{m}\mathbf{m}$
Acceptance x:	69.4	mm * mrad
y:	22.4	mm * mrad

A more detailed compilation of the injector lattice and its parameters is

attached in Appendix A.

3.2 Technical Components

The design of the technical components for the booster synchrotron follows well established technology. No major R & D is necessary for any of the components. Synchrotrons have been constructed for many years and no special new feature is required to use a synchrotron as an injector.

The main technical components of the injector system are the preinjector linac, the magnet, RF and vacuum systems, beam control and monitoring, injection and ejection and utilities.

3.2.1 Preaccelerator Linac

The preaccelerator for injection into the booster synchrotron consists of a linac composed of three accelerating sections of the SLAC type and a microwave gun similar to those used in microtrons to produce the electron beam. The three accelerating sections are each powered by their own klystron. For the initial start up it is assumed that SLAC surplus klystrons at a power rating of at least 20 MW can be secured for this purpose. These SLAC klystrons become available due to the replacement of older klystrons with new 60 MW klystrons as part of the SLC project.

3.2.1.1 Microwave Gun

The electrons are generated in the microwave gun from a LaB₆ cathode which, when heated to 1600 K⁰, can deliver current densities in excess of 100 A/cm². This type of gun is used in microtrons as well as in linear accelerators.^[Ref] The cathode reaches directly into the high field of a microwave cavity where the electrons are quickly accelerated to relativistic energies.

S.V. Benson et. al., Proc. of 1985 FEL Conference Granlibakken.

[[]Ref] G.A. Westenkow et. al., Laser and Particle Beams, Vol. 2, part 2, (1984), pp.233.

After focusing and energy definition the beam is injected into the linear accelerator sections for acceleration to more than 100 MeV. This type of a gun can produce an instantaneous electron current of more than 10 amp. The advantage of such a gun compared to the often used thermionic gun is that the electrons are accelerated by an RF field to relativistic energies in the very short distance of about 3 cm, the length of one S-band cavity. This fast acceleration efficiently overcomes the electrical space charge forces which cause a significant increase in beam emittance and beam size. For optimum injection efficiency into the booster we plan to take advantage of this greatly reduced beam blow up in a microwave gun. One further advantage of this type of gun is that no other equipment, like prebuncher or buncher section, is required in the linac since the beam is automatically bunched through the field of the microwave gun cavity. This greatly reduces the complexity of the preinjector and allows easy operation.

With a peak current of 10 amp from the microwave gun we expect a population of 4.2 10⁸ electrons in each 2 mm S-band bunch. For a much longer bunch length the energy spread in the beam becomes large. Some of the gun parameters are summarized in Table 6:

Table 6
Microwave Gun Parameter

Gun Cavity Frequency (MHz)	2856
Particle Energy (keV)	> 500
Cathode Peak Current (amp)	≥ 10.0
Bunch Length (mm)	2.0
Particles/S-Band Bunch	$4.2 \ 10^8$
Particles per 3 S-Band Bunches	$12.5 10^{8}$

3.2.1.2 Momentum Filter

The energy spread of the electron beam from the microwave gun is very large due to the varying RF field in the cavity. A magnetic momentum filter

will be used to eliminate all particles with energies outside the acceptable energy bin. This momentum filter makes use of the momentum dispersion caused by the deflecting field of a dipole field. Placement of a slitted absorber at the position of maximum momentum dispersion allows selection of a narrow momentum bin from the beam for further acceleration.

3.2.1.3 Beam Chopper

Without any further devices a long string of electron bunches, separated by the linac RF wavelength of 10 cm, would enter the linac sections (see Figure 9). Not all of these bunches can be accepted by the booster synchrotron or by the storage ring. To reduce the level of radiation caused by these partially accelerated and eventually lost particles, it is prudent to eliminate these particle bunches at very low energies. This is performed by a device called a chopper located between the momentum filter and the linear accelerator. The string of S-band bunches emerging from the microwave gun will be modified by the chopper in such a way as to fit special requirements of the booster synchrotron and storage ring.

Since the booster RF frequency is much lower than the linac RF frequency, it is possible to accept three or even more consecutive linac bunches into one booster RF bucket, where they eventually merge into one bunch by radiation damping. Therefore, a chopper composed of a fast deflector with a slit will be used to generate, from the continuous stream of S-band bunches, a particle beam made up of a string of equidistant triplet bunches. Each triplet consists of three consecutive S-band bunches and the distance between the triplets is equal to the desired bunch distance in the booster synchrotron (Figure 9).

The conceptual layout of the chopper is shown in Figure 10. Here a DC magnetic field deflects the beam from the gun into an absorber. Superimposed is an electrical pulsed field which deflects the beam against the magnetic field toward the slit and allows the beam, during a short time period, to emerge through the slit to be accelerated in the linac. This way a string of S-band triplets can be produced for multibunch injection into

Fig. 9: Bunch Patterns in the Injection System

the booster and SPEAR.

While this multibunch mode of operation is the prevailing mode of operation in SPEAR, there are occasions when a single or few bunches are desired.

For timing experiments it is desirable to make use of the very short storage ring bunch to excite atomic or molecular states with an extremely short burst of photons. To observe the decay of these states a "long" radiation free time must follow. In the extreme case only one bunch would be filled in the SPEAR storage ring providing a radiation free time equal to one full revolution time. For this case also only one bunch is being accelerated per accelerating cycle in the booster. This booster bunch consists of 3 linac

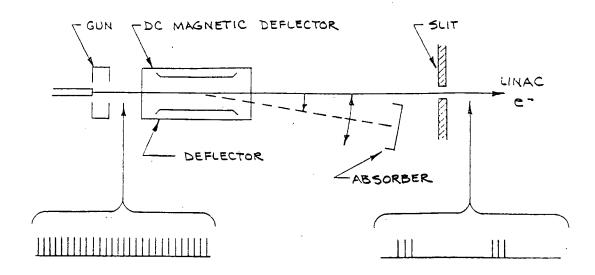


Fig. 10: Beam Chopper System

buckets and therefore 12.5 10⁸ electrons are accelerated per cycle giving an injection rate for a single bunch in the SPEAR storage ring of at least 5.0 mamp/min assuming a 25% overall transfer efficiency and a booster cycle rate of 2.0 Hz. Since the single bunch current in the storage ring will not be larger than 10 to 20 mamp because of instabilities or Touschek lifetime limitations, a single bunch filling time of less than five minute can be expected from this injector.

When many bunches are desired in the storage ring, strings of bunches can be accelerated and transferred to the storage ring in a single pulse. In this mode of operation the fastest storage ring filling rate of more than 50 ma/min can be achieved assuming eight bunches to be accelerated per booster cycle and a 25% injection efficiency into the storage ring. This will also be the most efficient mode of operation for beam cleaning the vacuum chamber in SPEAR to achieve long beam lifetime.

For further planning we will assume the preinjector beam characteristics as compiled in Table 7:

Table 7
Preinjector Beam Parameter

Energy from Preinjector (MeV)	≥ 100
Number of Booster Bunches	8
Number of Particles per Pulse	10^{10}
Pulse Repetition Rate (Hz)	\cdot 2
Total Energy Spread at full Linac Energy	0.010
Normalized Beam Emittance $(\epsilon \gamma)$	
Horizontal (m)	$20 \ 10^{-6}$
Vertical (m)	$10 \ 10^{-6}$
Beam Emittance	
Horizontal (m)	$0.085 \ 10^{-6}$
Vertical (m)	$0.043 \ 10^{-6}$

With these preinjector beam parameters we expect to achieve the SPEAR injection parameters as summarized in Table 8. For the multi bunch made we assume 8 bunches to be accelerated in the booster while only a single bunch in accelerated for single bunch mode in SPEAR.

Table 8
SPEAR Injection Parameters

Storage Ring Bunch Mode	Single Bunch	Multi Bunch
Storage Ring Beam Current (ma)	20.0	100.0
Circumference (m)	234.0	234.0
Total Number of Particles (10 ⁸)	975	4875
Injection Efficiency (%)	25.0	25.0
Number of Booster Cycles needed	312	195
Booster Cycles per Second	2	2
Storage Ring Filling Time (min)	2.6	1.6
Storage Ring Filling Rate (ma/min)	7.7	61

3.2.1.4 Linear Accelerator

For the acceleration of the electrons coming from the gun to high energies, three 10 foot accelerating sections of the SLAC type will be used. The energy gain per linear accelerator sections is determined by the RF power from the klystrons and is given by:

$$E_0(MeV) = 10 * (P(MW))^{1/2} = 54.8 MeV$$

This energy gain per section can be obtained straightforward without relying on any RF-pulse compression scheme like the SLED scheme. In the three accelerating sections, therefore, a total "no load" energy of about 164.4 MeV can be reached if three 30 MW klystrons are used. In reality, however, this "no load" energy gain is reduced by beam loading leading actually to a somewhat lower beam energy of at least 100 MeV depending on the intensity of the beam accelerated. The performance of the booster synchrotron basically improves with increasing injection energy from the preinjector. However, this dependence is rather weak and the additional complexity of a SLED'ed accelerating scheme is not advisable. From a technical view point a SLED'ed mode of operation is also not desirable since it would not allow the acceleration of a long string of bunches.

The proposed mode of operation of the linac sections is straight forward and most components are expected to be, and perform similar to those used at the Stanford Linear Accelerator.

Some of the main parameters of the linear accelerator are compiled in Table 9.

Because of the low repetition rate of no more than 10 Hz, the RF power requirements for the linac are very modest. This allows a reduced cost and complexity compared to the SLAC high power klystron modulators required for high pulse repetition rates. In Table 10 the klystron and modulator specifications are summarized.

Table 9
Linac Parameter

Accelerating Sections	${ m three}$
Length/Section (m)	3.0
Frequency (MHz)	2856
Type	constant impedance
RF Filling time (sec)	$0.75 * 10^{-6}$
Klystron/Modulators	${f three}$
Pulse Power (MW)	≥ 30.0
Pulse Length (sec)	1.5 to $2 * 10^{-6}$
Pulse Rep. Rate (Hz)	< 10
Preinjector Energy (MeV) (no load)	$\overline{164.4}$
Pulse Length (nsec)	> 330

Table 10 SLAC Klystron Parameter

Klystron Peak Output Power	35	MW
Frequency	2856	MHz
Peak Beam Voltage	265	kV
Peak Beam Current	286	\mathbf{A}
Peak Beam Power	75.8	MW
Repetition Rate	10	Hz
RF Pulse Length (max)	1.5	$\mu-\sec$
Modulator Pulse Length (max)	3.35	$\mu - \sec$
Klystron Efficiency	47	. %
AC Power	3.32	kW
Focusing Magnet	permanen	t
Cathode Type	oxide	

3.2.1.5 Beam Transport to the Booster Synchrotron

A beam transport system will guide the electron beam from the preinjector linac to the booster synchrotron where it will be injected "on axis" through a full aperture kicker magnet. Bending and focusing magnets will match the beam to the optical parameters of the synchrotron at the injection point. A septum magnet close to the synchrotron will align the beam

direction so as to let the incoming beam cross the booster beam orbit in the middle of the full-aperture kicker magnet. This kicker magnet then will be turned on for not more than one revolution time of 330 nsec to align the injected beam exactly with the ideal booster beam orbit. The kicker magnet must be turned off before the time the first particles, arrive again at the kicker location after one turn in the booster,

Along the transport line beam characteristics like beam intensity, energy and energy spread will be measured and controlled. For this purpose intensity monitors are installed in the transport line. A dispersive section of the transport line will make measurements and determinations of the exact beam energy and energy spread. This analyzing station will be helpful in setting up the preinjector beam while the SPEAR storage ring is used for experiments. For this purpose a downstream bending magnet will be turned off to guide the beam into a separate beam dump. A Faraday cup in front of this beam dump can be inserted into the beam for a precise beam intensity measurement.

Beam position monitors and scintillators with TV cameras will be installed to observe the beam position and quality. Orthogonal steering magnets at the end of the transport line are designed to allow the independent adjustment of the beam position and angle at the injection point.

Because of the low beam energy rather small magnets are required and the power supplies therefore are chosen to be the same as those for the beam steering magnets in the booster.

3.2.2 Magnet System

For the booster synchrotron the magnets must be constructed in such a way as to minimize the occurrence of eddy currents during energy ramping. Therefore, the magnet cores are constructed from laminations of low carbon steel stock. All magnets can be split in the horizontal midplane to allow the installation of the vacuum chamber.

The aperture of the magnets is determined by the larger of both the injected beams size and the beam size at high energies plus an additional allowance required for orbit distortion in the vacuum chamber. The space required for the beam, called the "beam stay clear" region or BSC, is shown

in Figure 8 and was determined mostly by the size of a positron beam during injection at 250 MeV. The requirements for the electron beam both at injection and at 3 GeV are smaller.

The magnetic field properties are modeled with the help of a computer program MAGNET which has been used extensively for the design of synchrotron and storage ring magnets at CERN and elsewhere. Finally the magnet quality will be determined by magnetic measurement which allows expansion of the magnetic field into the fundamental field and the higher harmonics. The magnet pole shapes will be determined such as not to cause beam instability by higher harmonic field errors.

Special trim coils and orbit correction magnets in connection with beam position monitors will be used to control the beam orbit during acceleration.

Three different types of magnets are required for the booster synchrotron:

- * bending magnets to bend the electrons onto circular paths,
- * quadrupole magnets to hold the particles in the vicinity of the ideal design orbit within the vacuum chamber, and,
- * sextupole magnets to correct chromatic aberrations which can cause beam instabilities.

The construction of these magnets as well as the alignment follows well established procedure since the simplicity of the lattice does not require high construction and alignment tolerances.

3.2.2.1 Bending Magnets

The main bending magnet system consists of a total of 32 H type magnets. All bending magnets have the same cross section as shown in Figure 11 but have different lengths and field strengths to accomplish the matching of the dispersion funtion to zero in the straight sections. The main parameters of the bending magnets are compiled in Tables 11 and 12:

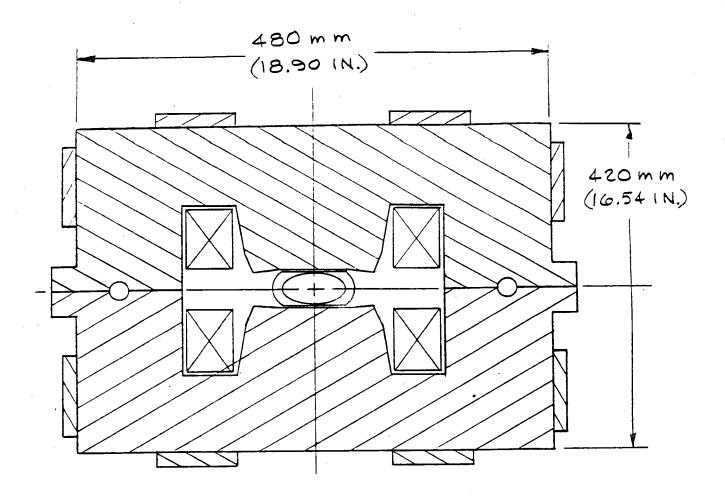


Fig. 11: Bending Magnet Cross Section

Table 11
Bending Magnet Types

Magnet Designation	В	B1	B2
Length (m)	2.000	1.200	1.200
Field Strength at 3.0 GeV			
(kGauss)	13.09	13.09	8.72
Field Strength at Injection (Gauss)	$\bf 524$	524	349
Max. Strength (kGauss)	>15.70	>15.70	> 10.47
Number of Magnets	16	8	8

The sagitta of the beam orbit in the longer magnets is quite significant at 65 mm. If one would build a straight magnet the pole width would have to be 65 mm wider and the total magnet would be 130 mm wider than required for the beam alone. To minimize the width of the magnets it is planned to "bend" the magnet by splitting the iron core into straight blocks with wedge-shaped spacers in between (Figure 12). Still the whole magnet would be powered by two long excitation coils.

The maximum required strength of all magnets is 13.09 kGauss for 3.0 GeV leaving a comfortable margin for higher energy operation if so desired. The main specifications for the bending magnets are compiled in the Table 12:

Table 12
Bending Magnet Specification

Magnet Name in Lattice	В	B1	B2
Straight Magnetic Length (mm)	2000.000	1200.000	1200.000
Bending Radius (mm)	7639.437	7639.437	11459.160
Bending Angle (radian)	0.314	0.173	0.141
Bending Angle (degrees)	15.0	9.0	6.0
Gap Height (mm)	34.0	34.0	34.0
Sagitta (mm)	65.4	23.5	15.7
Length of Iron (mm)	1966.0	1166.0	1166.0
Weight of Iron (kg)	2439.0	1466.0	1446.0
Weight of Copper in both Coils	333.0	207.7	138.4
Elect.Power at 3.0 GeV (kW)	13.9	8.9	6.0

The magnetic field properties are shown in Figure 13 where the calculated field errors are plotted for the midplane of the magnet aperture for a field strength of 13 kGauss. No serious saturation effects occur as can be seen from Figure 14 where the permeability is plotted across one quarter of the otherwise symmetric magnet for 13 kGauss. The calculated excitation curve is shown in Figure 15. Obviously below 13 kGauss there is little saturation.

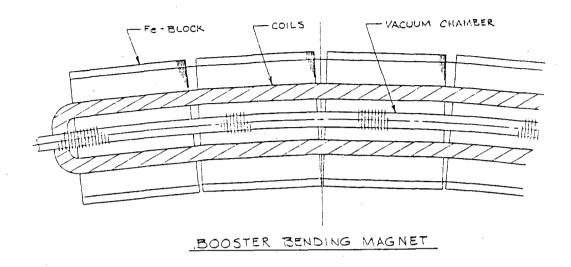


Fig. 12: Construction of the Bending Magnets

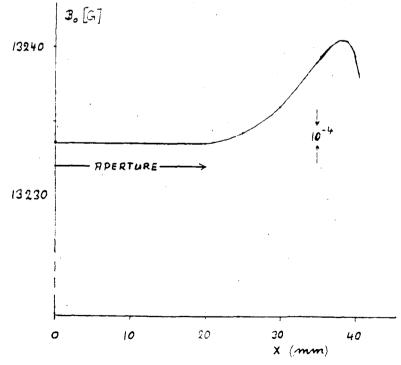


Fig. 13: Bending Magnet Field Errors

```
PERSONALITY MAP.
DISTANCE BETWEEN COLLEGES =
                             20.00001 (=
                                         2 TIMES H)
                             10.00000 (=
DISTANCE BETWEEN RONS
                                         1 TIMES HI
2000 2810 3160 2840 2114 1472 1292 1304 1426 1769 2503 3160 2899 2000
2155 2996 3160 2815 2101 1465 1289 1303 1423 1757 2484 3160 3151 2226
2589 3160 3160 2754 2061 1444 1280 1298 1414 1723 2426 3158 3160 2917
3159 3160 3160 2670 1995 1408 1266 1291 1399 1662 2332 2971 3160 3160
3160 3160 3098 2563 1906 1357 1248 1282 1380 1577 2210 2710 3132 3160
3160 3160 2866 2429 1799 1282 1224 1272 1354 1446 1990 2404 2595 2677
3089 2905 2636 2274 1680 1195 1198 1261 1327 1299 1745 1963 2011 2017
2660 2568 2372 2060 1524 1055 1166 1249 1291 1031 1338 1280 1212
2331 2262 2075 1772 1374
                          937 1138 1240 1264
                                              844
                                                   899
                                                        863
1984 1901 1720 1445 1088
                          701 1098 1229 1223
                                              439
                                                   612
                                                        656
1694 1634 1481 1210
                    825
                                                   427
                                                              554
                                                        512
1550 1514 1431 1305 1131
                                      0
                                                   458
                                                              494
                                                        478
1491 1469 1419 1347 1268
                            0
                                      0
                                                   422
                                                        440
                                                              453
1483 1469 1439 1399 1356
                            ٥
                                      0
                                                0
                                                   399
                                                        419
                                                              432
1505 1497 1480 1458 1433
                                                   390
1546 1542 1535 1525 1514
                                                   404
                                                        431
1596 1597 1599 1603 1608
                                                   441
                                                        471
1648 1653 1665 1688 1724
                                      0
                                                        453
                                                              557
                                                                   592
                                                   223
1692 1700 1722 1763 1834
                                                                   835
                                                    65
                                                        426
1719 1728 1753 1799 1892
1728 1735 1753 1771 1752
```

Fig. 14: Saturation of the Bending Magnet at 13 kGauss

Eight bending magnets require a smaller field strength than the rest of the magnets. For these magnets a modified coil with fewer turns is considered such that the correct field strength is obtained for all magnets while being powered in series by one and the same power supply.

All magnets are equipped with trim coils to provide orbit correction capabilities. The maximum strength of the trim coils will be specified as to allow the correction of any reasonable orbit distortion expected in the synchrotron.

The total peak power for the bending magnets is expected to be about 341 kW while the average power is 33% of that.

The bending magnet system parameters for the injector are tabulated in Table 13.

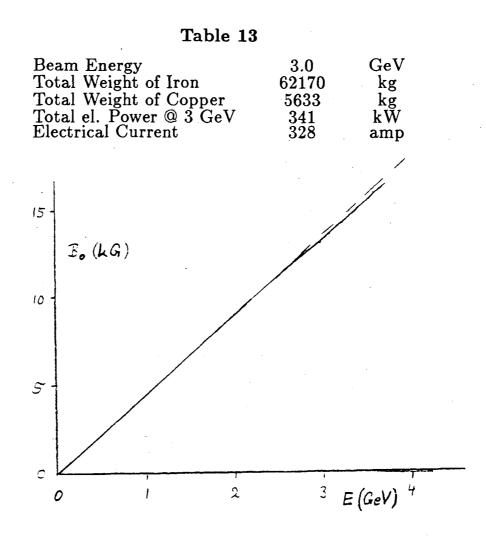


Fig. 15: Excitation Curve for the Bending Magnets

3.2.2.2 Quadrupole and Sextupole Magnets

The focusing is performed by 32 identical quadrupoles, each 0.287 m long, and the chromatic correction requires 2422 sextupoles with a magnetic length of 0.10 m each. To avoid eddy currents these magnets also are constructed from low carbon steel laminations like the bending magnets.

There are two families of quadrupoles, the QF's and the QD's, each forming one electrical circuit. The strength of the two quadrupole types are:

$$QF: k = -1.9766 \, m^{-2}$$
 or for $3.0 \, GeV: g = 1.9780 \, k \, Gauss/cm$ $QD: k = 1.4478 \, m^{-2}$ or for $3.0 \, GeV: g = 1.4488 \, k \, Gauss/cm$

The specifications of the quadrupoles and sextupoles are compiled in Table 14:

Table 14

Quadrupole and Sextupole Specification

Magnet Name in Lattice	QF/QD	SF/SD
Magnet Designation	30 Q287	30S100
Magnetic Length (mm)	287.2	100.0
Bore Radius (mm)	30.0	35.0
Maximum Field Gradient (G/cm)	2400.0	
Field Gradient at 3.0 GeV	≤ 1978.0	
Pole Tip Field at 3.0 GeV (Gauss)	≤ 5934.0	450.0
Total Current/Coil (amp*turns)	≤ 7085	358
Length of Iron Block (mm)	257.2	100
Weight of Iron (kg)	338.3	
Weight of Copper (kg)	59.0	
Number of Magnets	36	${\bf 22}$
Power per Magnet at 3.0 GeV (kW)	≤ 4.60	
Construction	$\frac{-}{laminated}$	laminated

All quadrupoles and sextupoles have the same cross sections as shown in Figure 16 and Figure 20.

The calculated saturation characteristics for the quadrupoles are shown in Figure 17 where the permeability is plotted across the magnet for a field gradient of 2.0 kGauss/cm.

The magnetic field properties for the quadrupoles are shown in Figure 18 where the calculated gradient errors are plotted for the midplane of the quadrupole aperture for a gradient of 2.0 kGauss/cm.

The calculated excitation curve for the quadrupoles is shown in Figure 19. Obviously there is little saturation for beam energies up to 3.0 GeV.

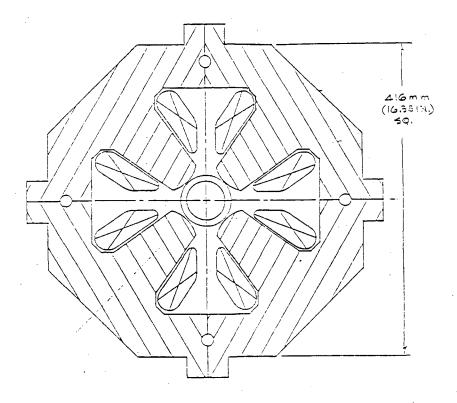


Fig. 16: Quadrupole Cross Section

72700	ABILI	TY MA	₽.															
		ETWEE			= 1 =	0.00° 5.00°					٠							
	0	o	0	9	0	0	٥	٥	٥	0	0	0	. 0	Q	٥	0	0	a
9	٥		ò		2000	2000	0	0	a	0	9	0	٥	0	0	0	0	0
٥	a	ā	ō		2000		Q	0	0	0	0	0	٥	0	•	0	9	0
0	0	ă				2063	2166	٥	0	0	0	0	0	٥	0	0	0	0
٥	ā	ā	ā	2178	2131	2152	2245	o	0	0	٥	0	0	0	0	0	0	٥
ā	ō	ā	. 0	2267	2230	2257	2346	2502	0	0	0	0	0	0	3	0	0	0
ā	٥	0	2437	2369	2348	2381	2465	2619	0	0	0	0	0	a	0	0	9	0
ő	ā	j	2534	2482	2481	2527	2619	2759	2978	0		0	0	0	0	0	0	0
ă	ō	2691	2637	2621	2648	2710	2804	2932	3077	3	0	0	0	3	0	0	0	0
ā	C	2758	2751	2783	2851	2931	3018	3078	3078	3078	0	0	0	٥	0	0	0	0
ā	-0	2428	2889	2977	3071	3078	3078	3078	3078	3078	0	-	0	0	0	0	0	0
ā	2797	2910	3040	3078	3078	3078	3078	3078	3078	3078	3078	0	0	a	0	0	0	0
a	2791	3006	3078	3078	3078	3078	3078	3073	3078	3078	3078	0	0	0	C	9	٥.	0
2462	2875	3078	3078	3078	3078	3078	3078	3078	3078	3078	3078	3078	0	0	0	٥	0	0
2540	7911	3078	3079	3078	3078	3078	3078	3078	3078	3078	3078	3078	0	0	0	0	0	0
2742	3034	3075	3078	3078	3078	3078	3078	3078	3078	3078	3078	3078	3076	0	٥	0	0	٥
		3078						3077	3078	3078	3078	3078	3075	0	O	. 0	0	0
		3078				3	0	0	3078	3078	3078	3078	3078	3078	0	0	0	9
		3078			0	9	3	0					3078		٥	. 0	0	٥
		3078			0	0	0	э	0	3078				3078		9	0	٥
		3078			0	0	3	3	3	0	3078	3078	3078	3078	3078		٥	0
		3078			0	0	0	. 0	0	0	0	3078	3078	3078	3078	3078	0	. 0
		3078			9	0	0	0	0	0	0	0	3078	3078	3078	3078		0
		3078			0	. 0	9	0	0	0	9	0	3078	3078	3078	3078	3078	9
		3078				0	٥	9	0	0	0	q	0			3078		3
		3078					· ·	0	0	0	0	Œ	0			3078		2363
		3078				. 0	9	J	0	0	٥	9	0	0		3078		
		3078				0	j	0	0	9	0	0	. 3	3	_	3078		Ç
		3078						0	0	0	0	0	0	0	0		0	٥
		3078				0	d	٥	0	0	0	o	0		3	_	0	0
		3078				0) 0	0	• 0	0	0	0	0	0	٥	٥	0	0

Fig. 17: Saturation Characteristics for the Quadrupoles

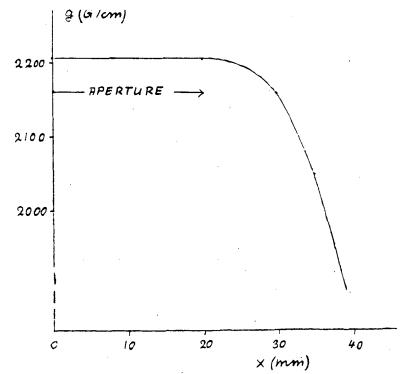


Fig. 18: Quadrupole Gradient Errors

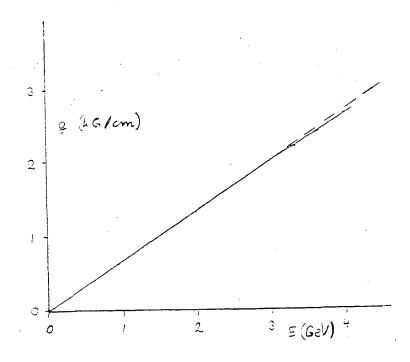


Fig. 19: Excitation Curve for the Quadrupole Magnets

3.2.2.3 Special Magnets

Most magnetic fields used for orbit correction will be generated by trim coils in bending magnets and quadrupoles. They will be powered by independent, DC power supplies With trim coils in time-varying fields, like for the bending and quadrupole magnets, a significant voltage is induced in each trim coil which is too large for the small power supplies. Hence the alternating voltage must be removed from each correction circuit. Following the suggestion by the ESRF group for their booster, we propose to add a special "bucking" magnet in the dipole circuit. [Ref] This will be a separate dipole magnet connected to the main dipole circuit but not part of the ring lattice. Each correction circuit will have an auxiliary winding on the core of this magnet with the number of turns and the polarity chosen such as to

[[]Ref] ESRF, Foundation Phase Report, February 1987, Grenoble (France)

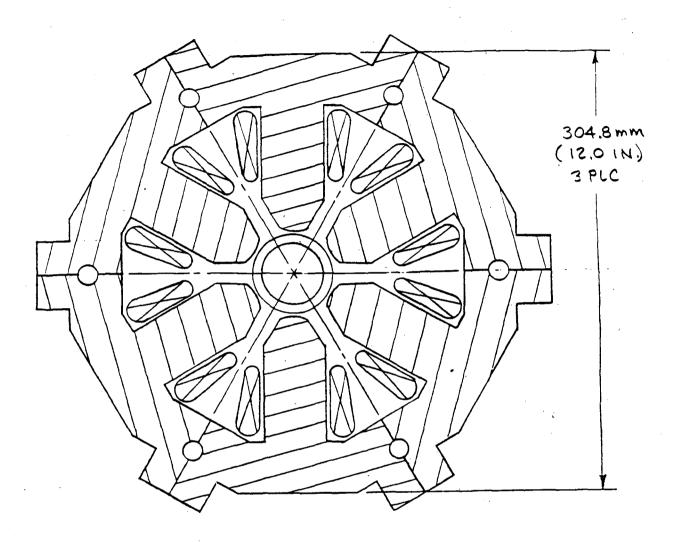


Fig. 20: Sextupole Cross Section

cancel the voltage induced in the main correction winding.

3.2.2.4 Magnet Power Supplies

The power supplies must be designed such as to excite the magnets from the injection energy of 100 MeV to high field levels corresponding to 3.0 GeV operation up to 2 times a second. To accomplish this it is proposed to use

a a computer controlled DC power supplies or classical "White" circuits as used in many previously constructed synchrotrons. The latter power circuit consists of a combination of one DC supply and two AC supplies. Together with a choke and two capacitor banks, this "White" circuit provides an oscillating current for the magnets between zero and a maximum value. An internal filter is incorporated to minimize the harmonic content of the output current.

A total of five power supplies will be needed, one for the bending magnets, two for the QF and QD quadrupole circuit and two simple pulsed power supplies for the SF and SD sextupole circuits.

No special AC power supplies are required for orbit control. In a properly designed synchrotron the orbit changes little during the acceleration process. It is, therefore, anticipated that only DC correctors are required, for which standard DC power supplies can be used. Of course, in this case the significant induced voltage from the main bending fields must be compensated in a bucking magnet as outlined above, to use these ordinary DC supplies.

For the proper functioning of the synchrotron it is important that the fields in the bending magnets and the quadrupoles track together. Tracking errors can be caused for example by mechanical variations of the magnet gaps during the magnetic field cycle. It is, therefore, important to construct the magnets so as to produce maximum rigidity. This is a strong argument for designing the bending magnets as H-magnets rather than C-magnets. Another source of tracking errors can come from the power supply characteristics which are different for the bending magnet and quadrupole circuit. If a computer controlled power supply is used each circuit on be controlled appropriately. In case of the White circuit, the bending magnet circuit will be adjusted to a fixed frequency to minimize the power rating of the invertor to generate only a pure resistive load on the power mains. This will cause the quadrupole circuits to oscillate at a slightly different frequency and. therefore, a phase control servo system will be required to keep all magnets tracking properly. More detailed engineering is required to choose between both types of power supplies to suit best the SPEAR injector requirement and environment.

3.2.3 Acceleration System

To accelerate the electrons from the preinjector energy to the final storage ring operating energy, a 358 MHz RF system will be used. This system makes use of a 5-cell cavity which has been used in SPEAR and has been secured from SLAC surplus. One such cavity is sufficient to accelerate the electrons up to 3 GeV.

If the RF-system were operated just like in a 3 GeV storage ring at a constant RF-voltage level the system would require a RF-power of 150 kW of which about 135 kW are losses in the cavity walls. These losses can be greatly reduced if the RF-voltage is modulated during the accelerating process to the minimum values needed by the particles at any time. This modulation can be easily achieved by control of the klystron drive. At the highest energy of 3 GeV, however, the klystron power must reach a maximum instantaneous power of 150 kW to generate a sufficiently large accelerating voltage in the cavities to overcome the synchrotron radiation losses. This power rating is less than that for the klystrons presently used in SPEAR. To simplify maintenance it is proposed to use the same klystrons as for the SPEAR storage ring although they are, at 500 kW, overrated. The relative small cost difference between a 150 kW and 500 kW klystron makes this decision simple.

The low level electronics and power supplies will be of the same design as for the SPEAR or PEP RF-systems. No new development is necessary.

The choice of the accelerating system is mainly determined by the available surplus accelerating cavity from SPEAR. This cavity operates at a frequency of 358 MHz, has a shunt impedance of 30 MOhm and can absorb in its cooling system an average power of about 100 kWatt. The cavity consists of five cells coupled together in π mode by two slots in the common wall between the cells. The construction material is Aluminum 6061. A layer of Titanium Nitride deposited on the surface of the cavity serves to prohibit field breakdown by multipactoring. A water cooled loop in the center cavity is used to couple the RF power from the klystron into the cavity.

The cavities are equipped with a movable tuner and a sampling loop. The tuner is used to compensate for the thermal expansion of the cavity which causes a change of the resonance frequency. The field amplitudes are

monitored by the sampling loop and the signal is compared with a reference signal to set the desired RF Voltage in the cavity. The resulting difference signal is applied to a variable attenuator in the drive line to the klystron. The whole system is similar to the SPEAR or PEP control system and could also be equal to the system used for the storage ring.

The accelerating system of a synchrotron, in addition to providing the accelerating field U_{accel} to raise the electron energy from 120 MeV to 3.0 GeV, also compensates for the loss of energy due to synchrotron radiation U_{rad} and the energy lost due to the excitation of parasitic modes U_{pm} .

The energy balance can be written like:

$$U_{tot} = U_{accel} \, + \, U_{rad} \, + \, U_{pm},$$
 where $U_{accel} \, = \, \left(E \, - \, E_0
ight) / \left(T_c \, * \, f_{rev}
ight)$

where E = 3.0 GeV, E_0 the linar energy, T_c is the ramping time of the synchrotron and f_{rev} is the particle revolution time in the synchrotron.

For this synchrotron we have at 3 GeV:

$$f_{rev} = 2974kHz$$
 $T_c = 0.10sec$
 $U_{rad} = 1MeV$
 $U_{accel} = 10.0keV$
 $U_{pm} = 0.4keV$
 $U_{tot} = 1.01MeV$

Here we have assumed that the maximum cycling rate for the synchrotron is 10 Hz.

The parasitic mode parameter for the SPEAR cavity K_{pm} is 1.5 V/pCb and the number of electrons per bunch is at most $2*10^9$ in a maximum of 8 bunches. The parasitic mode loss in the SPEAR cavity, U_{pm} , therefore, is no

more than 0.4 keV. The required accelerating voltage, even for a fast cycling booster at 10 pps and the maximum expected beam loading, is negligible compared to the synchrotron radiation losses. The RF power, therefore, is mainly applied to replace the synchrotron radiation energy loss.

The RF parameters of the injector synchrotron are:

Frequency	358	MHz
Harmonic Number	120	
No. of Klystrons	1	
No. of Cavities	1	•
Cavity shunt impedance	30.0	MOhm
Max. Cavity Power	130.0	kWatt
Avg. Cavity Power	35.0	kWatt
Max. Cavity Voltage	2.0	MVolt
Max. Beam Power	4.0	kWatt

During each accelerating cycle, the electron energy raises from 120 MeV to 3.0 GeV and the synchrotron radiation energy loss per turn increases from 1 eV to 900 keV. Therefore, to minimize power consumption and to avoid beam instability the RF power will be modulated from 5 kW to 135 kW as shown in Figure 21. This modulation must be split into two regimes: one for energies from 100 MeV to 1.3 GeV and the other for 1.3 GeV to 3 GeV. During the first step, the RF power is kept at about 5 kW which is the minimum stable output power for the klystron. The RF voltage in the cavity is, in this case, 387 kV and provides an energy acceptance of 1.6% at injection and of 0.5% at 1.3 GeV. During the second step the energy acceptance is kept at a minimum 0.5% and the resulting RF power and RF voltage in the cavity are shown in Figure 21 and 22. This kind of modulation of the RF power can be achieved by controlling the drive power to the klystron. Of course more energy acceptance can be obtained should that be desirable for some reason, by raising the RF power up to the maximum level of 100 kW as limited by the cavity cooling capacity.

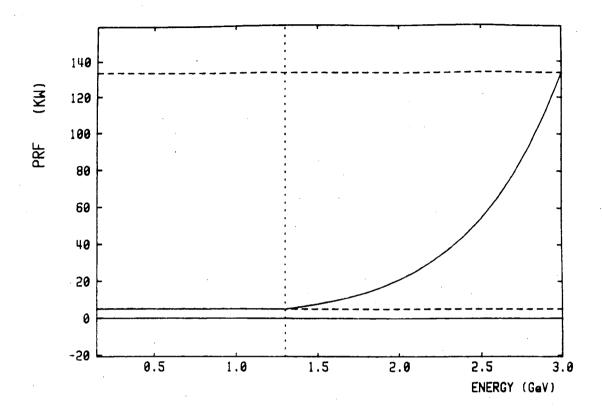


Fig. 21: The Cavity RF Power Variation with Beam Energy

3.2.4 Vacuum System

In a booster synchrotron a special design of the vacuum chamber must be employed. Fortunately, since the particles remain in the synchrotron only a very short time, an operating pressure of 10^{-6} Torr is sufficient and the high fabrication and maintenance costs of an ultra-high vacuum system can be avoided. Also the synchrotron radiation heating of the wall can be shown to be quite negligible due to the low average current and low duty cycle, so no special cooling of the vacuum chamber walls will be required. However, the changing magnetic fields during acceleration will induce eddy currents in the chamber material which can greatly affect the magnetic field quality inside the vacuum chamber. This effect can be avoided by using

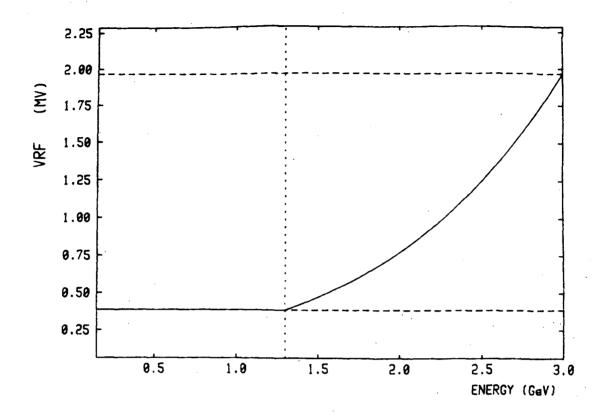


Fig. 22: Variation of the Cavity Voltage with Beam Energy

costly ceramic chambers, or for slow cycling synchrotrons such as proposed here, by using vacuum chambers made of very thin (0.3 mm) stainless steel pipes. In this proposal such a thin walled stainless steel chamber is used. To avoid the collapse of this chambers under atmospheric pressure external stiffening ribs will be attached to the outer surface at periodic longitudinal intervals. The ribs must be designed to fit within the various magnet pole gaps. Such a design has been successfully used at DESY in the recently constructed 12 GeV synchrotron, and allows the booster to be cycled at up to 12 times per second.

The pumping system design is dictated largely by the cross-sectional dimensions required for the vacuum chamber to fit inside the poles of the magnets. In the quadrupoles and sextupoles, a thin-walled round tube of

approximately 50 mm diameter appears to be suitable. A number of round tubings can be partially flattened to an an approximately elliptical cross section of dimension 32 mm by 40 mm and used in the bending magnet regions. These dimensions allow the use of external ribs of sufficient thickness to provide the stability against atmospheric pressure within the specified quadrupole and sextupole bore diameters. In the bending magnets the stiffening rips would be only 1 mm in the pole gap but much wider in the horizontal plane (Figure 23).

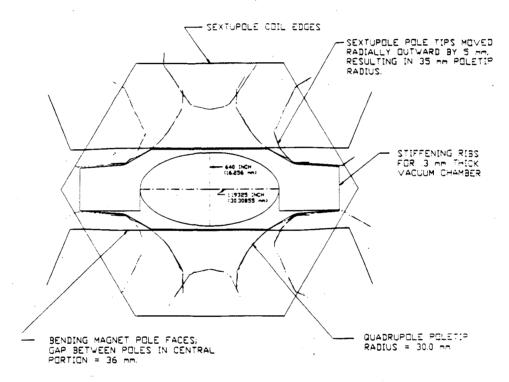


Fig. 23: Vacuum Chamber Cross-section

An analysis has been made of the pressure distribution in a long tube of the above-mentioned dimensions with thermal outgassing rates assumed to be those of clean, degreased but unbaked stainless steel, and ignoring the very small gas desorption due to synchrotron radiation. It shows that an average pressure in the booster ring of about 700 n Torr can be achieved using only lumped ion pumps. In particular one 8 l/sec ion pump for each 2.8 meter long cell in the lattice is sufficient to reach that pressure. No distributed pumps in the bending magnets are required. Thus, for main-

taining an adequately low and smooth pressure profile around the ring, 36 ion pumps with a pumping speed of 8 l/sec, approximately equally spaced, will be installed. To minimize cost several ion pumps at a time will be connected to one power supply. A set of vacuum gauges will be used to monitor the pressure around the ring.

To evacuate the ring from atmospheric pressure down to a pressure where ion pumps can safely be turned on, gate valves are used to segment the ring into sectors that can be evacuated separately. A mobile mechanical roughing pump together with liquid-nitrogen-cooled sorption pumps will be connected to the vacuum chamber at the center of each sector. Each sector is then evacuated separately until the ion pumps can be started. When the vacuum pressure reaches a sufficiently low value in all sectors, the gate valves can be opened.

Taking advantage of the highly periodic magnet lattice only one basic type of vacuum chambers are needed to cover all of the ring. Each chamber reaches through one bending magnet, and one quadrupole/sextupole combination. All chambers are joined by conventional 4.5 inch Conflat flanges.

Each quadrupole/sextupole section consists of a straight round steel tubing with simple circular rings on the outside as stiffening ribs where necessary. The repetitive chambers will be connected by a conventional pump-out tee with bellows. A single ion pump and the valve to the roughing system will be attached here. At one end, near the flange, an axi-symmetric beam position monitor (BPM) module will be installed, and at the other end, a short bellows section to accommodate small manufacturing tolerances. A thin ceramic ring will be incorporated at the end of each chamber to avoid induced current circulation in the ring. The layout of the arc vacuum chamber with pumping is shown in Figure 24.

3.2.5 Instrumentation and Controls

The controls of the booster synchrotron components are mostly incorporated into the hardware. The accelerating system, for example, will have an internal feedback system to keep the RF parameters constant at the desired values. During the energy ramping process the quadrupole power supply amplitudes and phases will be controlled by a small computer to assure

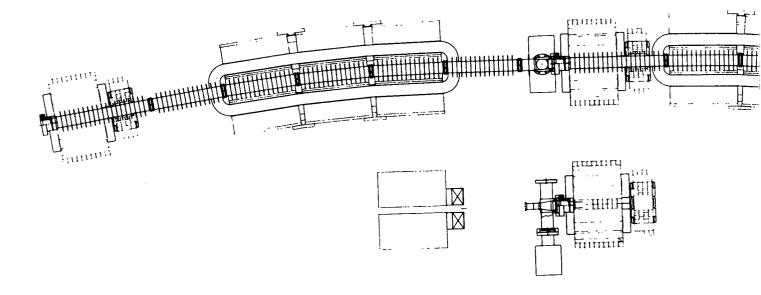


Fig. 24: Arc Vacuum Chamber

proper tracking with the bending magnet current and field. Similarly the beam current or the beam position will be recorded and displayed during acceleration. In this way it is possible to operate the booster synchrotron independent from the storage ring control computer which will be important during initial debugging. A separate control console with a microcomputer will be available to operate the injector independent from the SPEAR control system. On the other hand the booster components are ready to be controlled by any other computer and therefore can be also connected to the main SPEAR control system whenever this becomes desirable.

Due to the variation of the main dipole field at injection an injection timing trigger with a precision of about 1 μ sec is required to keep the energy of the beam at ejection to SPEAR within tight tolerances. This trigger is to be locked to the main dipole field variation and is used to trigger the gun, linac and the injection septum and kicker. The timing trigger is derived from a pick up coil and a permally strip to give a signal when the magnetic field is reverted. A special delay unit will be also triggered from this timing signal to later produce the trigger for the ejection septum and kicker magnets.

For particle beam monitoring a current monitor will be installed to measure the beam intensity. Beam position monitors will detect the beam orbit and provide the signals to correct it. During particle acceleration in the booster it will be desirable to control the beam orbit to adjust for slight variations in the magnetic fields of the individual magnets. Trim magnets as part of the quadrupoles or bending magnets will be used in conjunction with the beam position monitors to dynamically control the beam orbit when needed.

The magnet current during acceleration will be computer controlled and a feedback system which monitors the betatron oscillation frequency will be used to keep the betatron tunes of the synchrotron constant during energy ramping.

The controls for the RF system will be similar to those developed for the storage rings PEP and SPEAR.

The linac controls contain mostly a timing system, as well as a phase and amplitude detection system which provides the signals for the purpose of phasing the klystrons. The timing system makes use of a signal from the master oscillator set precisely to a harmonic of the revolution frequency of the beam in the storage ring. From these signals the timing for the phasing of the linac RF, the synchrotron RF and for the chopper cavity are derived. A set of beam monitors, bending magnets and slits will be provided to control the beam energy and the beam energy spread before it is injected into the synchrotron.

For beam monitoring a DC current transformer will be used as well as beam position monitors to control the beam orbit. The magnet current during acceleration will be computer controlled and a feedback system which monitors the betatron oscillation will be used to keep the betatron tunes of the synchrotron constant during energy ramping. The controls for the RF system will be equal to the SPEAR storage ring system with the additional capability to change the klystron drive as required by the beam energy during acceleration. The linac controls contain mostly a timing system and a phase and amplitude detection system, which provides the signals for the purpose of phasing the klystrons. The booster timing system will tie into the SPEAR timing system to allow the filling of any arbitrary bunch pattern in the SPEAR storage ring.

3.2.6 Injection and Ejection

The proposed SPEAR injection system involves a series of injections and ejections into and out of the booster and into the SPEAR storage ring. The injection and ejection at the booster is relatively simple since no accumulation is attempted and therefore both injection and ejection is performed during one revolution time only. As a consequence only one kicker magnet and one septum magnet is needed for injection and the same for ejection. Obviously the design of these pulsed magnets is much simpler for the low injection energy of 100 MeV compared to the ejection energy of 3.0 GeV.

3.2.6.1 Ejection from the Booster Synchrotron

After acceleration of the particles to the storage ring energy an ejection process is triggered for the transfer of the beam to SPEAR. A fast full aperture kicker magnet in the booster synchrotron will deflect the beam into the magnetic aperture of a weak septum magnet. This septum magnet will be followed by a stronger septum magnet to finally deflect the beam out and away from the booster components into a beam transport system. The pulsed magnets required for this process are of conventional design and need no further R&D.

3.2.6.2 Beam Transport to SPEAR

The beam ejected from the booster synchrotron enters a short beam transport system leading into the nearby existing electron injection transport line. Where both beam lines merge a bending magnet will deflect the booster beam onto the existing path of the injection line. If no other modifications were contemplated this beam would then enter the SPEAR storage ring at the now existing entry point through existing injection components. Some existing pulsed magnets, however, would limit the injection energy to 2.3 GeV and therefore need to be replaced with more powerful components. A layout of this beam transport system is shown in Fig. 25. In this proposal we assume that the present 2.3 GeV pulsed magnet system will be replaced by a 3 GeV pulsed magnet system. To provide the operational feasibility of a low emittance configuration it is also proposed to replace the present two kicker magnet system by three kicker magnets. This is necessary to generate a matched beam bump for the low emittance configuration.

3.2.7 Utilities

The synchrotron will require electrical as well as mechanical utilities. An overview of existing and planned for utilities is shown in Figure 26. The maximum total electrical power requirement at 3 GeV is about 1 MW although less than half that will be needed on average during operation. Of

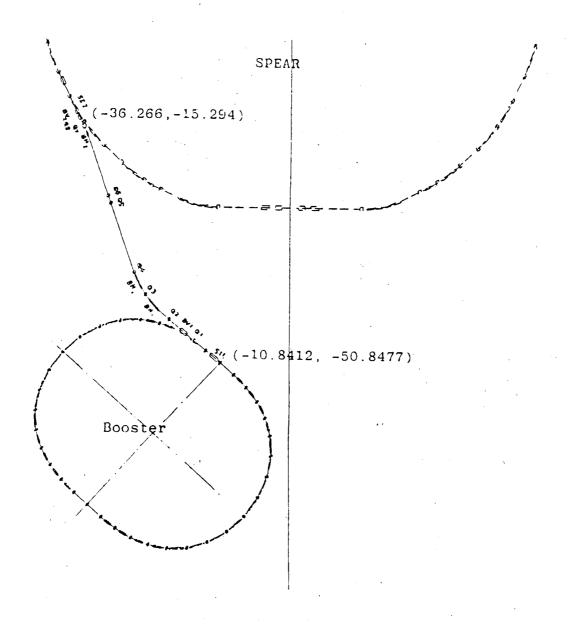


Fig. 25: Beam Transport Line from the Booster to SPEAR Tunnel

that about 300kW is for the RF-system and 400 kW for the magnets. The remainder for miscellaneous components including house power.

A separate 3 phase, 4 wire, 12 kV power source will be extended from an existing "H" frame, located located in the north-western corner of the north research yard, about 30 feet away from the booster ring tunnel (Figure 26). A new transformer and switch gear, located near the klystron power supply shelter, will reduce this power to 480 - 120/220 volt for general power distribution systems. Additional metering and switch gear is needed for the synchrotron as well as AC cabling for the klystron and magnet power supplies.

AC services including receptacles and lighting is required for the equipment shelters and the ring tunnel. Communications and fire alarm systems will be extended from the existing SPEAR/SSRL system.

Since only about half of the maximum power capacity will be used, on average, the LCW cooling systems are sized for 0.5 MW. A six inch stainless steel line, supplying 400 GPM of LCW, will be extended from a nearby source in the research yard (Figure 26).

Domestic water and compressed air will be supplied from nearby existing sources to serve the injector facility.

3.3 Shielding and Shelters

The linac preinjector and the synchrotron must be housed in a radiation safe shelter. The accelerators will be housed in an above-ground concrete tunnel, 2 feet thick to protect the outside world from radiation. The inside dimensions of the ring tunnel will be 7 feet high and 10 feet wide with a 7 feet aisle for easy access to the ring (Figure 27). There will be three access ways into the ring. Two can be used for component installation, while another access through the linac tunnel serves as an escape way for emergencies.

Additional concrete shielding blocks will be installed on top of the existing SPEAR tunnel along the injector line to eliminate present radiation concerns.

In addition to the accelerator tunnels there are several light weight shelters to house the linac klystrons, the synchrotron klystron with its variable

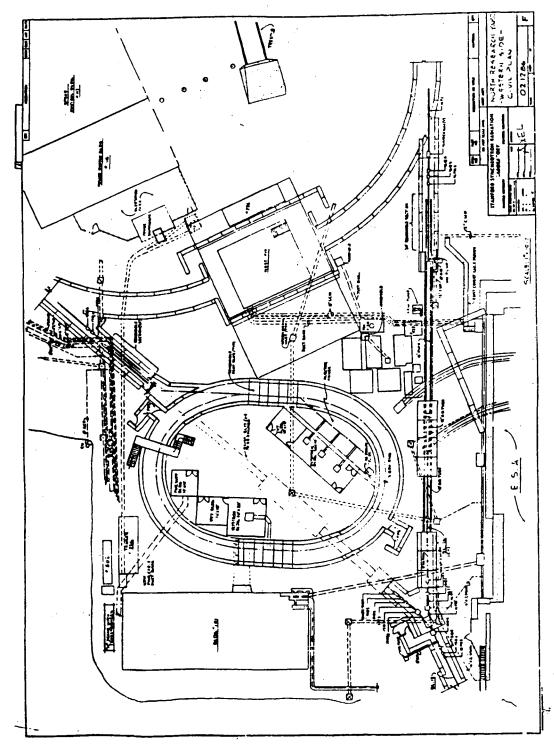


Fig. 26: Injector Utilities Plan

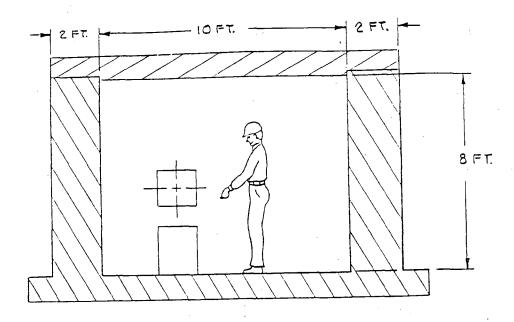


Fig. 27: Ring Shielding Cross Section

voltage transformer and high voltage box, the magnet power supplies and some local electronics.

All shelters will be constructed on a flat surface in part of the SLAC research yard next to the SPEAR storage ring (Figure 1). It is planned to keep the present electron beam line which crosses the synchrotron tunnel operational at least until the synchrotron is commissioned. This is possible since the existing injection line is on a higher elevation than the booster synchrotron beam lines by about 2 feet. The existing electron beam transport line, therefore, is no more than a small beam pipe just underneath the shielding roof where it crosses the ring tunnel.

Most of the ring tunnel walls will be constructed by poured reinforced concrete. It will, however, have removable roof blocks for easy installation of large equipment like the RF cavity.

3.4 Safety

Radiation safety around the SPEAR injector is provided by the passive shielding method as described above. In addition there will be radiation monitoring in accordance with present practice at SLAC and in the vicinity of the SPEAR shielding enclosure.

Personnel safety interlocks will be installed to prevent access to the ring enclosure during operation as well as to exclude beam from enclosures when personnel are present. These interlocks will be of the same design as those employed at SPEAR.

Safety rules will follow the Carlifornia safety code. During installation tunnel safety will be monitored by the SSRL safety group while the primary responsibility for providing and maintaining a safe environment lies with the head of the injector project. The safety group will monitor the safety of operations and review the safety aspects of equipment, structures and shielding associated with installation and operation.

Emergency power will be provided in the tunnel for lighting and protection of sensitive equipment.

All shelters designed such as to comply with the strict SLAC earthquake standards.

Fire safety has been coordinated with the local Palo Alto fire department to insure proper access. For small emergencies fire extinguishers will be located in each of the enclosures.

MGMT PLAN

4 Management Plan

The 3 GeV SPEAR Injector Project Management Plan is under separate cover inasmuch as the plan is subject to regular updating.

In brief, the Project Management Plan (PMP) describes in some detail, the SSRL management procedures that will be used to guide and monitor the Injector Project. The PMP is modeled, to a considerable extent, upon the approved SEP (I) Project Management Plan, plus the requirements of DOE Order 5700.4A.

The Injector Project PMP defines the responsibilities for reporting and review procedures for the project technical, cost and schedule baselines and specifies a system for effecting changes to the established baselines. Organizational realtionships between the Injector Project, SSRL, SLAC, Stanford University administration, the DOE Stanford Site Office (SSO), the DOE San Francisco Operations Office at Oakland (SAN) and the Office of Basic Energy Sciences (BES) are described in the PMP. The various responsibilities and authorities of these organizational units are defined in the plan. The Injector Project PMP also defines the technical specifications of the project and the related performance criteria.

A brief summary of the critical elements of the PMP is given in the following paragraphs.

SSRL will, through the Associate Director for the Accelerator Division and its staff, provide the leadership for directing and coordinating the design and construction activities. This group will have primary responsibility for the design, planning and execution of the project. A small administrative staff within this division will provide the planning, preparation and control of the budget, supervise the schedule and prepare reporting documents as required. These efforts will be supplemented by special assignment of personnel from other SSRL Divisions to the injector project as required. The implementation of the vacuum system for the injector is planned to be performed through the SSRL vacuum group. The SSRL administrative

staff will be available for special functions like personnel matters, contract administration, receiving and inventory. Purchasing is expected to be done similar to present practice, through the SLAC purchasing department.

The SPEAR injector construction phase is assumed to start at the beginning of FY'1988. By that time an experienced group of engineers and designers will become available from the phase down of the construction effort for the 1.2 GeV high brilliance storage ring at the Stanford Photon Research Laboratory, SPRL.

The technical systems fabrication is planned to be performed to the maximum extent possible by outside industry through competitive bidding. This procedure also has been applied to the construction of the SPRL 1.2 GeV storage ring and it has been established that outside industry has the ability to fabricate the required components to the specified tolerances, schedule and within cost estimates. To make maximum use of industry's capabilities it is planned to perform all design by inhouse staff and invite bids on subsystems not to exceed the experience and capability of one vendor. The construction group then again takes responsibility for quality control, assembley, test and overall functioning of the systems. This mode of operation does not require the vendors to expand beyond the limits of their expertise and therfore allows many small businesses to effectively compete for contracts.

In this scenario it is obvious that SLAC shops will be invited to participate in the fabrication of injector components as such resouces become available and don't interfere with other SLAC activities.

WBS (Level 3) for the SPEAR Injector System

1 The 3 GeV Spear Injector System

1.1 Special Facilities

- 1.1.0 Non Technical Facilities
- 1.1.1 Electrical Services
- 1.1.2 Mechanical Services
- 1.1.3 Safety Systems
- 1.1.4 Preinjector
- 1.1.5 Magnet System
- 1.1.6 Vacuum System
- 1.1.7 RF System
- 1.1.8 Instrumentation and Control
- 1.1.9 Injection and Ejection

1.2 Project Management and Administration

- 1.2.1 Technical Project Management
- 1.2.2 Administrative Services

WBS (Level 4) for the SPEAR Injector System

- 1 The 3 GeV Spear Injector System
 - 1.1 Special Facilities
 - 1.1.0 Non Technical Facilities
 - 1.1.0.0 E D & I
 - 1.1.0.1 Site Preparation
 - 1.1.0.2 Shelters
 - 1.1.1 Electrical Services
 - 1.1.1.0 E D & I
 - 1.1.1.1 AC Services
 - 1.1.2 Mechanical Services
 - 1.1.2.0 E D & I
 - 1.1.2.1 LCW Cooling System
 - 1.1.3 Safety Systems
 - 1.1.3.1 Fire Safety
 - 1.1.4 Preinjector
 - 1.1.4.0 E D & I
 - 1.1.4.1 Gun Assembly
 - 1.1.4.2 Accelerator Sections
 - 1.1.4.3 Modulators
 - 1.1.4.4 Klystrons
 - 1.1.4.5 Controls
 - 1.1.4.6 Linac Vacuum
 - 1.1.4.7 Beam Diagnostics

1.1.5 Magnet System

- 1.1.5.0 E D & I
- 1.1.5.1 Magnets
- 1.1.5.2 Magnet Support
- 1.1.5.3 Alignment
- 1.1.5.4 Magnet Measurement
- 1.1.5.5 Magnet Power Supplies

1.1.6 Vacuum System

- 1.1.6.0 E D & I
- 1.1.6.1 Vacuum Chambers
- 1.1.6.2 Pumping System
- 1.1.6.3 Pressure Monitoring
- 1.1.6.4 Cleaning/Installation

1.1.7 RF System

- 1.1.7.0 E D & I
- 1.1.7.1 RF Power Generation
- 1.1.7.2 RF Cavity
- 1.1.7.3 Low Level RF System
- 1.1.7.4 Computer Interface

1.1.8 Instrumentation and Control

- 1.1.8.0 E D & I
- 1.1.8.1 Beam Diagnostics
- 1.1.8.2 Control Systems
- 1.1.8.3 Protection System
- 1.1.8.4 Communications

1.1.9 Injection and Ejection

- 1.1.9.0 E D & I
- 1.1.9.1 Transport Lines

- 1.1.9.2 Pulsed Magnets
- 1.1.9.3 Instrumentation

1.2 Project Management and Administration

- 1.2.1 Technical Project Management
 - 1.2.1.1 Technical Coordination
 - 1.2.1.2 Accelerator Physics
 - 1.2.1.3 Installation Coordination and Quality Control
- 1.2.2 Administrative Services
 - 1.2.2.1 Project Planning and Budget Office
 - 1.2.2.2 SSRL Administration Services

WBS (Level 5) for the SPEAR Injector System

- 1 The 3 GeV Spear Injector System
 - 1.1 Special Facilities
 - 1.1.0 Non Technical Facilities
 - 1.1.0.0 E D & I
 - 1.1.0.1 Site Preparation
 - 1.1.0.2 Shelters
 - 1.1.0.2.1 Ring/Linac Tunnel
 - 1.1.0.2.1.1 Concrete Floor
 - 1.1.0.2.1.2 Ring Wall/Roof
 - 1.1.0.2.2 Equipment Shelter
 - 1.1.0.2.2.1 Ring Klystron
 - 1.1.0.2.2.2 Linac Klystrons
 - 1.1.0.2.2.3 PS/VVT Shelter
 - 1.1.1 Electrical Services
 - 1.1.1.0 E D & I
 - 1.1.1.1 AC Services
 - 1.1.2 Mechanical Services
 - 1.1.2.0 E D & I
 - 1.1.2.1 LCW Cooling System
 - 1.1.3 Safety Systems
 - 1.1.3.1 Fire Safety

- 1.1.4.1.2 RF/Cavity System
- 1.1.4.1.3 Focusing and Steering
- 1.1.4.1.4 Momentum Filter
- 1.1.4.1.5 Beam Diagnostics
- 1.1.4.1.6 Vacuum System
- 1.1.4.2 Accelerator Sections
- 1.1.4.3 Modulators
 - 1.1.4.3.1 HV Power Supply
 - 1.1.4.3.2 Pulse Forming Network (PFN)
 - 1.1.4.3.3 Controls
- 1.1.4.4 Klystrons
 - 1.1.4.4.1 Tube
 - 1.1.4.4.2 Focusing
 - 1.1.4.4.3 Tank and Cable
- 1.1.4.5 Controls
 - 1.1.4.5.1 Master Oscillator
 - 1.1.4.5.2 RF Drive
 - 1.1.4.5.3 Timing System
 - 1.1.4.5.4 Diagnostics
- 1.1.4.6 Linac Vacuum
- 1.1.4.7 Beam Diagnostics
 - 1.1.4.7.1 Beam Position Monitors
 - 1.1.4.7.2 Current/Charge Monitor
 - 1.1.4.7.3 Beam Steering
 - 1.1.4.7.4 Beam Focusing
- 1.1.4.7.5 Analyzing Station
- 1.1.5 Magnet System
 - 1.1.5.1 Magnets

- 1.1.5.1.1 Bending Magnets
- 1.1.5.1.2 Quadrupoles
- 1.1.5.1.3 Spec. Magnets
- 1.1.5.2 Magnet Support
- 1.1.5.3 Magnet Alignment
- 1.1.5.4 Magnetic Measurement
- 1.1.5.5 Magnet Power Supplies

1.1.6 Vacuum System

- 1.1.6.1 Vacuum Chambers
 - 1.1.6.1.1 Bending Chambers
 - 1.1.6.1.2 Quad Chambers
 - 1.1.6.1.3 Straight Section Chambers
- 1.1.6.2 Pumping System
 - 1.1.6.2.1 Roughing System
 - 1.1.6.2.2 Ion Pumping System
- 1.1.6.3 Pressure Monitoring
- 1.1.6.4 Cleaning/Installation

1.1.7 RF System

- 1.1.7.1 RF Power Generation
 - 1.1.7.1.1 350 MHz Klystron
 - 1.1.7.1.2 Klystron HV Supply
- 1.1.7.2 RF Cavity
- 1.1.7.3 Low Level RF System
- 1.1.7.4 Computer Interface

1.1.8 Instrumentation and Control

- 1.1.8.1 Beam Diagnostics
 - 1.1.8.1.1 Beam Position Monitors

- 1.1.8.1.2 Intensity Monitoring
- 1.1.8.1.3 Timing System
- 1.1.8.2 Control Systems
 - 1.1.8.2.1 Interface/Controllers
 - 1.1.8.2.2 Software
 - 1.1.8.2.3 Racks, Cables, Trays
 - 1.1.8.2.4 Computer Interface
- 1.1.8.3 Protection System
- 1.1.8.4 Communications
- 1.1.9 Injection and Ejection
 - 1.1.9.1 Transport Lines
 - 1.1.9.1.1 Linac Booster
 - 1.1.9.1.2 Booster-SPEAR 3.0 GeV
 - 1.1.9.1.3 Power Supplies
 - 1.1.9.1.4 Vacuum System
 - 1.1.9.2 Pulsed Magnets
 - 1.1.9.1.1 Kicker Magnets
 - 1.1.9.1.2 Septum Magnets
 - 1.1.9.3 Instrumentation
- 1.2 Project Management and Administration
 - 1.2.1 Technical Project Management
 - 1.2.1.1 Technical Coordination
 - 1.2.1.2 Accelerator Physics
 - 1.2.1.3 Installation Coordination and Quality Control
 - 1.2.2 Administrative Services
 - 1.2.2.1 Project Planning and Budget Office
 - 1.2.2.2 SSRL Administration Services

6 Schedule

A project schedule has been developed on the assumptions that construction funds become available at \$ 3.0 M for FY'88, \$7.5 M for FY'89 and, \$3.0 M for FY'90. With these assumption the injector system can be completed within 27 months. At that time, January 1990, beam tests in the preinjector linac are scheduled to be completed and beam tests in the booster synchrotron can begin. SPEAR injection tests could begin as early as March 1990. The actual start of the SPEAR injection tests, however, will depend on the SPEAR running schedule to minimize interference with the ongoing SSRL and high energy physics programs.

A summary as well as a more detailed schedule is shown in the following pages. A list of general project milestones as well as critical milestones is given in this section.

GANTT CHART REPORT - Current Date: 08-11-87 Summarize Level: 5 3 GeV SPEAR Injector

i i		1987 1988 to 1
		T DEC FEB APR JUN AUG OCT DEC FEB APR JUN AUG OCT DEC 2 4 6 8 10 12 14 16 18 20 22 24 26
1.0	Injector Summery	
1.0.8	System Test	
1.0.9	Beam Test	
1.1	Special Facilities	
1.1.0	Non Technical Facilities	
1.1.1	Electrical Services	
1.1.2	Mechanical Services	
1.1.3	Safety Systems	
1.1.4	Preinjector	
1.1.5	Magnet System	
1.1.6	Vacuum System	
1.1.7	AF System	
1.1.8	I & C System	
1.1.9	Injection/Ejection	
1.2.1	Techn. Project Mgmt	
Conflict Comp Dura	lict Delay Dura Critical CONDUCTITICS	tical

GANTI CHART REPORT - Current Date: 08-11-87

3 GeV SPE	3 Gev SPEAR Injector	1987	1988			.,	1989				सं	1990			
) EC	FEB APR	JUN A	AUG OCT 10 12	DEC 14	FEB APR JUN AUG OCT 16 18 20 22 24	A So	N AUG	24 I	26 PEC FE	FEB APF 28 30	FEB APR JUN AUG 28 30 32 34	AUG 34	
1.0	Injector Summary	11	П												_
1.0.80	System Test			•	•			-			n	•	•	. •	
1.0.90	Beam Test				•			•			U			N	
1.1	Special Facilities														
1.1.0	Non Technical Facilities	· -			•	•		•	•	• •	•	•	•		
1.1.0.0	EDGI								Π		•	•	٠.	•	
1.1.0.1	Site Preparation	·	À	•	•	•		•	•	•		•	•	•	
1.1.0.2	Shelters	.			•	•		•	•			•	•	•	
1.1.0.2.1	1.1.0.2.1 Shielding										•	•	•	•	
1.1.0.2.	1.1.0.2.2 Equipment Shelter				Ņ	•		•	•	•		•	•	•	
1.1.1	Electrical Services			-	•	•		•		•		•	•	•	
1.1.1.0	11 3 C III						Ň	•	•	•		٠	• .	•	
1.1.1.1	AC Services				Ц		Ì	•				•	•		
1.1.2	Mechanical Services			-	•	•		•			•	•	•	•	
1.1.2.0	1 3 C H	•					À	٠				•	•	•	
1.1.2.1	LCW Cooling System	•		•	U		Ň	•			•	•	•	• .	-
1.1.3	Safety Systems	•		•	•			•	_		•	•	•	•	
1,1,3,1	Fire Safety			•	• ,	•		•	U	ń		•	•	•	
4.1.4	Preinjector	· 	•	•	•	•	•	•	•	•	•	•	•	•	
1.1.4.0	EDGI											•	•	•	
4.4.4.4	Gun Assembly							m	•			•	•	•	
1.1.4.2	Accelerator Sactions										n	•	•	•	
1.1.4.3	Modulator						П	•	•		•	•	•		
1.1.4.4.	1.1.4.4.1 Klystrons (surplus)	•		•	•		Ì	•	•	•		•	•		
1.1.4.4.	1.1.4.4.2 Klystrons (new)			•	• .	٠	•	•	•		Ì	•	•	•	

GANTI CHARI REPORT - Current Date: 08-11-87

		1987				TOO SHIP WILL GOV						ב הבני	Œ	g			
		OCT DEC		FEB AP	∑ 5 œ ₹	원 유	OCT DEC 12 14	FEB 16	APH J 18 2	20 AU	AUG OCT 22 24		28		2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	AUG 34	•
1.1.4.5	Controls	•	•	•				'n	•	•	~•						
1.1.4.6	Linac Vacuum	•	•	•	•	•				n	•	•		•		_	
1.1.4.7	Beam Diagnostics			•	•					n	•	•					
1.1.4.80	Component Test		•	•	•			•	•	U	ń	•					
1.1.4.90	Beam Test		•	•	•			•		•	IJ		'n				
1.1.5	Magnet System	_		•	•	•	•	•	•	•	•	.=	•		•		
1.1.5.0	E D E H	•	<u>U</u>										•		•	_	
1.1.5.1	Magnets	•		Ų							ħ	•	•	•	•	_	
1.1.5.2	Magnet Support	•	•	•	•		U		Ì	•	•	•	٠				
1.1.5.3	Alignment		•	•	•				•	U	'n	•	•		•		
1.1.5.4	Xagn.Measurement	•	•	Ц							m	•		•	•		
1.1.5.5	Magnet PS	•	•	•	•						ń	•	•	•			
1.1.5.6	Magnet Installation			•	•						Ň	•					
1,1,5.80	Component Test			•				•		•	U		•		•		
1.1.6	Vacuum System	_	•	•						•	•	•	•	•			
1.1.6.0	I S C H		U											•	•		
1.1.6.1	Vacuum Chambers		•	•					Ň	•	•	•	•				•
1.1.6.2	Pumping System	•	•	•			-				'n	•				•	
1,1,6,3	Pressure Monitoring		•	•	•			•			n	•		•			
1.1.6.4	Cleaning/Installation	٠		U							ń	•		•			
1.1.6.5	Beam Monitors other than BPM	•		•	•					L			'n				
1.1.6.80	Pump Down			•			•.	•		•	U					•	
1.1.7	AF System		•	•	-			•	•	• .	•			•		•	
1.1.7.0	EDGI	•		•	•	•									•		
4.4.7.4	RF Power Generation	•		•	•	•,	•							÷			

GANTT CHART REPORT - Current Date: 08-11-87

3 GeV SPE	3 GeV SPEAR Injector	Ġ			_				•					,	, ,			
-		1987 0CT 1) <u>H</u>		E	Z			(3	四 _	N 1	40						
1.1.7.2	AF Cavity	o ·	n ·	₹ •	· ب	20 •	. 9	12 . 2 .	Ш	16 18	50 55	~ ~ N	% .	8	සි .	ස	Æ .	
1.1.7.3	Low Level AF System	•			•	•		•	U			Ņ	•	•	•			
1.1.7.4	AF Utilities	•			•		•	•	ш		Ì	•	•	•				
1.1.7.80	AF System Test	•				•		•	•	•	•	U	N		•			-
1.1.8	I & C System	•	-		•	•	•	•	•	•	•		٠					
1.1.8.0	EDGI	•	·															•
1.1.8.1	Beam Diagnostics	•											'n					
1.1.8.2	Control System	•	•	٠.		U							Π					
1.1.8.3	Protection System,	•			•	•	•	•	•	•			'n					
1.1.8.4	Communications	•			•	•		•	Ш		'n	•	•	•				
1.1.9	Injection/Ejection	•			•	-	•	•	•	•	•	•	•			•	•	
1.1.9.0	FOGI	•	•	•	•	U											Π	
1.1.9.1	Transport Lines	•	•		•	•	•	•	u						Π			
1.1.9.2	Pulsed Magnets	•		•	•	•	•	•								П		
1.1.9.3	Instrumentation	•					•	•	•	•	•	U				Π		
1.1.9.80	SPEAR Injection Test	•		•	•			•	•	•		•		·	II		A	

Booster Milestones

	Milestones	<u>Date</u>	On Critical Path
Funding	Start	10/87	YES
Facilities	Equipment Shelters Electrical Utilities Mechanical Utilities Shielding	10/88 4/89 4/89 9/89	YES YES
Linac	Order Accelerating Sections Gun Test (Mod & Klystrons) Linac Beam Test	5/88 5/89 10/89	YES YES
Magnet	Place Main Magnets Orders Order Big Power Supplies Power Supply Test Start Magnet Installation Finish Magnet Installation System Tests	4/88 10/88 10/89 4/89 10/89	YES YES YES YES
Vacuum	Place Vacuum Chamber Order Install Vacuum Chambers Pumpdown	5/88 2/89 10/89	YES
RF	Cavity Cold Test RF System Test	10/88 10/89	YES
IC	Complete Timing System Complete Linac Diagnostics Systems Tests Complete	9/89 10/89 12/89	YES YES
Inject./Eject.	Complete Kicker Magnet System Test (Contingent on SPEAR schedule)	10/89 3/90	YES
Project	Start Commissioning Booster Start Injection into SPEAR (Contingent on SPEAR schedule)	1/90 5/90	7/90
	Project Complete	9/90	YES

This section of the CDR presents summarized and detailed cost estimates of the 3 GeV SPEAR Injector Project. Computer-generated rounding-off errors account for slight differences between some of the estimate totals.

7.1 OBLIGATIONS AND COSTS ESTIMATE SUMMARY

The following table shows the summary of the estimated obligations and costs (in thousands) for the three-year project. This arrangement of the estimated obligations and costs corresponds to the Construction Project Data Sheets.

TITLE	FY88 OBS COSTS	FY89	FY90	
•	OBS COSTS	OBS COSTS	OBS COSTS	TOTAL
3 GEV INJECTOR				
Special Facil Engrng & Design Proj Mgmt & Adm	1,878 1,729 504 504 187 187	5,315 5,342 1,148 1,148 183 183	1,848 1,970 336 336 220 220	9,041 1,988 590
Subtotal Contingencies	2,569 2,420 431 432	6,646 6,673 854 853	2,404 2,526 596 596	11,619
Total	3,000 2,852	7,500 7,526	3,000 3,122	13,500

7.2 ESCALATION FACTORS

The FY1986 baseline costs were escalated with the escalation factors shown below. The source for these factors is the Anticipated Economic Escalation Rates for Energy Research Construction Projects, August 1986 update.

	RATE	FACTOR
FY86 - FY87	2.5%	1.025
FY87 - FY88	4.0%	1.066
FY88 - FY89	4.8%	1.117
FY89 - FY90	5.3%	1.176

7.3 CONTINGENCIES

The contingencies on the various tasks under the project have been

estimated separately for different systems depending on the complexity and the exposure to fluctuating economic factors. Systems which are very well defined and for which local industry has been tested carry a minimum 15% contingency. The booster RF system, being an exact replication of the system for the Stanford Photon Research Lab storage ring, carries a contingency of only 10%. A larger (25%) contingency must be applied to the Instrumentation and Control (I&C) system and part of the injection and ejection systems since both require incorporation into existing SPEAR systems. Traditionally such incorporations into existing facilities reveal undocumented boundary and interface conditions that require additional funds and design effort.

7.4 LEVELS 3 AND 4 ESTIMATED OBLIGATIONS AND COSTS

The tables on the following three pages show the estimated FY1986 Baseline Costs and the estimated annual (extended) obligations and costs at Levels 3 and 4, all rounded to thousands.

7.3 FY 1986 BASELINE COSTS

The baseline costs were estimated in FY1986 dollars and are presented in detail following the Level 3 and 4 TEC estimates.

Most of the baseline estimates were based on costs for similar components in recent projects such as the damping rings at SLAC, the 1.2 GeV storage ring under construction at the Stanford Photon Research Laboratory (SPRL) and on engineering estimates by technical support groups at SSRL and SLAC.

		•	(FY 19			-				
		FY86 BASE		COSTS		COSTS	0BS	COSTS		C09
	16	1	1	·						
		! !		!		I		1		
1	3 GeV SPEAR INJECTOR	1 1]		1		1 i	,	
1.	1 SPECIAL FACILITIES		1	1		.			l	
1.	1.0 NON-TECH FACILITIES		482	433	252	252	0.	49 I	734	
1.	1.1 ELECTRICAL SERVICES		19	19 19	401	401	0	0	420	
1.	1.2 MECHANICAL SERVICES	•	19	19 j	325	325 <u> </u>	0	0 [344	
1.	1.3 SAFETY SYSTEMS	1 20	0	0	18	18	5	5	23	
1.	1.4 PREINJECTOR	1,292	566	466	597	694	266	269 I	1,429	1,
1.	1.5 MAGNET SYSTEMS	1,919	587	587	1,472	1,402	59	129	2,118	2,
1.	1.6 VACUUM SYSTEM	1 658	267	267	411	411	46	46]	724	
1.	1.7 RF SYSTEM		0	0	643	643	213	213	856	
1.	1.8 INST & CONTROL		230	230	935	935	190	190	1,355	1,
1.	1.9 INJECTION/EJECTION		28	28	925	925	904	904 	1,357	1,
•	SUBTOTAL 1.1	8,844	2,198	2,049	5,979	6,006	1,683	1,805	9,860	9,
1.	2 PROJECT MANAGEMENT AND	ADMINISTRATI	10N	 	•	1		11		
1.:		1,195	242	242	531	531	578	578 11	•	1,
1.	2.1 ADMIN SERVICES	365	129	129	136	136	143	143	408	
	SUBTOTAL 1.2	1,560	371	371	667	667	721	721 	1,759	1,
TO [*]	TAL WITHOUT CONTINGENCY	10,404	2,569	2,420	6,646	6,673	2,404	2,526	11,619	11,
CO	AL INGENÇÂ	1,676	431	432	854	853	596	596	1,881	1,
T0*	TAL ESTIMATED COSTS (TEC)			2,852	7,500	7,526	3,000		13,500	13,

•

DISK 4/48	•			88>	<fy 19<="" th=""><th>39> </th><th><fy 19<="" th=""><th>90> </th><th>I < TOTAL</th><th>></th></fy></th></fy>	39>	<fy 19<="" th=""><th>90> </th><th>I < TOTAL</th><th>></th></fy>	90>	I < TOTAL	>
8/11/87 =======		FY86 BASE	-	COSTS	08S =======	COSTS	OBS	COSTS		COSTS
1.1.6.3	Press Monitor	11	0	0	12	12	0	0	•	12
1.1.6.4		1 177		63	•	132		0		195
1.1.6.5		73 		14 	45	45 J		22	-	81
		658	267	267	411	411	46	46	724	724
1.1.7	rf system	1				1		† †		
1.1.7.0		230		0	206	206	54	54		260
1.1.7.1 1.1.7.2	RF Power RF Cavities			0 1	112	112		159	•	271
1.1.7.3	RF Cavities Low Level RF Driv			0		98		0 1		.98
1.1.7.4	RF Utilities	•		0 0	205 22	205 22	0	0 0		205 22
	Ì									
	Subtotal			0	643	643 	213	213		856
1.1.8 1.1.8.0	INSTRUMENTATION & CO					i		İ	1	
1.1.8.1	ED&I Beam Diagnostics			76 76	296	296	50	50	-	422
1.1.8.2	Control System			76 į 78 į	243 325	243 325	39 86	39 86		358
1.1.8.3	Protection Sys			0	57	57	15	15	•	489
1.1.8.4	Communications			0	14	14	0	0		72 14
	Subtotal !			 230	935	 935	190	 190		1,355
1.1.9	I INJECTION & EJECTION	[] [[]				1		. 1	l	-,000
1.1.9.0	ED&I	237	28	28	118	118	124	124		270
1.1.9.1	Transport Lines			0 1	391	391	528	528	•	270 91 9
1.1.9.2	Pulsed Magnets		0	0 1	416	416	203	203		619
1.1.9.3	Instrumentation		0	0	0	0	49	49		49
	Cubarasi								•	
	Subtotal		. 28	28 	925	925 	904	904		1,857
SUE	BTOTAL 1.1		2,198	2,049	5,979	6,006	1,683	1,805	,	9,860
1.2 PR0	DJECT MANAGEMENT AND AI	DMINISTRATI		,		!		†		
	rechnical project manai	GMENT !!		1				1		
1.2.1.1	Technical Coordin		149	149		143	178	178	470	470
	Accelerator Physil			61 [40	. 93	93		194
1.2.1.3	QC & Install Coor			32	348 	348 [307 	307		687
	Subtetal	1,195	242	242	531	531	5 78	578	1,351	1,351
.2.2 A	 ADMINISTRATIVE SERVICES			1		1				
.2.2.1	Proj Plan/Bud Off[91	91	9 6	96	101	101		288
.2.2.2	SSRL Admin Servic	108	38	38	40	40	42	42		120
	Cubasasi		400							
	Subtotal		129	129	136	136	143	143 		408
SUE	STOTAL 1.2	1,560	371	371	667	667	721	721	1,759	1,759
	CONTINGENCY	10,404	2,569	2,420		6,673	2,404	2,526		11,619
CONTINGENO		•		432	854	853	596	596	1,881	1,881
TEC (R115)	 -			2,852	7,500	7,526	3,000	3 122 11	13,500	13,500

.

Base Line Cost Estimate (FY'86 Dollars)

Base Line C		Rase Li	ne Budget		1	Base Line	Cost FY'86	Dollars
	WBS		Systems	•	1988	1989	1990	3 Year
Component/Activity		Materials	Labor	Total				Summary
	2=======	============	=========	**********	========	========	===== ==	
Non Tech. Systems			67 707	E 7 707	20 052	20 052	•	57.707
ED&I	1.1.0.0	13 900	57,703 20,922	57,703	28,852	28,852	0	57,703
Site Preparation	1.1.0.1	13,890 544,888	36,280	39,812 581,168	39,812 384,077	197,091	0	39,812 581,168
Shelters	1.1.0.2	744,000	30,200	301,100	304,077	171,071	Ū	361,100
Electr. Services E D & I	1.1.1.0	0	52,491	52,491	17,497	34,994	0	52,491
AC Services	1.1.1.1	223,487	100,872	324,359	0	324,359	ō	324,359
Mechan. Services		•	•	·				,
ED&I	1.1.2.0	0	52,828	52,828	17,609	35,219	0	52,828
LCW Cooling System	1.1.2.1	174,935	81,096	256,031	0	256,030	0	256,030
Safety Systems		20,000	•	30,000	•	15 070	/ 170	30 000
Fire Safety	1.1.3.1	20,000	0	20,000	0	15,830	4,170	20,000
Preinjector E D & I	1.1.4.0	0	214,709	214,709	97,597	95,641	21,471	214,709
Gun Assembly	1.1.4.1	113,330	45,055	158,384	70,909	87,475	21,47	158,384
Accel. Sections	1.1.4.2	246,354	19,192	265,546	158,304	32,242	75,000	265,546
Modulators	1.1.4.3	224,667	75,076	299,743	151,400	148,342	0	299,743
Klystrons	1.1.4.4	128,601	24,724	153,325	. 0	23,601	129,724	153,325
Controls	1.1.4.5	88,308	6,476	94,784	52,658	42,126	0	94,784
Linac Vacuum	1.1.4.6	42,235	3,286	45,521	0	45,521	Ŏ	45,521
Beam Diagnostics	1.1.4.7	44, <i>7</i> 31	14,302	59,032	0	59,032	0	59,032
Magnet System ED & I	1.1.5.0	0	400,049	400,049	151,858	198,186	50,006	400,049
Magnets	1.1.5.1	662,209	70,631	732,839	279,613	453,226	0,000	732,839
Magnet Support	1.1.5.2	204,634	13,508	218,142	65,681	152,461	Ŏ	218,142
Magnet Alignment	1.1.5.3	21,925	27,988	49,913	0	49,913	0	49,913
Magnetic Measurem.	1.1.5.4	50,050	47,691	97,741	53,909	43,832	0	97,741
Power Supplies	1.1.5.5	286,405	50,951	337,356	0	337,356	0	337,356
Magnet Install.	1.1.5.6	13,050	70,189	83,239	0	83,239	0	83,239
Vacuum System ED & I	1.1.6.0	0	161,571	141 571	40 500	90 795	20 104	141 671
Vacuum Chambers	1.1.6.1	109,028	38,117	161,571 147,145	60,589 116,837	80,785 30,307	20,196 0	161,571 147,145
Pumping System	1.1.6.2	87,571	0	87,571	110,000	87,571	ŏ	87,571
Pressure Monitor.	1.1.6.3	10,704	ŏ	10,704	ŏ	10,704	ŏ	10,704
Cleaning/Install.	1.1.6.4	71,903	104,741	176,643	58,881	117,762	Ŏ	176,643
Beam Monitoring	1.1.6.5	37,676	34,914	72,590	13,093	40,659	18,838	72,590
RF_System					_			
E D & I	1.1.7.0	0	230,477	230,477	0	184,382	46,095	230,477
RF Power RF Cavities	1.1.7.1	211,783 60,484	23,763 27,237	235,546	0	100,546	135,000 0	235,546
Low Level RF Drive	1.1.7.3	153,557	29,713	87,721 183,270	. 0	87,721 183,270	0	87,721 183,270
RF Utilities	1.1.7.4	17,265	2,123	19,388	٥	19,388	ŏ	19,388
I & C System		, ,	-,	.,,,,,,,,	•	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	.,,,,,,,,
E D & 1	1.1.8.0	0	378,386	378,386	70,947	264,870	42,568	378,386
Beam Diagnostics	1.1.8.1	226,087	95,899	321,986	71,553	217,476	32,958	321,986
Control System	1.1.8.2	230,047	206,706	436,753	72,792	291,169	72,792	436,753
Protection System	1.1.8.3	35,611	28,020	63,631	0	50,905	12,726	63,631
Communications Injection/Ejection	1.1.8.4	7,500	4,670	12,170	0	12,170	U	12,170
ED&I	1.1.9.0	l o	237,221	237,221	26,358	105,431	105,431	237,221
Transport Lines	1.1.9.1	580,503	217,958	798,461	20,550	349,864	448,597	798,461
Pulsed Magnets	1.1.9.2	434,562	111,175	545,737	Ō	372,868	172,868	545,737
Instrumentation	1.1.9.3	34,944	6,476	41,420	0	. 0	41,420	41,420
Techn. Project Mgmt.					476 57-	488 45-		
Tech. Coordination		66,048	353,888	419,936	139,979	128,183	151,775	419,936
Accel. Physics	1.2.1.2	9,900	162,952	172,853	57,618	35,891	79,344	172,853
Inst.Coord/Qal.Con	1.2.1.3	217,667	384,766	602,433	30,000	311,216	261,216	602,433
Administr. Services Planning Office	1.2.2.1	44,500	212,295	256,795	85,598	85,598	85,598	256,795
SSRL Admin. Serv.		14,500	107,627	107,627	35,876	35,876	35,876	107,627
=======================================		===========	===== .		========		========	=======================================
Sub Totals w/o Cont.	·	5,756,038	4,646,710	10,402,748	2,409,895	5,949,181	2,043,672	10,402,748
=======================================			========	=========	:========			=======================================
Project Contingency	,	927,952	749,113	1,677,065	404,363	765,233	507,469	1,677,065
Page Line Cost For	:======================================	6,683,990	5 70E 927	12 070 917	2 814 250	6 714 414	2.551 141	12 079 813
Base Line Cost Est.		0,003,770	ɔ,ɔyɔ,ōሬɔ =========	12,U17,O13 ==========	=====================================	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-2,0,7,0,3
					,			,

Base Line Cost Estimate (FY'86 and then years \$)

Base Line C	OSt ES				- -			
	WBS	Base Line Es FY'8		Systems	1988	: Cost Est 1989 In Factors:	imate (then 1990 :	years K\$) Total
Component/Activity		Materials	Labor	Total	1.066	1.117	1.176	
Non Tech. Systems								
ED&I	1.1.0.0	0	58	58	31	32	0	63
Site Preparation	1.1.0.1	19	21	_40	42	0	0	42
Shelters	1.1.0.2	545	36	581	409	220	0	630
Electr. Services E D & I	1.1.1.0	0	52	52	19	39	0	58
AC Services	1.1.1.1	223	101	324	Ó	362	ő	362
Mechan. Services	1.1.1.1	LLS		, , ,	•	302	·	302
ED&I	1.1.2.0	0	53	53	19	. 39	0	58
LCW Cooling System	1.1.2.1	1 <i>7</i> 5	81	256	0	286	0	286
Safety Systems				ļ				
Fire Safety	1.1.3.1	20	0	20	0	18	5	23
Preinjector		•			4.4	4.0-		
E D & I	1.1.4.0	0 113	215	215	104	107	25	236
Gun Assembly	1.1.4.1 1.1.4.2	246	45 19	158	76 · 169	98 36	0 88	173
Accel. Sections Modulators	1.1.4.3	225	75	266 300	161	166	0	293 327
Klystrons	1.1.4.4	129	25	153	0	26	153	179
Controls	1.1.4.5	88	6	95	56	47	133	103
Linac Vacuum	1.1.4.6	42	3	46	Ō	51	Ŏ	51
Beam Diagnostics	1.1.4.7	45	14	59	0	66	Ö	66
Magnet System								
ED&I	1.1.5.0	0	400	400	162	221	59	442
Magnets	1.1.5.1	662	71	733	298	506	0	804
Magnet Support	1.1.5.2	205	14	218	70	170	0	240
Magnet Alignment	1.1.5.3	· 22	28	50	_0	56	0	56
Magnetic Measurem.	1.1.5.5	286	48 51	98 337	57 0	49 377	0	106
Magnet Install.	1.1.5.6	13	70	83	Ö	. 93	0 0	377 93
Vacuum System	,,,,,,,	1.5	, 0	95	0	73	U	73
ED&I	1.1.6.0	0	162	162	65	90	24	179
Vacuum Chambers	1.1.6.1	109	38	147	125	34	Ö	158
Pumping System	1.1.6.2	88	0	88	0	98	0	98
Pressure Monitor.	1.1.6.3	<u>11</u>	0	11	0	12	0	12
Cleaning/Install.	1.1.6.4	72	105	1 <u>77</u>	63	132	0	194
Beam Monitoring	1.1.6.5	38	35	73	14	45	22	82
RF System E D & I	1.1.7.0	0	230	230	0	204	F/	2/0
RF Power	1.1.7.1	212	230	236	0	206 112	54 159	260 271
RF Cavities	1.1.7.2	60	27	88	ŏ	98	0	98
Low Level RF Drive	1.1.7.3	154	30	183	ŏ	205	ŏ	205
RF Utilities	1.1.7.4	17	2	19	Ŏ	22	ŏ	22
I & C System								
ED&I	1.1.8.0	0	378	378	76	296	50	422
Beam Diagnostics	1.1.8.1	226	96	322	76	243	39	358
Control System	1.1.8.2	230	207	437	78	325	86	488
Protection System	1.1.8.3	36	- 28	64	0	57	15	72
Communications Injection/Ejection	1.1.8.4	8	5	. 12	U	14	0	14
ED&I	1.1.9.0	0	237	237	28	118	124	270
Transport Lines	1.1.9.1	581	218	798	-0	391	528	918
Pulsed Magnets	1.1.9.2	435	111	546	Ö	416	203	620
Instrumentation	1.1.9.3	35	6	41	Ò	0	49	49
. Techn. Project Mgmt.								
Tech. Coordination		66	354	420	149	143	178	471
Accel Physics	1.2.1.2	10	163	173	61	_40	93	195
Inst.Coord/Qal.Con	1.2.1.3	218	385	602	32	348	307	687
Administr. Services	1221	/ E	212	257	91	96	101	288
Planning Office SSRL Admin. Serv.	1.2.2.1	45 0	212	257 108	38	40	42	288 121
SSRL Admin. Serv.	1.2.2.2		108	108	30	4U :=======		121
Sub Totals w/o Cont.		5,756	4,647	10,403	2,569	6,645	2,403	11,618
=======================================	 ==========							
Project Contingency		928	749	1,677	431	855	597	1,883
=======================================	.=======			=========	=======================================			
Base Line Cost Est.		6,684	5,396	12,080	3,000	7,500	3,000	13,500
============	========	===========	=======	========		.=======	========	

M & S, Labor and E D & I by Year (FY'86 \$)

			FY'88		
Component/Activity	WBS	M&S	Labor	E D & I	Total
Non Tech. Systems	1.1.0	388	36	29	453
Electr. Services	1.1.1	0	0	17	17
Mechan. Services	11.1.2	0	0	18	18
<u>></u>	11.1.3	0	0	0	0
ëi	1.1.4	387	47	86	531
Magnet System	1.1.5	359	40	152	551
mn	1.1.6	127	62	61	249
RF System	11.1.7	0	0	0	0
	1.1.8	89	99	71	215
Injection/Ejection	1.1.9	0	0	26	56
Sub Tot Special Facilities	1.1	1,349	241	471	2,061
Techn. Project Mamt.	11.2.1	55	172	0	228
	1.2.2	15	107	0	121
Sub Tot Project Mgmt./Admi	1.2	70	279	0	349
Sub Tot Base Cost		1,419	520	471	2,410
Project Contingency		238	87	79	404
Total Project	1.	1,657	209	550	2,814

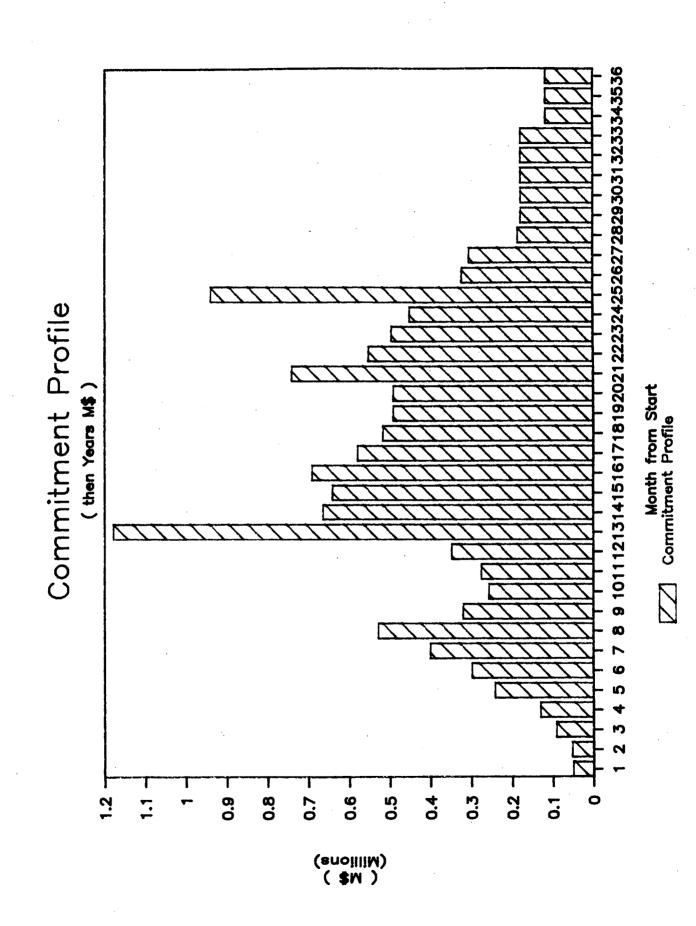
M & S, Labor and E D & I by Year (FY'86 \$)

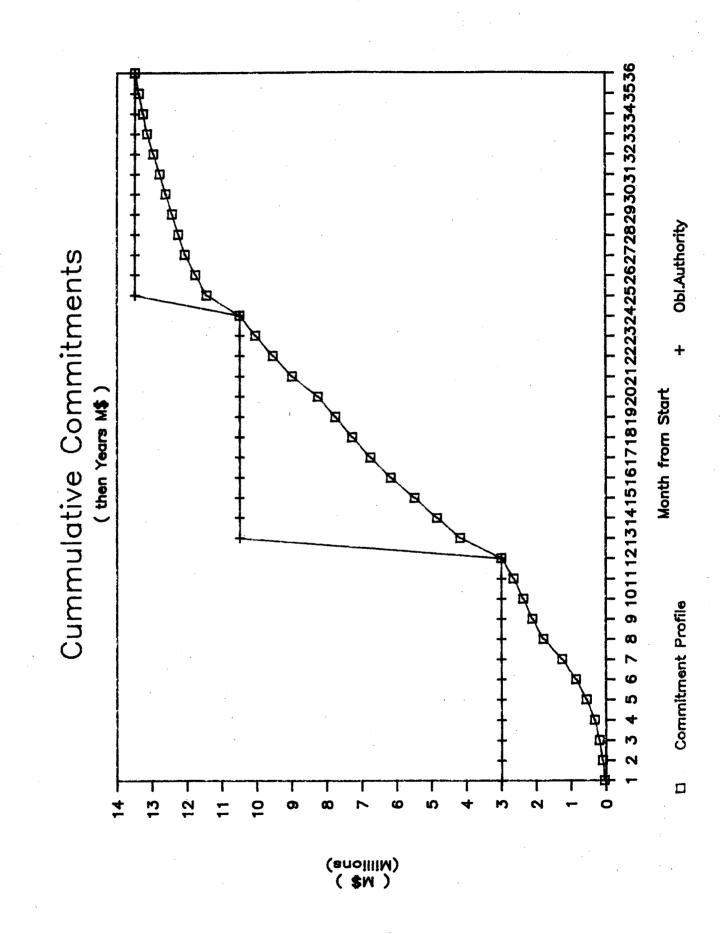
			FY '89		
Component/Activity	WBS	M&S	Labor	ED&I	Total
	_				
Non Tech. Systems	1.1.0	7	21		226
	1.1.1	223	101	35	359
Mechan. Services	11.1.2	7	81		291
``	1.1.3	16	0	0	16
•~	11.1.4	2	117	96	534
Magnet System	1.1.5	879	241	198	1,318
	11.1.6	7	116	81	368
RF System	11.1.7	0	83	æ	575
I & C System	11.1.8	4	229	265	837
Injection/Ejection	1.1.9	9	158	0	828
Sub Tot Special Facilities	1.1	3,178	1,146	1,028	5,352
Techn. Project Mgmt.	1.2.1	144	331	0	475
	1.2.2	15	107	0	121
Sub Tot Project Mgmt./Admi	1.2	159	438	0	597
Sub Tot Base Cost		3,337	1,584	1,028	5,949
Project Contingency		429	204	132	765
Total Project	1.	3,766	1,788	1,161	6,714

M & S, Labor and E D & I by Year (FY'86 \$)

			FY'90		
Component/Activity ====================================	WBS	M&S	Labor	ED & I	Total ====================================
	_				
Non Tech. Systems	11.1.0	0	0	0	_ 0
Electr. Services	1.1.1	0	0	0	<u> </u>
Mechan. Services	11.1.2	0	0	0	-0
ţ	11.1.3	4	0	0	4
Preinjector	1.1.4	180	25	21	226
Magnet System	1.1.5	0	0	20	20
mnr	÷.	19	0	20	39
RF System	11.1.7	135	0	46	181
S S	1.1.8	89	51	43	161
Injection/Ejection	11.1.9	485	177	105	1 892
Sub Tot Special Facilities	1.1	891	253	286	1,430
Techn. Project Mgmt.	1.2.1	94	398	0	492
Administr. Services	1.2.2	15	107	0	121
Sub Tot Project Mgmt./Admi	1.2	109	505	0	614
Sub Tot Base Cost		1,000	758	286	2,044
Project Contingency		248	188	7.1	507
Total Project	1.	1,249	946	357	2,551
		; 			_

M & S, Labor and E D & I by Year (then Year \$)


		Escalation Factor	actor: FY'88	1.066	
Component/Activity	WBS	M&S	Labor	ED&I	Total
Non Tech. Systems	1.1.0	413	39	31	483
Electr. Services	1.1.1	0	0	19	19
Mechan. Services	1.1.2	0	0	19	19
Safety Systems	1.1.3	0	0	0	0
•⊢	11.1.4	412	20	104	266
Magnet System	1.1.5	383	43	162	587
mnr	11.1.6	136	99	65	792
RF System	11.1.7	0	0	0	0
S S	11.1.8	94	59	94	230
Injection/Ejection	11.1.9	0	0	28	28
		1 438	256	502	
	+ - -	000)	3 00	1
Techn. Project Mgmt.	1.2.1		184	0	243
Administr. Services	1.2.2	16	114	0	129
Sub Tot Project Mgmt./Admi	1.2	75	297	0	372
Sub Tot Base Cost		1,513	554	505	2,569
Project Contingency		254	93	84	431
Total Project (TEC)	1.	1,767	647	587	3,000
	! ! ! ! !		 		


M & S, Labor and E D & I by Year (then Year \$)

		Escalation F	Factor: FY'89	1.117	
	WBS	M&S	Labor	ED&I	Total
Non Tech. Systems	1.1.0	6		32	S
	1.1.1	250	113	39	401
	.1:	6		.68	2
Safety Systems	.1:	18	0	0	18
	1.1.4	359		107	296
Magnet System	.1.	982	269	221	1,472
Vacuum System	ij.	9	സ	06	~
	.1.	4	93	206	4
	٦.	œ	256	296	ന
Injection/Ejection	1:	3	7	118	\sim
בייסטע ליה לייס ראיים רא		3.550	1.280	1.149	5,979
))		
Techn. Project Mgmt.	1.2.1	161	370	0	531
Administr. Services	1.2.2	17	٦	0	3
Sub Tot Project Mgmt./Admi	1.2	178	489	0	667
Sub Tot Base Cost		3,727	1,769	1,149	6,645
Project Contingency		479	228	148	855
Total Project (TEC)	11.	4,207	1,997	1,296	7,500
	! ! !	 		 	

M & S, Labor and E D & I by Year (then Year \$)

		Escalation F	Factor: FY'90	1.176	— — — - - - - - -
Component/Activity	WBS	M&S	Labor	E D & I	Total
Non Tech. Systems	1.1.0	0	0	0	0
Electr. Services	1.1.1	0	0	0	0
S	1.1.2	0	0	0	0
Safety Systems	1.1.3	2	0	0	2
	1.1.4	212	29	25	266
Magnet System	1.1.5	0	0	59	69
	1.1.6	22	0	24	46
RF System	1.1.7	159	0	54	213
	1.1.8	08	09	20	189
Injection/Ejection	1.1.9	571	209	124	904
Sub Tot Special Facilities	1.1	1,048	297	336	1,682
Bootow Drotect Mant	רכו		0 9 7		579
Administr. Services	1.2.2	17	125	0	143
Sub Tot Project Mgmt./Admi	1.2	128	594	0	722
Sub Tot Base Cost		1,176	891	336	2,403
Project Contingency		292	221	83	597
Total Project (TEC)	1.	1,468	1,112	420	3,000
	! ! ! !		 	 	

Labor Cost Base (FY'86 \$)

3 GeV Spear Injector System

•	SLAC	CRAFT	
TOTAL	CODE		\$/MM
ITEM	CODI	CODE	
=======================================			
CONTRACT SERV. MANAG.	8,	AC	
FINANCIAL ADMIN.	9	AF	5511
PERSONNEL ADMIN.	10	AP	4589
SECRETARY	5	SE	3324
ADMIN. ASSISTANT		AA	4568
DATA AIDE		DA	2659
ELECTR. COORDINATOR	18	CS .	5254
COORDINATOR/PROJECT	2	CP	8513
ALIGNMENT ENGINEER	43	AE	6540
ELECTRICAL ENGINEER	16	EL	6969
MECHANICAL ENGINEER	11	ME	7720
CONSULTANT		CN	7505
	27	MF	4525
MECHANICAL FAB.	21		
COMPUTER PROGRAMMER		PR	6390
PROJECT MANAGER		SC	10915
RESEARCH ASSOCIATE		RA	6390
GRAD. STUDENTS (50%)		ST	1598
EXPEDITOR	3 -	EX	5661
ELECTRON. TECHNICIAN	32	TE	4246
OPERATION TECHNICIAN	42	TO	4589
- "	42	DC	2745
DOCUMENTATION CLERK			
MECHANICAL MACHINING	27	MM	4525
MECHANICAL DESIGNER	52	MD	5487
ELECTRICAL DESIGNER	57	ED	5487
ELECTRICAL ASSEMBLER	63	EA	2732
DAVIS-BACON LABOR	•••	DB	9340
		JL	3106
CONTRACT LABOR			
UTILITIES/ELECT. T&M		UE	8406
UTILITIES/MECH. T&M		UM	8406
WELDING/VACUUM	79	WV	6491
ELECTRICIAN	84	EL	5207
VACUUM TECHNICIAN	81	TV	6491
	85	TM	6491
MECH. TECHNICIAN	-		
ALIGNMENT TECHNICIAN	76	TA	5324
RIGGER	86	RI	5230
ELECTRICAL ENGINEER	66	EE	7635
PLANT ENGINEER	69	CE	7822

MANPOWER DISTRIBUTION

Rate/MM Craft Manpower

1.1.0 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.2.1 1.2.2 System by WBS: 36.00 4568 AA 36.00 ADMIN. ASSISTANT 3.00 3.00 CONTRACT SERV. MANAG. 11086 AC 0.21 0.21 ALIGNMENT ENGINEER 6540 ΑE 6.00 6.00 5511 AF FINANCIAL ADMIN. 9.00 9.00 AP PERSONNEL ADMIN. 4589 7822 CE 4.00 4.00 CIVIL ENGINEER CN 3.00 3.00 7505 CONSULTANT 12.00 8513 CP 12.00 COORDINATOR/PROJECT 64.39 9.00 9.00 12.00 18.00 1.39 15.00 5254 CS COORDINATOR/SYSTEM DATA AIDE 3263 DA 18.00 18.00 6.50 9.00 9340 DB 25.23 1.00 7.73 1.00 DAVIS-BACON LABOR 6.00 9.00 24.00 9.00 DOCUMENTATION CLERK 2745 DC ELECTRICAL ASSEMBLER 2732 EΑ 0.00 6.00 18.00 5487 54.00 4.00 9.00 6.00 2.00 6.00 3.00 ELECTRICAL DESIGNER ED 100.18 4.00 17.20 9.52 2.00 17.00 33.00 8.46 9.00 ELECTRICAL ENGINEER 7635 EE Fi 0.00 ELECTRICIAN 6969 0.00 ELECTRONICS ENGINEER 6969 EL 0.00 EXPEDITOR 5661 -FX CONTRACT LABOR 3106 JL 212.76 20.00 16.25 28.68 18.00 24.21 22.01 53.62 30.00 MECHANICAL DESIGNER 5487 MD 49.00 2.00 4.00 2.00 12.00 12.00 2.00 12.00 3.00 MECHANICAL ENGINEER 7720 ME 83.86 2.00 4.00 2.92 26.96 16.16 3.00 19.81 9.00 4525 MF 0.00 MECHANICAL FABRICATIO 9.51 MECHANICAL MACHINING 4525 MM 3.14 6.37 18.00 18.00 PR COMPUTER PROGRAMMER 6390 12.00 12.00 RESEARCH ASSOCIATE 6390 RA 10.94 RIGGER 5230 RΙ 10.94 21.00 21.00 10915 SC PROJECT MANAGER SECRETARY 3324 SE 0.00 56.00 2.00 54.00 GRAD. STUDENTS 1598 ST 2.08 2.08 ALIGNMENT TECHNICIAN 5324 TA 7.51 12.00 ELECTRICAL TECHNICIAN 4246 TE 46.71 6.50 16.00 4.69 4.58 15.45 14.86 MECHANCIAL TECHNICIAN 6491 TM 34.88 2.77 24.00 OPERATION TECHNICIAN 4589 TO 26.77 VACUUM TECHNICIAN 6491 ΤV 6.13 0.58 5.55 8406 UΕ 12.00 12.00 UTILITIES/ELECTR. T&M UTILITIES/MECH. T&M 8406 UM 9.65 9.65 1.43 6491 1.43 WELDING/VACUUM UV 971.74 38.94 20.00 17.65 0.00 70.05 134.77 57.96 77.71 140.51 138.16 204.00 72.00 GRAND TOTAL:

 Item ====================================	WBS	Date (+/- 1 month)	Commitment k\$
Non Tech. Systems	1.1.0		
Shielding Blocks - I	j	3/88	100
Shielding Blocks - II	į .	1/89	140
Shelters	i	6/88	225
Electr. Services	1.1.1	,	
AC Services incl.Labor	İ	11/88	285
Mechan. Services	1.1.2	,	
LCW Cooling incl.Labor		11/88	224
Preinjector	1.1.4	i,	
Accel. Sections (2)	i	4/88	150
Accel. Sect. (Option)	1	11/89	75
Modulator Components	İ	6/88	100
Klystrons (new)	i	11/89	105
Magnet System	1.1.5	i, -,	100
Steel/ Laminations	1	5/88	184
Magnet Coils	! 	11/88	272
Magnet Supports	! 	12/88	105
Magnet Fine Adjustment	! [9/88	60
Magnet Measurm. Instr.	! 	5/88	30
Power Supplies	1 1	12/88	150
Vacuum System	1.1.6	12,00	130
Vacuum Chambers	1.1.0	6/88	100
Gate Valves	1 ~	7/89	100
Pumping System	! !	2/89	l 22
RF System	1.1.7	2/09 I]
RF Klystron (new)	1 1.1.7	11/89	135
Injection/Ejection	1.1.9	11,03	133
Magnets/Supports - I	1	7/89	, 70
Magnets/Supports - II	! !	11/89	120
Power Supplies - I	! [8/89	1 50
Power Supplies - II	! !	11/89	i 70
Pulsed Magnets - I	! 	3/89	70 70
Pulsed Magnets - II	! !	7/89	130
Techn. Project Mgmt.	1.2.1	,,03	1
Fork Lift	1	1 1/88	l l 30
Alignment Instruments	! }	1/89	, 50 l 50
	1	1/0/	, 50
	====================================	====================================	=========
Total for Big Procurement	List (k\$) :	3089
=====================================			=========

 		1 1 1 1 1 1 1 1 1			
	1		l		
			164 10	STC	SLC Estimate SSRL
	18%		0	SLAC	Est
	24%		, W	SP	Similar Project
	<i>y</i> 00		2004 458	C K	Vendor Quote Catalog Price
	13%		752	A O	
	26%		1475	EU	ı w
	otal (%)		Total (K\$)		Cost Base for
; ; ; ;	1 1 1 1 1	 		 	
J			07.	STC	SLC EStimate SSRL
•		9.34	2	SLAC	SLAC Estimate
• •	3.42 8.86	9.98	.81 .47	CP SP	Catalog Price Similar Project
] } •	8.76%		ŏΛ	
• •	1.90	11.93%	45.46%	EU	Engineering Estimate
1.1.9	1.1.8	1.1.7	1.1.6		Cost Base for
					SSRL
100	5.43	100%	4.53	SLAC	SLAC Estimate
				SP	Similar Project
				CP	$-\sigma$
			9.38	4 0	Actual Cost
			60.9	EU	w
1.1.3		1.1.1	1.1.0		Cost Base for
	10.9	1.2 4.57% 1.90% 62.9 1.90% 62.9 1.90% 62.9 1.10.9 1.10.9 1.00% 1.10.9	1.1.2 1.1.3 4.57% 100% 95.43% 10 11.93% 11.90% 62.9 11.93% 11.90% 62.9 15.82% 6.7 8.76% 13.42% 1.0 4.57% 10.9 11.93% 10.9 13.42% 10.9 10.9 10.9 13.42% 18.4 13.42% 18.4 10.9 10.9 10.9 13.8	.09	6.09% 6.09% 4.57% 59.38% 1.1.6 1.1.7 1.1.8 1.1.9 45.46% 11.93% 11.90% 62.9 4.47% 49.98% 58.86% 18.4 10.9 Total (K\$) Total (\$) Total (K\$) 1475 504 458 1365 504 458 1365 504 188 1365

Cost Base for (K\$)		1.1.0	1.1.1	1.1.2	1.1.3	1.1.4	1.1.5
Engineering Estimate Actual Cost	EU	34 335		ω		108	232
	Q Q Q					225	240
	SP					335	300
SLAC Estimate	SLAC	195	223	167	20	105	187
SLC Estimate SSRL	SLC SSRL					14	
Total		564	223	175	20	888	1238
Cost Base for (K\$)		1.1.6	1.1.7	1.1.8	1.1.9	1.2.1	1.2.2
ı w	EU	144	53	59	660	138	37
Actual Cost Vendor Onote	♥ CA		39		T /		
	C &	123)	67	10	137	80
	SP	14	221	294	193	©	
SLAC Estimate	SLAC	•	130		,		
SLC Estimate SSRL	SLC SSRL	36			115	10	
		712	443	499	1050	294	4.5
		4	Ħ	١)) 	r)	
Cost Base for		TOTAL (K\$)					
 Engineering Estimate	 EU	1475					
Actual Cost	K	752					
Vendor Quote	δΛ	504					
Catalog Price	CP	458					
Similar Project	SP	1365					
SLAC Estimate	SLAC	1027					
SLC Estimate	SLC	164					
- Sakt	DOKE	FO FO				,	

Technical Contingency

~~~~~~	_=============		
*** MATERIALS ***	   # of  Unit Units	Unit Cost	Total \$
30 MW Tube  Klystron  East Pit Injection	each 3  each 1  Subtotal Magnet  Transport Line    Transport Line	PS ⁻	105000   130000   170661   36663   40687
only 2 Linac Sections	Modulator (25%)  Vacuum System (	:	74889   10559
Total Materials			568460
	====================================	~======================================	
*** LABOR ***	  # of Units  Units MM	Total Craft MM Code	Total Labor
East Pit Injection	Subtotal Magnet Transport Line ' E D & I (33%)		44804   18631   79074
only 2 Linac Sections	Modulator (1):   		12513
Total Labor			155022
Total Techn. Contingency	====================================		723482   

## Project Contingency

	===   <b>====</b> === 	======================================	Conti	remover
*** System **	**   WBS	Cost \$	ક	\$
_======================================		=======================================	======:	
  Special Facilities	1.1	8795821	17.0	1494649
Non Techn. Facilitie	es   1.1.0	678683	15.0	101802
Electrical Facilitie	es   1.1.1	376850	15.0	56527
Mechanical Facilitie	es   1.1.2	308859	15.0	46329
Safety Systems	1.1.3	20000	15.0	3000
Preinjector	1.1.4	1291044	15.0	193657
Magnet System	1.1.5	1871995	15.0	280799
Vacuum System	1.1.6	656223	15.0	98433
RF System	1.1.7	756402	10.5	79071
Instrumentaion/Contr	col  1.1.8	1212926	25.0	303232
Injection/Ejection	1.1.9	1622838	20.4	331798
Proj. Mgmt and Admin.	1.2	1606926	11.4	182416
   Techn. Management	1.2.1	1242505	12.6	156736
Admin. Services	1.2.2	364421	7.0	25679
	===   =========			
Total				
Project Contingency		10402748	16.1	1677065

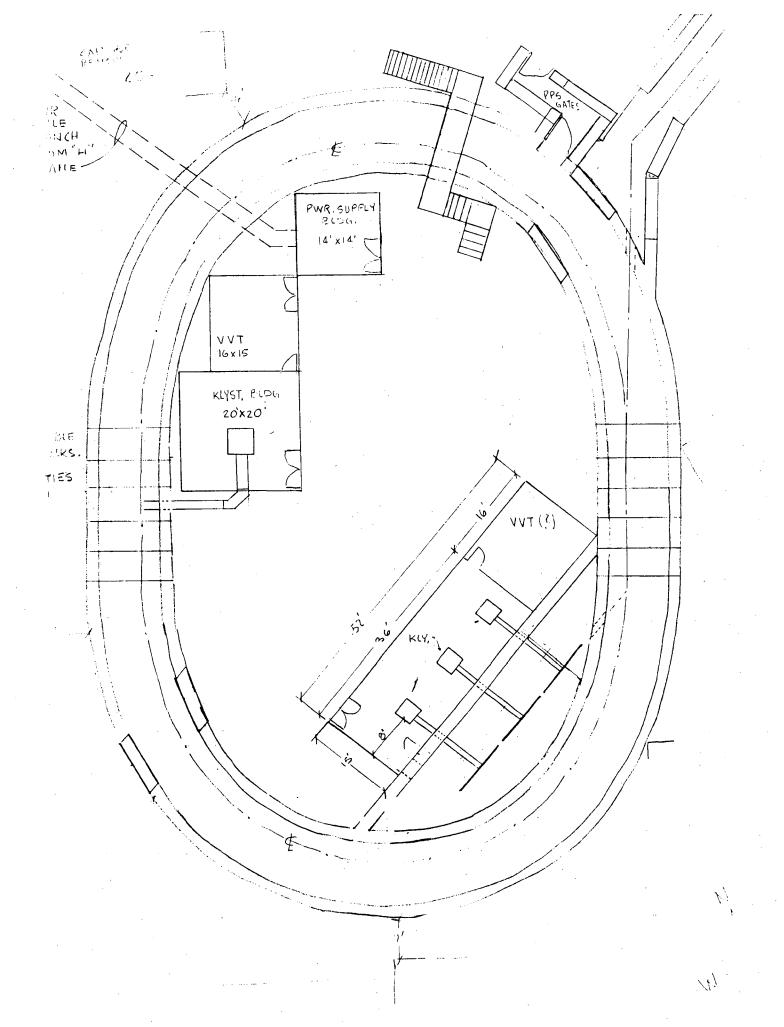
# 1.1.0 Non Technical Systems

# 1.1.0.0 E D & I

====================================	======   	Units MM	Total MM	Craft Code	Total Labor
Civil Engineer  Mechanical Engineer  Mechanical Designer  Electrical Engineer  Electrical Designer		4 2 2 0 0	4 2 2 0 0	CE ME MD EE ED	31289 15440 10975 0
Total Labor					57703 =========
Total 1.1.0.0	     ======				57703

# 1.1.0 Non Technical Systems

# 1.1.0.1 Site Preparation


_======================================	=======   .	======		*======	=======
*** MATERIALS ***	  Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
Remove Asphalt/Haul Excavate for Shelter Excav. for Ring Cable Trench Clear Space, Trailer, Crane	sq ft   c/yd   c/yd   c/yd  lot	7500 100 196 17 1	1 30 30 30 2000	SLAC SLAC SLAC SLAC EU	7500 3000 5880 510 2000
Total Materials					18890
	=======				
*** LABOR ***   =================================	# of   Units   ========	Units MM	Total MM	Craft Code	Total Labor
  Clear Space,Trailer,Crane	4.00	1	4	RI	20922
					, 
				·	 
======================================			======:	*======	  ========   20922
					=======    
=======================================					,

1.1.0 Non Technical Systems
1.1.0.2 Shelters
1.1.0.2.1 Booster/Linac Shield.

•	i i				
   *** MATERIALS ***   	    Unit   ======	# of Units	Unit Cost	Cost Base	Total \$
  Concrete/Ring/Floor  Ring Wall  Linac Wall	-    c/yd   c/yd   c/yd	182 395 26	360 273	A86 A86	65520 107835
Roof Blocks	c/yd	171	273 262	A86 A86	7098
Mazes	c/yd	20	273	A86	44802   5460
Roof over Linac	c/yd	24	262	A86	6288
Drill Holes for Alignment		13	100	EU	1300
Drill Holes for Alignment		1	JL	EU	3106
Earthquake Bracing	MM	10	JL	A86	31056
SPEAR Add. Shield. Blocks	' ' '	114	262	A86	29868
=====================================	=   ===== 	========		======	302332
=======================================	=   =====	=======		======	302332  =========
	    - =====				 
*** LABOR ***	   # of  Units	Units hr	Total MM	Craft Code	Total Labor
	:   ======				. <b></b>
Install Shielding Blocks	=====================================	400	 6.9	====== RI	36280
Install Shielding Blocks	3	400	6.9	RI	36280
Install Shielding Blocks	3	400	6.9	====== RI	36280
Install Shielding Blocks		400	 6.9	RI	36280
Install Shielding Blocks	3	400	 6.9	RI	36280
Install Shielding Blocks	3	400	6.9	====== RI	36280
Install Shielding Blocks	3	400	6.9	RI	36280
Install Shielding Blocks	3	400	6.9	RI	36280
	3	400	6.9	RI	36280
	3	400	6.9	RI	 
	3	400	6.9	RI	36280 36280
	3	400 ===================================	6.9	RI	 
	3	400	6.9	RI	 
Total Labor	3	400	6.9	RI	======================================
======================================	3	=======================================	6.9	=======	 

1.1.0 Non Technical Systems
1.1.0.2 Shelters
1.1.0.2.2 Equipment Shelter

	:   ======			=======	========
   *** MATERIALS ***   	    Unit   ======	# of Units	Unit Cost	Cost Base	Total \$
Ring Klystron   VVT Shelter   Power Supplies   Linac Klystrons   VVT for Linac Klystrons   misc. Labor   Concrete Floor	sq ft  sq ft  sq ft  sq ft  sq ft   MM  c/yd	400 240 196 540 240 9	110 110 110 110 110 110 JL 360	SLAC SLAC SLAC SLAC SLAC EU A86	44000 26400 21560 59400 26400 27950 36846
======================================	 				242556 
*** LABOR ***	======     # of  Units  =======	Units MM	Total MM	Craft Code	Total Labor
=======================================					
Total Labor	!			======	Ó 



# STANFORD LINEAR ACCELERATOR CENTER

<b>ENGINEER'S ESTIMATE</b>	MA	H	DATE F	DATE PREPARED 2-18-86	45	SUBCONTRACT	TRACT	\·		SHEET
CONVENTIAL CONSTR 3 GEV.	3 GE		ESTIMATOR AXEL GOLDE	P CHK'D	ВУ	DRAWING	S.ON DNIM	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ç
- 1			MATERIAL				LABOR			TOTAL M&L
EM	MEAS.	NO.	COST	TOTAL	NO.	UNIT		# PER	TOTAL	TOTAL DIRECT
REMOVE ASPHALT & HAUL TO DUMP	SOF	CCOO \$ 100	<b>4</b> [00	6600						
EXCAVATE FOR BLDGS		100	100 \$ 3000	3000						
u u outer Ring	=	107	=	3235						
I' I' INNER RING	5	89	=	2670						
" CABLE TRENCH	11	17	7	510						
REMOVE TRALERS ETC. RIGGERS					NO	20	)60	\$ 2800	4480	
							- 1			
POUR CONC. FLR. (12") RING	5/40	188	\$590	110920						
" OUTER RING WALLS	c/O		1	111 510	•					
"INNER "	Cho	157	•	92630						
" LINAC WALL	Ghb	34	=	20060						
" REOVER MOST OF KING 12"	04/2	145	=	8555o						,
RF. BLKS	to //re	26	\$1000	26000						
WALL & REBLKS OVER MAZES	4/40	20	\$ 1000	20000						
ADDITIONAL ROOF OVER LINAC	5/40	28	\$ 590	16520				•		
INSTALL (RIGGERS) BLKS of	,				70	40	320	\$2800	8960	
BORE "PEEP"HIS, FOR ALGMENT	ea.	<del>ن</del>	\$ 100	1300						
SUBTOTAL			T!	5/3945						
+ CONTINGECIES	%	27	1	38765		_				
TOTAL (A+B)			1	652710						
			1 8							
		<u> </u>	•							
										<u> </u>

DESCRIPTION

OE

SHEET

Ø

135/61

TOARTNOOBUS

SPRL Concrete Floor

escavate d'villing condints

beavy rebor, concrete

profit

3200 ft², 1' decyr => 119 yard (ost: 49 lift => 410 \$/yd

take off excavation over the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the s

FLOOR: 360 \$/yd FYEG

# SPRL - SHIELDING WALLS

WALLS roof 230 yd ? 480 yd }

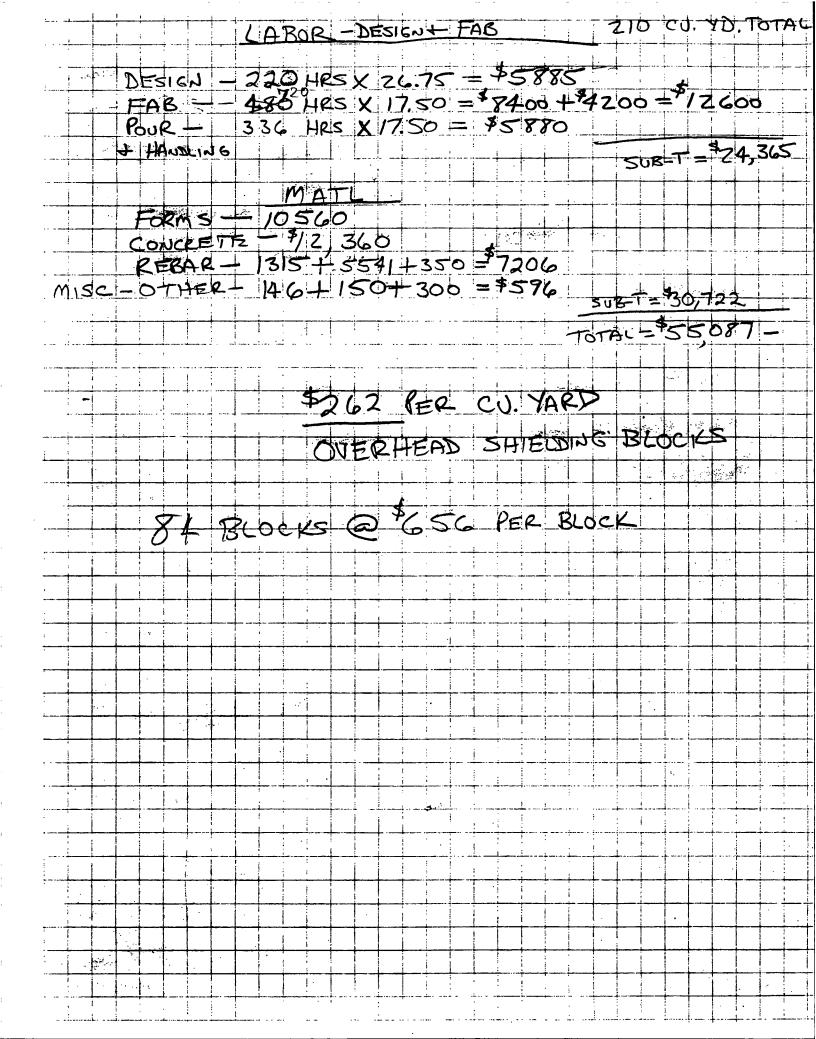
# 231 524

take off earthquake bracing out \$164/yot

-37720

193804

270 \$/yd


Jujuster:

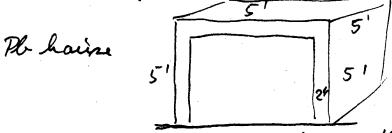
aister Wall

Luner Wall

371' x 8' x 2' = 5931 ft3 = 220 yd

295' = 8' = 2' = 4725 ft3 = 175 gd




# Eactra SPEAR SHIELDING

1.) esctra l'over 1/8 af ring.
90 m × 10' wide > 110 yd.

110 yd ×\$262 = \$28.820

for still more shielding at Septime take existing shielding blocks.

2.) Shielding of Sopline:



675 lead liviels à \$25 = \$16875 400 expensis alternalive!

Coucrete tot roof



Ring Timmel:

walls 2ft roof 1ft

veinforced concr. blocks SPRC cost \$262/yrd

LTUNNEL = 100 m 300ft Hr = 2.5 m 8ft

Walls: 9600 ft3 = 355.6 yd.

Floor: 16×1×300 = 4800ft3 = 177.8 yd

Roof:  $12 \times 1 \times 300 = 3600 \text{ ff}^3 = 133.3 \text{ yel}$ 

\$ 262 / yd neinforced concrete

total yeards: 666.7 × 262 = 174.7 k#

assime 6 Blocks/week or 7 ft / sweek

\$ 47 weeks to do 100m

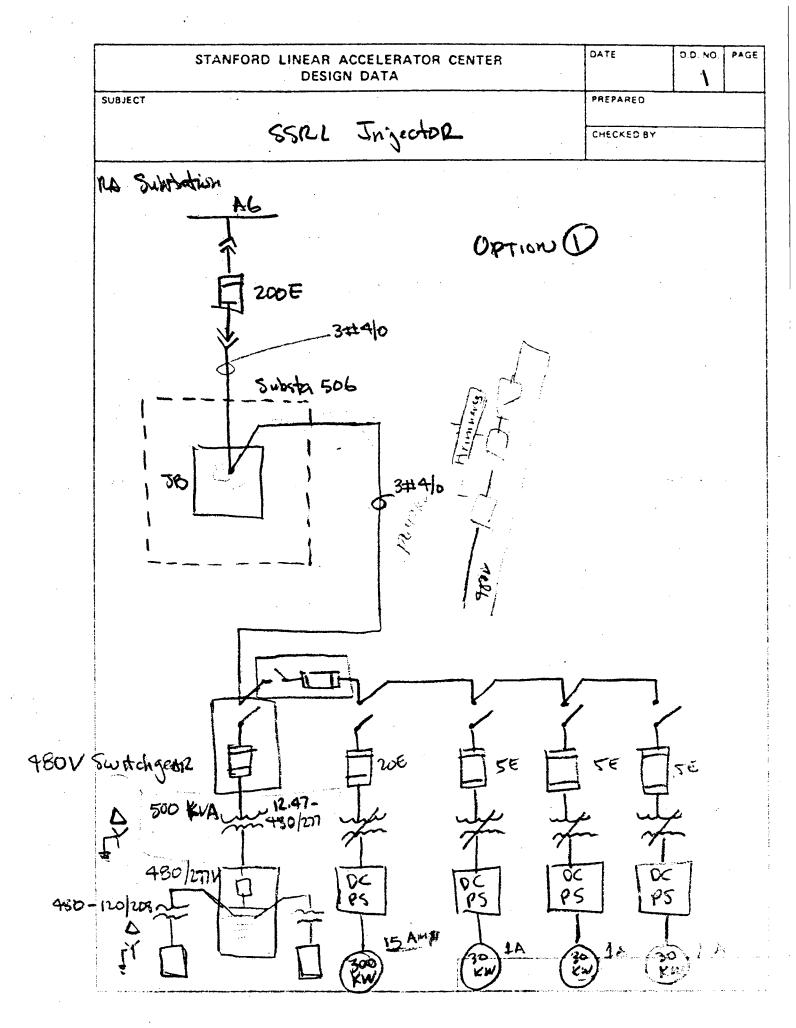
Linac Trimel 20m > 10 weeks

13 would,

# 1.1.1 Electrical Services 1.1.1.0 E D & I

	======		======	=====:	=========
*** LABOR *** 	   # of  Units	Units MM	Total MM	Craft Code	Total Labor
Electrical Engineer  Electrical Designer 	1   1   1 	4 4		EE ED	30542 21949
   	      ===============================		=======================================		52491
 	     				52491

# 1.1.1 Electrical Services 1.1.1.1 AC Services


=======================================	======	========		======	
*** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
12.47 kV Feeder   1000 KVA Transformer   480 V Switch Gear   Metering   AC Distr./Shelters   Light, Outlets Shelter   Light, Outlets Ring   VVT Magnet AC wiring   Magnet Power Distr.   Misc. Materials   Cable Trays	each each set set set set looft set looft	1 1 1 1 1 1 7 1 21	46900 17000 25000 10000 33800 10500 30800 5600 320 10000 1550	SLAC SLAC SLAC SLAC SLAC SLAC SLAC SLAC	46900 17000 25000 10000 33800 10500 30800 5600 2112 10000 31775
=====================================					223487 
*** LABOR ***	======     # of  Units	Units MM	Total MM	Craft Code	Total Labor
T&M Labor	4.00	======================================	======================================	UE	100872
				-	
Total Labor					100872
	=====================================			======	<b></b>
Total 1.1.1.1	====== 				324359
	======		========	======	========

SSKL Injector	C. PALIT	14.Ho	Arch
SUBJECT	PREPARED	<del></del>	
DESIGN DATA	2-12-86		
STANFORD LINEAR ACCELERATOR CENTER	DATE	D.D. NO.	PAGE

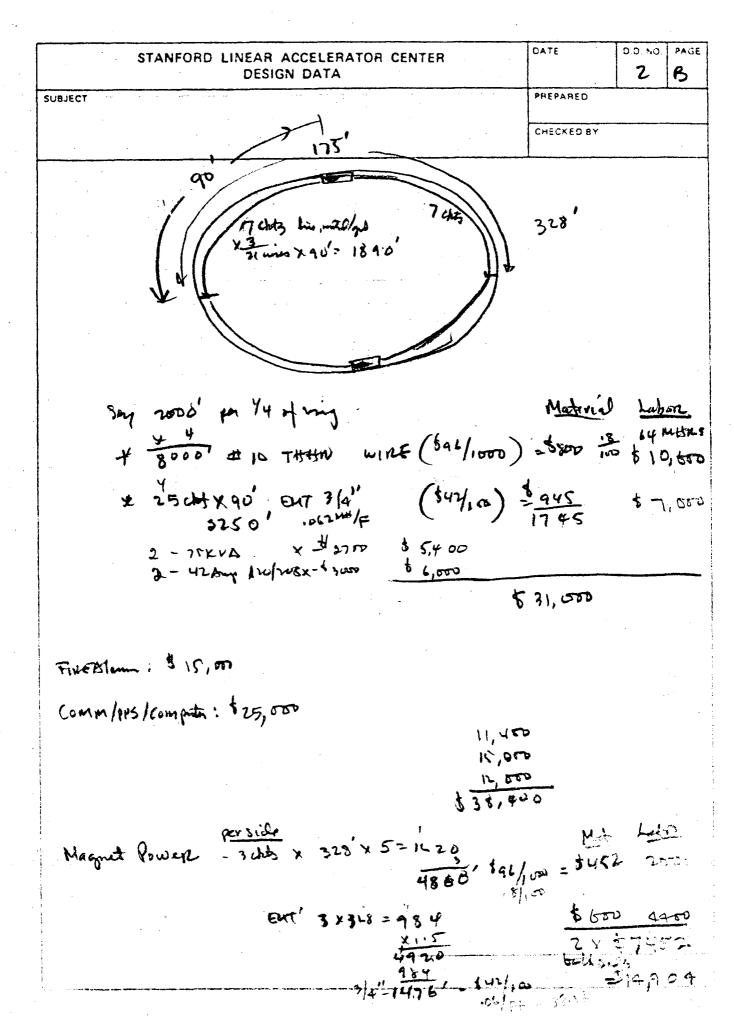
Summary:

\$46,900 -FEDER LYNKY 20,300 1000 KVA XFMR , 1247 - 4807/277V 4BOV Switch geor @ 1200 Amps Bus 25,000 Metering 10,000 Shelters PACILITY OC Support 99,300 94,800) (Cable Trays 17" ildividen 2000' Ħ Ring to Support (Lighting, Receptables, etc) 30,€∞ Magnet lower wing / VVT Feeders 18,500 Five Alaum 20,000 ( Count pps/ comfoten Calding 25,000) ItC \$ 285,600

Tèc Cabling De Pomere Japonies à Cabring PPS Gatas, MAHERE EQUIPMENT EDI

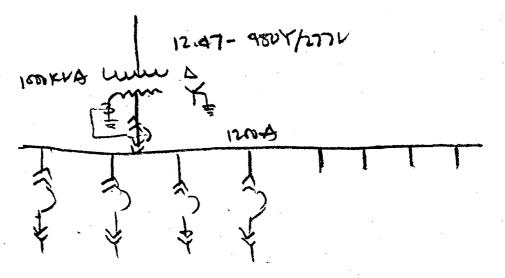


S	TANFORD LINEAR ACCELERATOR DESIGN DATA	CENTER	DATE	D.D. NO.	PAGÉ
SUBJECT			PREPARED	<del></del>	\- <u></u>
	SSRL Injudior		CHECKED BY		4
	Pto Sub station				
	}	option (	<del>U</del>		
E	] we	·	•	·	
. *					
	1000KVA	6 12.47KV-			-
		Y 480Y/277		集	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
			; ;	竹篷	,
		1200 A	<del></del>	362	)
		33	Y	- Kil	-
75 480-	KVA D Nagnet Pour etc.	vers 30 30 %	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		
	etc.	Klystr	ing		


STANFORD LINEAR ACCELERATOR CENTS DESIGN DATA	ER DATE	D.D. NO. PAGE
SUBJECT	PREPARED	
	CHECKED B	i¥ .
CONVENTIONAL POWER FOR 3 B 1 - LINGC 1 - 300KW KLYDVIN 1 - 3(30KW) KLIDVIN	<b>V</b>	) each
1 - 3 (30 KW) FI 1950H	المناع والمناسس أو الأ	panel en

STANFORD LINEAR ACCELERATOR CENTER DESIGN DATA	DATE	0 0. NO.	PAGE
SUBJECT	PREPARED	*	
SSRL Injedon Ring	CHECKED BY		
Cost Estimate:	· 4 7	16,500 19,600 19,600	
Freder 3#4/0 PLC 860 X 3" EMT 373/10 = 6- 456' 10" X.11/4+ = 137ME  1350' 40" 10" 1250' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 1550' 15	UCA HITHER	399	48
	\$ 17,000	. >	209 H
1 HVB YFRMER - 12.47 - 4904/277V	3,310	_	
Labor & matrial &	30,00	. **	٠.
20×20 = 400 2 400 2000/2 30	use + 30ku	) (B)	
persite = 320ft ~ 500'  ** 7.25			
Distribution: 277/900V - 3 x 6/40 = \$13,200  Browsh 120/208 - 3 x 52450 = 7,200  Browsh county: 106x 2000/12 = 2,000  \$22,900			
Lighting \$ 9.50 x 2000 = \$ 9000	· Garage Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t	errorroger	• • •

\$ 1000


Cuttib)

STANFORD LINEAR ACCELERAT DESIGN DATA	OR CENTER	DATE	D.D. NO.	PAG
SUBJECT		PREPARED CHECKED BY	· · · · · · · · · · · · · · · · · · ·	
xfamers 3 @ \$ 2700	= \$ 7,100	984- 124	268	
Retters faility de supports	\$ 7,100 XFM \$ 3,700 Gra 23,000 Dipl 9,000 high 1,500 Outs	ending britation Para hting	<b>-</b> 41	
480 V Switch gears @ 1200 Amy B w/ Breakers \$ 17,200	\$1250 <del>X 4</del> <del>Y 5</del>	25, 000		
\$ 3,050 \$ 10,000 1700 1700		10,000	j.	
1000 KUB YERME : \$ 17, 67 x 41 x 1, 20 = 3,	300 \$	20,300		
Cable trays 18" we divide , -		14,800		
Reuptacles 65 daylers and top wing 10', Qual top wing 10', Qual top are a feature 15 chts a feature 10 that a feature 10 that a	34,300 nov 324 nc	68,300 \$2,000		
25 cm	3 (24 CMT ) 17 43	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	2 13	



	STANFORD LINEAR ACCELERATOR CENTER DESIGN DATA	DATE	D.D. NO.	PAGE B
SUBJECT		PREPARED		
: 		CHECKED BY		

1) 480V Switch GETAR



1404 = I 141414441.772 = I 24 1000 xxxx = = 12.4741.772 x

PROXING RUB

STAN	FORD LINEAR DESI	DATE	D.D. NO.	B PAGE		
UBJECT				PREPARED		<b>-</b>
				CHECKED BY	· · · · · · · · · · · · · · · · · · ·	<del></del>
WT Co	nne chons;	@ 990V 30KW 36Amps (10	200K	pups (8)	'x10= 8	ט')
Cond		8/00 X41X112 1/0" 10'= 42 4#10 - 40'= 91 4/10 - 40'= 91 4/10 + 100 =	100 8 Mas 3 10 10 10 10 10 10 10 10 10 10 10 10 10	ms x4x41	2.42/e=	104 7.27 381 (44
		4	3196		73	<b>?</b> }

VUT + Magnet BC: \$3,500 \$18,500

# Cable Trays:

Ring two trays à 300 ft =	600-ft
VVT-Shelder Whystron Shelder PS-Shelder LINAC Modising 3 trays à 50ft LINAC Modificators 5 trays à 50ft	100 ft 200 ft 400-ft 150 ft 250-ft
Booster-SPEAR Transport Line	100 ft
Cross Courset (dulters - Lunae) 3 trays à 100 ft	300 ff
	2100 ft

Labor: #/foot

# 1.1.2 Mechanical Services 1.1.2.0 E D & I

====================================	======   	Units MM	Total MM	Craft Code	Total Labor
Mechanical Engineer   Mechanical Designer 		4 4	4 4	ME MD	30879 21949
  Total Labor 	======     ====== 			=====	52828 
Total 1.1.2.0	======     ======	:======= :============================		=======	52828 

1.1.2 Mechanical Services 1.1.2.1 LCW Cooling System

	======	=======		=====	=======================================
	    Unit	# of Units	Unit Cost	Cost Base	Total     \$
400 GPM - 6'' SS	ft	<b></b>	======== 20	SLAC	=====================================
6' Block Valves	each	4	800	SLAC	3200
6' Flanges	each	10	220	SLAC	2200
90 Degree Elbows 6'	each	12	120	SLAC	1440
Orifice Flange	each	1	600	SLAC	600
Supports/Hangers	each	100	12	SLAC	1200
Klystrons Pipe/Inst	each	1	6000	SLAC	6000
Linac Kly. Pipe/Inst	each	3	1150	SLAC	3450
Linac Cooling Pipe	each	3	1500	SLAC	4500
Linc Cool. Temp. Con	each	1	35000	SLAC	35000
Booster Cool. Piping	each	1	4500	SLAC	4500
Booster Cool. Temp. C	each	1	15000	SLAC	15000
Cavity Cool. Pipes	each	1	1600	SLAC	1600
Magnet Cooling Pipes	system	12	1000	SLAC	12000
Wave guide Cooling	system	3	1000	SLAC	3000
Compressed Air	system	1	600	SLAC	600,
SUB TOTAL	 				99290
  Contr. Overhead/Profit  General Contractor  Misc. Material	   %   %	25 10		SLAC SLAC EU	45097   22548   8000
Total Materials	<b>-</b>     -=	=======================================		=======================================	======================================

# 1.1.2 Mechanical Services (con't) 1.1.2.1 LCW Cooling System

	# of Units	Units hr	Total MM	Craft Code	Total Labor
400 GPM - 6'' SS   6' Block Valves   6' Flanges   90 Degree Elbows 6'   Orifice Flange   Supports/Hangers   6' SS Welds   Klystrons Pipe/Inst   Linac Kly. Pipe/Inst   Linac Cooling Pipe   Linac Cool. Temp. Con   Booster Cool. Piping   Booster Cool. Piping   Booster Cool. Pipes   Magnet Cooling Pipes   Wave Guide Cooling   Compressed Air	250 4 10 12 2 12 60 1 3 3 1 1 1 1 12 3	0.30 3 8 6 8 4 6 60 12 30 300 80 100 60 16 16 40	0.43 0.07 0.46 0.42 0.09 0.28 2.08 0.35 0.21 0.52 1.73 0.46 0.58 0.35 1.11 0.28 0.23	UM UM UM UM UM UM UM UM UM UM UM UM UM U	3644 583 3887 3498 777 2332 17492 2915 1749 4373 14577 3887 4859 2915 9329 2332 1944
  =============   Total Labor  =============================	======			======	81096
     Total 1.1.2		: 		======	======================================

# Weide warpy # 69

PROPOSED SSRL SPEAR INJECTION

# STANFORD LINEAR ACCELERATOR CENTER

SUBCONTRACT DESCRIPTION											SHEET OF																
SHEET / OF /		TOTAL MAL	TOTAL DIRECT																			171565	15 465	217.030	21,700.	238,730	
			TOTAL		3375	540	3600	3240	720	2160	16,200	2700	1620	41050	12,500	3600	4,500	2700	8360	09/2	2250	24,275	-				
			♣ PER HOUR		1/20/1	45	-2%	457	415	3,5	5/2	45	45	45	45	4.5	3/5	4/5	1000	37	45						
RACT	S.ON	1 [	TOTAL M.HRS		75	12	080	72	16	48	340	60	36	. 90	300	80	100	09	192	48	7/0						÷
SUBCONTRACT	DRAWING NO'S		UNIT		. w	ŋ	B	V.	ÇP#	*	9	09	12	30	300	80	100	09	16	9/	40						
18	ВУ		NO. UNITS		250	4	0/	7.7	7		0	/	M	3	/		`	1	12	<i>(</i> 0	\		2/5				
ATE PREPARED 2-73-86			TOTAL		2000	3200	2200	0661	600	1200		6,000	1450	4500	35,000	4.500	×1 15,000	1,600	12,000	3,000	600	97290	0) 10% F		%, Or @ 0%		
DATE PR	ESTIMATOR DRY	MATERIAL	COST		£0.	800	220	120	000	12	١	6,000	1150	1500	• (1)	N		1000	1000	1000	200		JIJOU'S	-	- 1. 4. 0. pt.	1	
ļ		₹	NO. UNITS		250	7	10	12	155	100	99	/	Ŋ	3	1.5	1	/	/	12	C	, ,		TINON'S CHYC		You		
ESTIMATE	6 WATE		UNIT MEAS.		LWFT	, y	من من	レジ	64	4	K=A	64	RA	EA	42	43	6.4	FA	54524	5 4.57.ºw	54576.11		10704		C. NYNA.		
ENGINEER'S EST	DESCRIPTION STATE - COOLING WATER		ITEM	Assis LCHI FROM ESA		يى يى	8 2611112	70° 56 BOURS 6"	CAN663 4 JONGES	8 20 00 00 8 7. 4. 11. 1866 RS.	6" 25 WELDS	PEP TWO X YSTRON PRESTIBIL		ACCEL. COOLINS PROPER	Acces to Cost, TEMP. CONTROL	INJEGEDA CHOLING POWE	TALLECTON TENED CONTROL	301019 41100 JA	ET 13021116	4			Assure Macin Courte 1670A		A5321 121 5 35 ALENIE CO		

# 1.1.3 Safety Systems 1.1.3.1 Fire Safety

=====			======		=======		========
***	MATERIALS	***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
	Alarm		System	1	20000	SLAC	20000
===== Total	======================================		   ====== 			=======	20000
<u> </u>			======   	<b></b>			20000
***	LABOR **:	*	======   	Units MM	Total	Craft Code	Total Labor
Fire	Alarm		=======   				
					,		
Total	Labor	=======     =========================					0
	1.1.3.1	   				======================================	20000

## 1.1.4.0 E D & I

*** LABOR ***	   # of  Units =\======	Units MM	Total MM	Craft Code	Total Labor
Electr. Engineering Mech. Engineering Mechanical Designer Electrical Designer Coordinator		12 2 2 9 9	12 2 2 9 9	EE ME MD ED CS	91625 15440 10975 49385 47284
	 = ======				
Total Labor	    -======	========	=======		214709
	]   				
Total 1.1.4.0	-   -======:   			:======	214709

# 1.1.4.1 Gun Assembly

# 1.1.4.1.1 Cathode Assembly

	======	=======		======	========
   *** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
Cathode/Heater  Power Supply  LaB6 Crystal  Box Car  Feedback Electronics  Contract Labor	each each each each each hr	1 1 1 1 1 1	600 300 1000 3000 2500 JL	SP84 SP84 SP84 SP84 SP84 SP84 SP84	600   300   1000   3000   2500 2872
     Total Materials 	<b>=====</b>     <b>=====</b>		=======================================	======	10272
 	=======				
*** LABOR ***	# of Units	Units hr	Total hr	Craft Code	Total Labor
	1 1	120 120	120 120	EE TE	5296 2945
; 					
,			,		.
Total Labor	======	==========			8241   
 					,   
Total 1.1.4.1.1	======	=======	=======	=======	=======================================

# 1.1.4.1 Gun Assembly

# 1.1.4.1.2 RF/Cavity Assembly

	====				
   *** MATERIALS ***   	    Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
Splitter   Attenuator   Phase Shifter   Circulator   Wave Guides   Cavity   Temp. Stability   Electronics   RF Window   Chopper Deflector   Chopper Pulser   Contract Labor	set   each   each   each   set   each   set   each   each   set	1 1 1 1 1 1 1 1 1 1 400	1500 4500 4000 1500 2000 2500 1000 2000 7500 5000 JL	EU EU CP SP84 SP84 SP84 SP84 SP84 SP84 EU EU EU	1500 4500 4000 1500 2000 2500 1000 1000 2000 7500 5000 7180
Total Materials	======			======	39680
*** LABOR ***	         # of  Units	Units	Total	 Craft Code	Total Labor
=======================================		120 240 240	120 240 240	EE TE TM	5296 5890 9005
Total Labor	   =======     =======				20192
Total 1.1.4.1.2					59872

# 1.1.4.1 Gun Assembly

# 1.1.4.1.3 Beam Guidance

====================================	Unit ====================================	# of Units ====================================	Unit Cost 500 300 800 1500 400 1000	Cost Base SP84 SP84 SP84 EU EU SP84	Total
Contract Labor 	hr 	120 ====================================	JL	SP84	2154  19454 
*** LABOR ***   	# of  Units  ====== 1   1	Units hr 	Total M Hrs 40 40 40	Craft Code ====== ME TM EE	Total Labor 
======================================	======			======	======================================
Total 1.1.4.1.3					24505   

# 1.1.4.1 Gun Assembly

## 1.1.4.1.4 Momentum Filter

*** MATERIALS ***	Unit     each   each   each   each   each   hr	# of Units 1 1 1 1 1 80	Unit Cost 800 1000 1500 1500 1600 JL	Cost Base ====================================	Total \$ 800 1000 1500 1500 1600 1436
  ===================================	   =======     =======   			222222 222222	7836
	======   	Units hr	Total M Hrs	Craft Code	Total Labor
	1.00	40 80	40 80	ME TM	1785 3002
· · · · · · · · · · · · · · · · · · ·					3
======================================	======		=======================================		======================================
Total Labor	======		=======================================	=======================================	======================================

1.1.4 Linear Accelerator Systems
1.1.4.1 Gun Assembly
1.1.4.1.5 Diagnostics

	======	========		======	=========
*** MATERIALS ***	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Profile Monitor/Instrum.   Gap Monitor/Instrum.   Faraday Cup/Instrum.   Profile Monitor/Electr.   Gap Monitor/Electronics   Faraday Cup/Electronics	each each each each each each each	1 1 1 1 1	1350 1060 2680 6300 1200 2200	SLC SLC SLC SLC SP86 SP86	1350 1060 2680 6300 1200 2200
	   hr   hr	130 80	JL JL	SLC SP86	2334 1436
Total Materials					18560
*************************************	======         ======				
j	i				
*** LABOR *** 	# of  Units	Units hr	Total M Hrs	Craft Code	Total Labor
*** LABOR ***    ================================					
*** LABOR ***    ================================	Units  =======   1.00	hr 	M Hrs 40	Code ====== EE	Labor ====================================
*** LABOR *** 	Units  =======   1.00	hr 	M Hrs 40	Code ====== EE	Labor ====================================
*** LABOR *** 	Units  =======   1.00	hr 	M Hrs 40	Code ====== EE	Labor ====================================
====================================	Units  =======   1.00	hr 	M Hrs 40	Code ====== EE	Labor
	Units	hr 	M Hrs 40	Code ====== EE	Labor

# 1.1.4.1 Gun Assembly

1.1.4.1.6 Vacuum System

	======	=======		======	=========
   *** MATERIALS *** 	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Turbo Pump	each	 1	1000	CP	1000
Hand Valve	each	1	800	CP	800
Gate Valve	each	1	1200	CP	1200
Ion Pumps	each	3	1350	CP	4050
Ion Pump PS	each	1	1600	CP	1600
Gauges	each	3	319	CP	957
Misc. Pipes/Flanges/Bolts  Ion Gauge Controller		1	3500	EU	3500
Contract Labor	each	3	875	CP	2625
Contract Labor	hr	100	JL	EU	1795
	======	=======		======	=========
Total Materials					17527
	======       ======				=======================================
	į				
*** LABOR ***	# of  Units	Units hr	Total M Hrs	Craft Code	Total Labor
*** LABOR ***	Units	hr =======	M Hrs	Code ======	Labor ========
*** LABOR ***   					Į.
*** LABOR *** 	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR ***    ================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR ***    ================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR ***    ================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR ***    ================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR *** 	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
*** LABOR ***	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
======================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor ====================================
	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor 1785 2251
======================================	Units  =======   1.00	hr 	M Hrs 	Code ====== ME	Labor 1785 2251
======================================	Units	hr 	M Hrs 	Code ====== ME	Labor ====================================
Total Labor	Units	hr 	M Hrs 	Code ====== ME	Labor ====================================

# 1.1.4.2 Acceleration Sections

	======	=======	=======	======	========
	    Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
Sections  Support  Misc. Materials	each m	3 9 1	75000 1800 3000	VQ85 SP86 EU	225000 16200 3000
Contract Labor	hr   hr	120	JL	EU	2154
=====================================	   =====:   			======	246354
	======       ========================				<b></b>
*** LABOR ***	   # of  Units	Units hr	Total M Hrs	Craft Code	Total Labor
    Installation	3.00 3.00 1.00	20 64 173	60 192 173	EE TM DB	2648 7204 9340
	   				•
	======	-======		======	==,====================================
Total Labor	į 				19192
I '	   ======   				19192 ==================================

# 1.1.4.3 Modulators

1.1.4.3.2 Pulse Form. Net   each   3   42806   1284   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373   373	1.1.4.5 Modulacors				
1.1.4.3.1 HV Power Supply each 3 19649 588 1.1.4.3.2 Pulse Form. Net each 3 42806 1284 1.1.4.3.3 Controls each 3 12434 373  Total Modulators 2246  *** LABOR *** # of Unit Cost  1.1.4.3.1 HV Power Supply 3.00 7656 229 1.1.4.3.2 Pulse Form. Net 3.00 9421 282 1.1.4.3.3 Controls 3.00 7949 238		======      Unit			
Total Modulators 2246	1.1.4.3.1 HV Power Supply 1.1.4.3.2 Pulse Form. Net	each	. 3	42806	58947 128419 37302
Total Modulators 2246  *** LABOR ***					٠.
*** LABOR ***  # of Unit Units Cost	======================================	       ======			
Units Cost  ===================================	Total Modulators	   ====== 	=======		224667
Units Cost  ===================================	=======================================	     ======			=======================================
1.1.4.3.1 HV Power Supply 3.00 7656 229 1.1.4.3.2 Pulse Form. Net 3.00 9421 282 1.1.4.3.3 Controls 3.00 7949 238	*** LABOR ***	Units			
======================================	1.1.4.3.2 Pulse Form. Net	3.00		9421	22967 28263 23846
======================================	,	   			
Total 3 Modulators   750		   			
:	Total 3 Modulators	   ====== 			75076
======================================		   ====== 		=======================================	<b></b> 299743

# 1.1.4.3.1. HV Power Supply (3)

1.1.4.3.1. HV Power Suppl	) ======= }	=======		======	
*** MATERIALS ***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Variac Power X-former Oil and/or SF6 Cabinet for PS and Modul. Contract Labor	   set   set   lot   each   hr	1 1 1 1 1 64	5000 3000 500 10000 JL	SP86 SP86 SP86 SP86 SP86	5000 3000 500 10000 1149
======================================	    3 units 			======================================	 58947 
*** LABOR ***	======     # of  Units	Units	Total M Hrs	Craft Code	Total Labor
· · · · · · · · · · · · · · · · · · ·	1.00	40 240	40 240	EE TE	1765 5890
Total Labor	  ======  3 units  ======	=======			
Total 1.1.4.3.1	  =======  3 units  =======			, ======== =======	81914

1.1.4.3.2 PFN

1.1.4.3.2 PFN	•				
====================================	==   ======	======			
*** MATERIALS ***	  Unit !	# of Units	Unit Cost	Cost Base	Total \$
Contract Labor	   hr	485	JL	SP86	8706
Diodes	set	1	1200	SP86	1200
Relays	each	2	250	SP86	500
Fuses	each	4	100	SP86	400
Toroids	each	3	100	SP86	300
Filter Choke	each	1	1500	SP86	1500
Capacitors	set	ī	6000	SP86	6000
Charging Choke	each	ī	1500	SP86	1500
PFN Coils	each	· i	500	SP86	
EOL Network	each	i	2000	SP86	500 2000
Thyratron	each	i	18000	CP	
Thyratron/PS	each	1		SP86	18000
Voltage Divider	each	1	2000		2000
voicage Divider	eacn		200	SP86	200
Total Materials (3)	3 units	5			128419
***********	=   =====				
*** LABOR ***	# of  Units	Units hr	Total M Hrs	Craft Code	Total Labor
	1.00	80 240	80 240	EE TE	3531 5890
Total Labor	==  <b>====</b> ==============================			.=====	======================================
======================================					
Total 1.1.4.3.2	======= 3 units				======================================

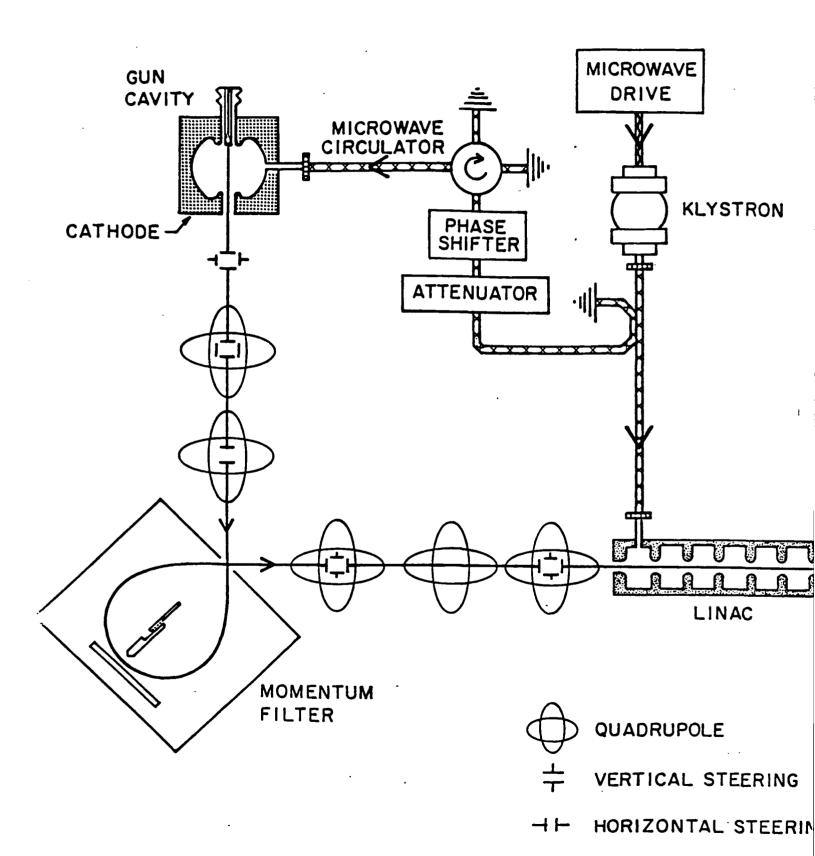
# 1.1.4.3.3 Controls

1.1.4.3.3 CONCLOIS	l ======	=======			
   *** MATERIALS *** 	    Unit	# of Units	Unit Cost	Cost Base	Total \$
PFN Charging Signal Microprocessor Electronic Box Bias Power Supply Filament Power Supply Trigger Box Electronics Rack Contract Labor	each   each   each   each   each   each   each	1 1 1 1 1 3 1 208	200 1000 1000 500 1000 2000 JL	SP86 SP86 SP86 SP86 SP86 SP86 SP86 SP86	200 1000 1000 500 1000 3000 2000 3734
Total Materials	======  3 units  ======	========		======= ==============================	37302
=======================================				======	
*** LABOR ***	# of Units	Units hr	Total M Hrs	Craft Code	Total Labor
	1.00	80 180	80 180	EE TE	3531 4418
		·			:
Total Labor	3 units	2222322 2222322		=	23846 
======================================	====== 3 units			======	======================================

# 1.1.4.4 Klystrons

=======================================	======	=======		======	========
   *** MATERIALS *** 	  Unit	# of Units	Unit Cost	Cost Base	Total \$
30 MW Tube  Focusing from SLAC	each each	======================================	35000 0	SLAC	35000 0
Tank/Cable from SLAC	each	1	1000	EU	1000
Misc. Materials	lot	1	500	EU	500
Waveguides	set	1	3000	EU	3000
Supports	each	1	1500	EU	1500
  Waveguides/Assembly  Contract Labor	hr hr	24 80	JL JL	EU	431
	111	80	תנ	EU	1436
		=======	======	======	
Total Materials	3 units				128601
	======       ======	=======================================		=======================================	
   ***	   # of  Units  ======	Units hr	Total M Hrs	Craft Code	Total Labor
*** LABOR ***   					
*** LABOR *** 	Units  ====================================	hr ====================================	M Hrs ====================================	Code ====== EE	Labor ====================================
*** LABOR ***    ============	Units  ====================================	hr ====================================	M Hrs ====================================	Code ====== EE	Labor ====================================
	Units  ====================================	hr ====================================	M Hrs ====================================	Code ====== EE	Labor ====================================
======================================	Units  ======   3.00   3.00     	hr ====================================	M Hrs ====================================	Code ====== EE	Labor 5296 2945
======================================	Units  ====================================	hr ====================================	M Hrs ====================================	Code ====== EE	Labor 5296 2945
======================================	Units  ====================================	hr ====================================	M Hrs ====================================	Code ====== EE	Labor 5296 2945

# 1.1.4.5 Controls


Unit Cost Total  S Cost Base \$
1 20000 SP86 20000 1 2000 SP86 2000 1 12000 SP86 12000 40 JL EU 4308
40 JL EU 4308
######################################
s Total Craft Total M Hrs Code Labor
80 80 EE 3531 20 120 TE 2945
======================================
      94784
==

1.1.4.6 Vacuum

1.1.4.6 Vacuum	======			======	=========
   *** MATERIALS *** 	Unit	# of Units	Unit Cost	Cost Base	Total \$
Ion Pumps   Ion Pump Supplies   Misc. Valves   Pressure Monitoring   Roughing System   Mobile Roughing System   misc. Pipes/Flanges/Bolts   BPM's	each	3 3 1 4 3 1 1 6	1350 1600 1000 1338 4253 2320 2300 1250	CP CP CP CP CP CP SP86	4050 4800 1000 5352 12759 2320 2300 7500
Contract labor	hr  ======	120	JL	EU	2154
Total Materials					42235
*** LABOR ***	# of Units	Units	Total M Hrs	 Craft Code	Total Labor
	1.00	40 40	40	ME TV	1785 1501
=====================================					3286
=====================================				======	45521

# 1.1.4.7 Beam Diagnostics

=====================================	======			=====	========
   *** MATERIALS *** 	    Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
BPM Electronics	set	6	1250	SP86	7500
Current Monitor	each	. 1	1000	EU	1000
Beam Steering/PS	each	· 6	1500	EU	9000
Analyzing Station:					
Bending Magnet (refurb.)	•	1	250	EU	250
Quadrupoles (refurb.)	each	2	250	EU .	500
Power Supplies   Supports	each	3	1600	CP	4800
Supports   Vacuum Chambers	each set	3 1	500	EU	1500
Instrumentation	each	1	3000 5000	EU EU	3000
Electronics	each	1	5000	EU	5000 5000
Contract Labor	hr	400	JL	EU	7180
			02	20	7130
	ļ				
	======			======	========
Total Materials	 				44730
	====== 			======	
	====== 	=======	=======	======	
*** LABOR ***	# of	Units	Total	Craft	Total
	Units	hr	M Hrs	Code	Labor
, =====================================	======   1.00	120	120	=====::	
	1.00	240	120 240	EE TM	5296
	1	240	. 240	TM	9005
	,				
	======				
Total Labor					14302
=======================================	======		=======	=#=====	
		,			
======================================	   ======			:	
Total 1.1.4.7					59032
=======================================	======		=======	======	=========



4-9-86 M. MARK

Master Orcellater

Planting

Transportation renderla

10 - 7107 Juan, war value value 20 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -

recel medians

1) Scientific Vertenius versunt.

1) The Careline, Tradición Galachanisa.

(2-2) 75.66. Feb 1985

2) Hitswars 2669

3) CGR Mel 1,662,000 FF & 1666 J

Mytipur Modulators			
	Mehenic	Tech (each wood.)	Pool (3 mod.)
HV 1 v z ·: Le variac	5 K	at w .	IW.
HV I PWR XF	: 3 K	• Z w .	· (w .
Prist of Diodes	1 %	. 3 w	IW .
P & meley	, 5K	. t w	•
P 3 Fusas	. 2 K	, 2 w	
P 3 Toroide	-	. 2 w	IW.
P I thiften shock	1,5%	. 5 w	, w ·
Pli Filher e zpa chan capaciton  Pli chaying chock  Pli set of changing Diodes	I ~	. 2 w	1 <b>&amp;</b> w .
Plicheying chock	112 K	. s w	8 m.
Phi Fire	. 11-	. t w:	• S w -
Pfi set of charging Diodes	.2K	• 5 w	ιω .
PILSET of capacitan P.F.N	5 K	ı w	2w .
Proset of coils P.F.N	.5K	. 1 W	8 W
PIEO.L Network	2 K	ı w	٤w
K 1 Tank + fam + tFF gestate (refind	ridi) 1 K SA	e w	3 w . SL1
P 1 Thyrotran Eighth Electric (ITT 8K)	2 18 HEX	, t W	<b>~</b> ₩ .
PI Thyrotran Eighth Electric (ITT 8K) PI PUR Sup for thyrothem	2 K	8 W	5 w .
(3 * term + electronics + gredien	• )		
#V 1 "011 2-1/0- 5 F 6	, 5 K	, w.	1 W .
PPPAI VOLTAGE division	. 1 K	. i w	· 1 · · ·
CI PEN chaging signal	·ik	• 1. W	1W -
() Mino computer	IK	t W	8 M .
CI Bias pur sup	1 K	( <b>w</b> .	₩.
	•5 ^K	1 W	<b>3</b> ₩
CI Filement Pur sup	1 1	1 W	.3 w .
HVI cabint for PWR supp + Hod		1 W	4W.
CI. Electronies Rick 62" 10-RA	1611314 . 3K		4 W \$200
C 3 miger box 3 K 1MW Prof	55.8 K	17 W	5 <b>5</b> w
PTUNNIUO	PEN	<b>4</b> 65 ₩	
from SLAC		17. 5V	<b>,</b>
Vauch & for blystron cable I add labor for assumbly IMI	N		
Total Carosi Par Commission of Commission	•		,

actob 251% ar margionex to PEN

Analyzing Station: E = 100 MeVLine on 6000 model: 0 = 36 mm  $0 = 13.1 \cdot 660$  0 = 35 V 0 = 35 V

 $\varphi = 0.00 \frac{10.1.0.4}{0.7} = 1.57$ 

need of a love a lit in from land > y'= 0.7 mon

C.7700d

mine level or

4=0.7000 l=0.4m 3=0.82 hG T = 48.6 amp cinculator: FCI FERRITE COMPONENTS INC.

(617) 250 - 1673

Contact: ELDO ELICONE

10 KIDDER RUAD CHELMSFORD, MA, 01824 \$1500.- 3 month.

wave gride: S-Band

MII Mierowane Techies Inc.

(207) 655 - 3881

Poad 302

RAYMOND, ME, 04071

#### 3 GeV SPEAR Injection System

Electron Beam Parameter

Micro Wave Gun/Positron Source

	Beam Energy at End of Linac (MeV)		100.000
_	Cathode Peak Current (amp)		10.000
Tatel	Bunch Length (mm)		2.000
	Particles/S-Band Bunch (1.0E08)		4,167
	Energy Spread due to Bunch Length		୍ . ି <b>. ଥ</b>
	Particles per 3 S-band Bunches (1.0E08	)	12.500
	Number of Booster Bunches		1,000
	Number of Particles per Cycle (in 1.0E	08)	12.500
	Total Energy Spread at full Linac Energ	3 V	0.010
	Normalized Beam Emittance (FWHM/2)(eps	y. ¥aamma)	
	Horizontal (E-06 m)		20.000
	Vertical (E-06 m)		10.000
	Beam Emittance Horizontal (E-06 m)		0.102
	Vertical (E-06 m)		0.051
Storage	Ring Injection Time	single	multi
		Bunch	Bunch
	Storage Ring Beam Current (ma)	30.00	100.00
	Circumference (m)	234.00	234.00
	Total Number of Particles (1.0E08)	1462.50	4875.00
	Injection Efficiency (%)	25.00	25.00
	Number of Bunches in Booster	1.00	<b>8</b> . ○
	Number of Booster Cycles needed	468.00	390.00
	Booster Cycles per Second	2.00	2.00
	Storage Ring Filling Time (min)	3.90	1.62
	Storage Ring Filling Rate (ma/min)	7.69	30.77
			61.54
Beam Siz	e at Injection into Booster	,	
	Max.Beta Function Horizontal (m)		6.600
	Vertical (m)		8.150
	Max.Eta Function (m)		1.700
	Total max. Beam Width (mm)		1.649
	Total max. Beam Height (mm)		1.291

# 1.1.5.0 E D & I

	======	======	=======		=======
*** LABOR ***	# of Units	Units MM	Total MM	Craft Code	Total Labor
Electr. Engineering   Mech. Engineering   Mechanical Designer   Electrical Designer   Coordinator	1 1 1 1	9 24 12 6 9	9 24 12 6 9	EE ME MD ED CS	68719   185275   65847   32924   47284
====================================	======	======================================	=======================================	==#====	400049   
=========   Total 1.1.5.0  ====================================	=======	=======================================			400049 

# 1.1.5.1 Magnets

# 1.1.5.1.1 Bending Magnet

======================================	=======	=======		======	=========
   *** MATERIALS *** 	    Unit  ======	# of Units	Unit Cost	Cost Base	Total   \$
Sheet Iron  Stamping Die  Stamping	  1000 lb  each  1000		400 20000 500	VQ VQ VQ	96000   20000   37500
End Plates  Stacking Fixture	1000 lb each	10 1	1000 20000	EŪ EU	10000
Stacking/Welding  Copper	block  1000 lb	280 20	200 2500	EU VQ	56000   50000
Copper Die  Coils/Magnet Assembly	each each	. 70	6000 1600	VQ SP86	6000   112000
Water Hoses  Bucking Magnet	each  each	256 1	5 10000	A86	1280   10000
Contract Labor  ====================================	hr  =======	1440 =======	JL 	EU ======	25850  =========   444630
	   ======= 	======			444630  ====================================
	 	=======			   ===================================
***	# of	IInita	motal	Craft	motal i
*** LABOR ***   	# of   Units  ======	Units hr	Total MM	Craft Code	Total Labor
*** LABOR ***   =================================	•				· · · · · · · · · · · · · · · · · · ·
  ===================================	Units  ====================================	hr ====================================	MM 1.5 0.5 1.48	Code ===== MM TM ME	Labor   
  ===================================	Units  ====================================	hr ====================================	MM 1.5 0.5 1.48	Code ===== MM TM ME	Labor   
  ===================================	Units  ====================================	hr ====================================	MM 1.5 0.5 1.48	Code ===== MM TM ME	Labor   
End Plates  Stacking Fixture  Engineering  Assembly	Units  ====================================	hr 	MM 1.5 0.5 1.48 1.48	Code MM TM ME TM	Labor   6695   3002   11424   9606
End Plates   Stacking Fixture   Engineering   Assembly	Units  ====================================	hr 	MM 1.5 0.5 1.48 1.48	Code MM TM ME TM	Labor   6695   3002   11424   9606
End Plates Stacking Fixture Engineering Assembly  Total Labor	Units 	hr 	MM 1.5 0.5 1.48 1.48	Code MM TM ME TM	Labor 6695 3002 11424 9606

# 1.1.5.1 Magnets

# 1.1.5.1.2 Quadrupoles

 	======      Unit	# of Units	Unit Cost	Cost Base	======================================
Sheet Iron   Stamping Die   Stacking Fixture   Stacking/Welding   Coils/Magnet Assembly   Water Hoses   Contract Labor	=====================================	13 1 52 1 160 160 288 320	400 10000 300 3835 50 650 5	VQ VQ VQ EU EU SP86 A86	5200   10000   15600   3835   8000   104000   1440   5744
=====================================	======    -======				153819
	       ========				
!	ļ				
***	# of   Units 	Units hr	Total MM	Craft Code	Total Labor
*** LABOR ***					
	Units  ====================================	hr ======== 80 1 8	MM 0.46 1.85 1.48	Code ====== TM MM ME	Labor ====================================

# 1.1.5.1 Magnets

# 1.1.5.1.3 Sextupoles

======================================	1======	=======================================			
   *** MATERIALS ***   	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Sextupole Cores  Sextupole Coils  Steering Magnets  Magnet Assembly  Brackets for Sextupoles  Water Hoses  Contract Labor	each  each  each  each  each   hr	22 132 12 22 22 264 176	600 243 500 300 102 5 JL	SP86 A86 EU EU A86 A86	13200 32076 6000 5760 2244 1320 3159
  ===================================	   ======     ========================		· ·=======		63759 
=====================================	======   	Units	Total MM	Craft Code	Total Labor
Sextupole Assembly Steering Magnets	22   12 	8 2	1.02 0.14	TM TM	6604 901
Total Labor	======				7504

# 1.1.5.2 Magnet Support

	======	=======	=======	======	-
	Unit	# of Units	Unit Cost	Cost Base	Total \$
I-Beam   Fine Adjustments   Assembly   Clamps   Footing   Misc. Materials   Concract Labor	ft set set set each lot hr	329 90 90 270 96 1 576	360 670 50 9 75 1500 JL	A86 A86 EU A86 SP86 EU	118440 60300 4500 2354 7200 1500 10340
=====================================	======				204634
  ===================================	====== # of	======= Units	Total	 Craft	
=======================================	Units	hr =======	MM 	Code ======	Labor
Assembly	90	4	2	TM	13508
			·		
Total Labor				<b></b>	13508
Total 1.1.5.2	======				218142

# 1.1.5.3 Alignment

	======	========	-======	======	========
   *** MATERIALS *** 	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Materials  Contract Labor	set hr	90 720	100 JL	EU EU	9000 12925
					_
					=======================================
Total Materials					21925
*** LABOR ***	# of Units	Units hr	Total MM	Craft Code	Total Labor
Alignment Engineer Alignment Technician Raft Alignment in Tunnel	36 90 36	1 4 8	0.21 2.08 1.66	AE TA DB	1361 11078 15549
!   					-
				·	
Total Labor					27988
	·				
Total 1.1.5.3		 	=======================================	=======	49913

# 1.1.5.4 Magnet Measurement

======================================	=   ======			======	_=========
	  Unit	# of Units	Unit Cost	Cost Base	Total \$
Hall Probe	- each		3500	CP	2522
Harmonic Coil	each	1	1100	SP86	3500 1100
Magnet Lifter	each	1	950	CP	950
Cooling Fixtures	set	ī	500	EU	500
Micro Computer	each	ī	6500	CP	6500
Misc. Materials	lot	ī	1500	EU	1500
Bend Magnet Track	each	3	1000	SP86	3000
Magn. Meas. Stand	all	1	17000	SP86	17000
Computer Interface	set	1	16000	SP86	16000
	1				
	=   ======			=====	========
Total Materials	ļ.				50050
	=   ======	=======		=====	========
1	•				
 	_				•
	-   ======		=======	=====	=========
! !	! " -	•		C 64	<b>m</b> - <b>+</b> -3
*** TABOR ***	1 # 6#	linite	リアウナ ラー		
***	# of	Units	Total		Total
*** LABOR ***    -================================	# of   Units = ======	Units hr	Total MM	Code	Labor
     =================================	Units	hr =======	MM 	Code	Labor =======
***	Units = ===================================	hr ====================================	MM ===================================	Code ====== EE	Labor ====================================
     =================================	Units	hr 1 12	MM 	Code ====== EE TM	Labor ======== 3972 40524
  ===================================	Units = ======   90   90	hr ====================================	MM ===================================	Code ====== EE	Labor ====================================
  ===================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
  ===================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
  ===================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
  ===================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
  ===================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
=====================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
====================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor 3972 40524 3195
Magnetic Measurement    Programming	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor ======== 3972 40524
====================================	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor 3972 40524 3195
Magnetic Measurement    Programming	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor 3972 40524 3195
Magnetic Measurement    Programming	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor 3972 40524 3195
magnetic Measurement     Programming     Total Labor	Units = ======   90   90	hr 1 12	MM ===================================	Code ====== EE TM	Labor  3972 40524 3195
Magnetic Measurement    Programming	Units = ======   90   90	hr 1 12	MM 1 6 2	Code ====== EE TM	Labor 3972 40524 3195

1.1.5.5 Magnet Power Supplies

1.1.5.5 magnet Power Sup	======	=======		======	=========
*** MATERIALS ***	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Bending Magnets Quadrupole Supplies Sextupole Supplies Small Supplies Bulk Supply Transducers Interlock	=======   kW   kW   each   each   each	300 120 60 30 3 5	310 480 480 1600 2000 990 500	SLAC SLAC SLAC A86 SP86 SP86 SLAC	93000 57600 28800 48000 6000 4950 2500
Interface Chassis Misc. Materials Contract Labor	each   lot   MM	5 1 10	2500 2000 JL	SP86 EU EU	12500 2000 31056
Total Materials	======   	======		=====	286406
=======================================	======   ·     =======			1202222 122222	
*** LABOR ***	 	Units MM	Total MM	Craft Code	Total Labor
Installation	<del></del>   2.00	6	12	TE	50951
	<u> </u> 				
	  - 				
·	   ======	=======	:========		=======================================
Total Labor	======		=======		50951 ========
Total Labor	======				50951 ========

# 1.1.5.6 Magnet Installation

	   <del> </del>				
   *** MATERIALS *** 	Unit	# of Units	Unit Cost	Cost Base	Total \$
Tnstallation Material  main Magnet Cables (5)  small Magnet Cables 	======   set  100ft  100ft     	32 27.5 110	150 200 25	EU SLAC SP86	4800 5500 2750
  ===================================	   ======     ====== 	<b></b>			13050
====================================	======      # of   Units	Units hr	Total MM	Craft Code	Total Labor
Magnet Raft Installation Install Magnets on Rafts main Magnet Cables/Inst.  small Magnet Cables/Inst.	32 90 2750 11000	24 4 0.06 0.01	4.44 2.08 0.99 0.64	DB TM DB DB	41463 13508 9279 5939
Total Labor	======				70189
Total 1.1.5.6	=======				832 <u>3</u> 9

SPEAR 3.0 GeV Injector

# Bending Magnet Specification

General Parameter:

·				
Magnet Name in Lattice	В	B1 -	B2	Block
Magnet Designation	34HB2000	34HB1200	34HB1200	-34HB400
Magnet Type	laminated	laminated	laminated	laminated
Magnetic Arc Length (mm)	2000.00	1200.00	1200.00	400.00
Bending Radius (mm)	7639.44	7639.44	11459.16	7639.44
Bending Angle (radian)	0.262	0.157	0.105	0.052
Bending Angle (degrees)	15.00	9.00	6.00	3.00
Sagitta (mm)	65.36	23.55	15.70	2.62
Number of Magnets	16.00	8.00	8.00	1.00
			,	
Beam Energy (GeV)	3.00	3.00	3.00	3.00
Gap Height (mm)	36.00	36.00	36.00	36.00
Field (kGauss)	13.10	13.10	8.73	13.10
Maximum Field (kGauss)	15.70	15.70	10.47	15.70
Total Current/Coil (amp)	18762.98	18762.98	12508.65	18762.98
Length of Iron Block (mm)	1964.00	1164.00	1164.00	364.00
Cross Section/Coil (mm^2)	7310.00	7310.00	4845.00	7310.00
Aluminum Fill Factor	0.75	0.75		0.75
Power at nom. Energy (kW)	17.83	11.46	7.44	5.09
· J,				
Number of Turns/Coil	9	9	6	9
Current (amp)	2087	2087	2099	2087
Elect.Resist./Magnet (mOhm)	4.09	2.63	1.69	1.17
DC-Voltage/Magnet (Volt)	8.54	5.49	3.54	2.44
· · · · · · · · · · · · · · · · · · ·		•		
Induction/Magnet (mHenry)	2.16	1.28	0.56	0.40
Cycling Rate (Hz)	2.00	2.00	2.00	2.00
Impedance (mOhm)	27.39	16.27	7.25	5.15
System Parameters:	_			
Beam Energy (GeV)	3.00	3.50	3.60	3.75
Total Deflection Angle	360.00	360.00	360.00	360.00
Total Raw Iron Weight (1b)	188280.58	116050.18	81018.43	21909.89
Total Iron Weight (lb)	145988.57	89982.73	62819.89	16988.44
Total Aluminum Weight (kg)	5214.54	5214.54	5214.54	5214.54
Total Electr. Power (kW)	436.45	594.06	628.49	681.96
Total DC-Voltage (Volt)	208.99	243.82	250.79	261.24
				,
:		14554	44804 (5	/ 50 50
Total # of Lams	39589.29	11731.65	11731.65	458.58

SPEAR 3.0 GeV Injector

# Bending Magnet Specification

Mechanical Dimensions:

Magnet Name in Lattice	В	B1	. B2	Block
Width of Magnet (mm)	500.00	500.00	500.00	500.00
Height of Magnet (mm)	450.00	450.00	450.00	450.00
Width of return Yake (mm)	80.00	80.00	80.00	80.00
Pole Width (mm)	100.00	100.00	100.00	100.00
Width of Pole Root (mm)	120.00	120.00	120.00	120.00
Length of Pole (mm)	84.00	84.00	84.00	84.00
Pole Gap Height (mm)	35.00	35.00	35.00	35.00
Iron Cross Section (mm^2)	174460.00	174460.00	174460.00	174460.00
Raw Iron Weight (1b)	7388.57	4378.97	4378.97	1369.37
Iron Weight (lb)	5728.93	3395.35	3395.35	1061.78
Length of Iron Block (mm)	1964.00	1164.00	1164.00	364.00
Lamination Thickness (mm)	1.588	1.588	1.588	1.588
# of laminations	2474.33	1466.46	1466.46	458.58
Coil Cross Section:				
Height (mm)	85,00	85.00	85.00	85.00
Width (mm)	86.00	86.00	57.00	86.00
Coils Shape	flat	flat	flat	flat
Length (mm)	4478.18			
Aluminum Fill Factor	0.75	0.75	0.75	0.75
Al Cross Section (mm^2)	5482.50	5482.50	3633.75	5482.50
Al Weight per Coil (lb)	145.84	93.73	60.16	41.63
Electr. Resistance(mycro Ohm)	25.32	16.27	23.78	7.23
Elect. Power/Coil (kWatt)	8.91	5.73	3.72	2.54
Conductor Width (mm)	7.50	7.50	7.50	7.50
Height (mm)	88.00	88.00	88.00	88.00
Cooling Hole Diam.(mm)	8.00	8.00	8.00	8.00
Number of Turns	9.0	9.0	6.0	9.0

#### 3 GeV SPEAR Injector Synchrotron

Quadrupole Specification	10-19-1986	10-19-1986
	=======================================	=======================================
Magnet Name in Lattice Magnet Designation Magnet Type Straight Magnetic Length (mm)	QF 30Q287 straight 287.200	QD 30Q287 straight 287.200
Energy (GeV)  Bore Radius (mm)  Field Gradient (G/cm)  Maximum Field Gradient (G/cm)  Total Current/Coil (amp)  Length of Iron Block (mm)  Weight of Iron (lb)  Coil Cross Section/Coil (mm^2)  Aluminum Fill Factor  AL in all 4 Coils (lb)  El. Power at nom. Energy (kW)	3.000 30.000 1978.700 2400.000 7085.697 257.200 744.207 1600.000 0.750 39.350 7.160	3.000 30.000 1449.300 2400.000 5189.923 257.200 744.207 1600.000 0.750 39.350 3.841
Number of Turns/Coil Current (amp) El.Resistance/Magnet (mu_Ohm) Voltage/Magnet (Volt) Number of Magnets	8.000 885.712 9.127 32.336 18.000	8.000 648.740 9.127 23.685 18.000
System Parameters:  Beam Energy (GeV) Total Iron Weight (1b) Total Al Weight (1b) Total Electr. Power (kw) Total Voltage (Volt) Total # of Lams	3.000 13395.731 708.303 128.884 582.056 13025.764	3.600 13395.731 708.303 185.592 698.467 13025.764

		•
		•
Width of Magnet (mm)	416.00	416:00
Height of Magnet (mm)	416.00	416.00
Iron Cross Section (mm^2)	173056.00	173056.00
Raw Iron Weight (1b)	744.21	744.21
Iron Length.(mm)	287.20	287.20
Lamination Thickness (mm)	1.588	1.588
Number of Laminations	723.65	723.65
Coil Cross Section:		
Height (mm)	20.00	20.00
Width (mm)	80.00	80.00
Coils Shape	flat	flat
Length (mm)	1380.13	1380.13
Aluminum Fill Factor	0.75	0.75
AL Cross Section (mm^2)	1200.00	1200.00
Al Weight per Coil (lb)	7.84	9.84
Resistance/Coil (mycro Ohm)	35.65	35.65
Elect. Power/Coil (kWatt)	1.79	0.96

Marney Cost 3 Cen SSRI Booster Bend Magnets 7/13/8 No. Lammations: Magnet 8"high x 19" Wide x 14.33 long ( & we) Take Connection of 9 x 20 x 1/16 ~ 250 lanuato per 1/2 lose × 256 1/2 cores ~ 65000 /anenalus of whit take strip stock 20" wide - yields 56250 ft. of coil. Lammator weight is 20 x 9 x , 0625 x . 283 1/13 = 3.183 ter lanneten stock, 75000 lanemalen at 3.2 15/ lamaton ~ 240,000 155 of 8teel skellast Verbal bredgetany quotes from Lang Warral Sise purchasing based on contact with Pyerson and writhington will jield a cost of 404/16 including Shipping and packing, 240,000/65@.404/6= Die Cost: Verbal estmales for Kurt Schultz - Schultz 7fg ~ 16,000 Leo Hoerighansa 12,000. Take high of 16000 + 4,000 for Made tication. lost per Cammatin; Wo tight followice and straightens needed for SIC cosper hit for 75,000 launcetur will be ,30 This 50 for Pale Take 50 % hit yields a cost of 37,500 End Plater 1000 1550 100/16 finsted ~ 10,000 Stucker fivelcin - Based on recent history of SLAC Shape Stacking to the - \$20,000 (past history) Slacking Welding = assembly - \$200 mat 1/3/ock x 260 = \$56,000 Page 10+4

Goils - Dre - 6000 - present fort - Assyruldhum

alummin - 12000 / bs/@ 2,50/hb = 30,000

alymmin loil presungulatur + 20,000

Coil Assenbly pair & 40413@40 = 1600ea | 50,000

An 70 coils - 704600 - 112,000 Magnet Cost Wale hosen - per SPRI made @ SIAC 4.75 call 256 x 5 = 123000 Pricking Magnet -Contract Labor 740 (32@24hm) 700 (10010hrsend) 1440 @ 17.95 = \$25850 Lator To be added?

Page 20+ 4

Magnet Cost 36er SSR1/Booder Glaterial per SPRI Jese 13000 1350 .40 1/16 June 1000 lange 0,3 June 100 theristing 10 h @ 34.95 June 160 graduate @ 50 Ver SPRI (Elha Frie) 1600 650 Les 200 6 17.55 3,3 35 ~ 104000 Contract lakor lum - to be added Sertupole (per SPRI Design) / 27 Enterprises \$15/ma Sextimoles log 22 @ 600 (RTEnderpois) 13 200 Surtifice Coils 132 @ 243 (Etma Eng) 3 207 L 6000 Monthy brackets 22 6 102
Hosel hater 2640 5
Contract labor 176 @ 17.55 5760 2244 1320 3159 Laher 1-to be added GIV der 325 & 360/FT (SPR)

Frie adjustner 90 p 670 (SPR)

Clang 270 6 50 (Est)

Footing 32x 3=96 (75% (SPR)) 118440 60,300 4500 2354 7200 Contract labor 576617.95 1500 10340 204,630 anendy - to be added

Pax 30+4

Haput/alignet/36e SRI Boorte Oliquest 7/3/8 Material labor 90x8 x 1295 Cam - to he added Magnet installation Many buss pa 27500 FT 0 200/FT ofher cabler 11000 6.25/FT 4800 5500 2750 13050 Installation 320 8x3x054° - 41463 00 8x17.91 - 1350 1929 Circu Tostallatine Manelon Girden Man Lable motels Smel Cable, 50@ 3 x 17.95 2750@ ONFET @ 54 11000 E.01 @ 54

Page 40+4

# Campanisan of Magnet Costs.

7 C 1 T	SPRL SPRL sealed to duj.	Lujector Est
BEND: length (m)	0.28 Ols 2.0/1.2	2.0/1.2
ivou bloch*	*1789 12800 / 7667	10760 / 6460
Coils form	dojeared flat	flat -5900
	#3172/pair	#3200/pa
· ·		
Total Cost IRON	327 K	275
COILS	102 k	102

75 k

429 L

377

SPRI ivou blochs are precision machined all around.

Copper

Water Hoses for Majuets.

SPRI Magnets (W. Waolens weiler)

400 hoses each 3 fet with fittings (made at SLAC)

total cost: \$1890

or # 4.725 /hore

# QUOTATIL N LIST

HOLT TOOL & DIE NO QUOTE NO QUOTE	\$4087.00 \$1100.00  TE \$438.00  TE \$638.00  TE \$6001.60 \$2304.20 \$26974.80  LOT. \$33520.00  TOT. \$33520.00  TOT. \$33520.00  TOT. \$33520.00  TOT. \$33520.00  \$12750.00  \$718.75  NO QUOTE  \$7500.00 \$198000  LOT. \$62900  \$1550.00  TOT. \$63320.00  TOT. \$633520  \$1350.00  \$1350.00  TOT. \$633520  TOT. \$633520	\$11.85 3.00 \$15.00 75 \$8.72 WKS	#84.10	\$115.00 \$45.00 295.00 \$106.75 \$299.00 \$110.00 \$110.00 \$25.00 \$110.00 \$70.31 \$217.00 \$70.31 \$101.20 \$70.31 \$110.00 \$70.31 \$110.00 \$25.00
<b>FROTOTYPE</b> \$2245 3000.00 \$785.00			LOT. \$15310.50	
			\$14976 BO	

5525 3772, 125 21614 135 2014 135 2016 25 25 25 25 25 25 25 25 25 25 25 25 25	7
\$ 9000 \$000/1940 1170920 \$ 40152 \$ 9000 \$177/1940 1170920 \$ 401520 \$ 10000000000000000000000000000000000	ADO
\$33426 4190 2046/24 \$15576 \$120 201/144 # 75920 \$5.45 "46/259 \$6.950 \$1.100 \$109.00 \$1.3500 \$2009.00 \$1.100 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000 \$1.000	5000 3172
#609550 1960 3807 # \$215050 \$9803 #117103 \$10500 3500 # 	11898 4817/46
550455 1560 380/85 \$12500 \$7800 812100 \$10500 3500 \$  550455 550 550 510/80 \$118160 10350 5277 \$66033 1870 5.77  6-7 month  70704 \$413,375 HIM	
1350425 153 \$110 \$1110 6 10350 2577 \$ 66033 1670 177	1,6500 (1,500)
250465 257 \$100/210 \$113/60 10350 2577 \$66033   1873 277 80075   1873 277 \$6033   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277 \$6035   1873 277	
M 61076.  6-7 mouth 7070L # 413378 Him	4725/ 4725/
6-7 mounts 37.5.1.	
SEE ST. # 14707	NC KUC
6-7 mouth 15375	
	Stat: 10 webs finit: 5 month 3-5 month. Coil: 6 months studies in 5 work

#### 1.1.6.0 E D & I

_======================================	=====		-=======		========
*** LABOR ***	 	Units MM	Total MM	Craft Code	Total   Labor
Electr. Engineering  Mech. Engineering  Mechanical Designer  Electrical Designer		2 9 12 2	2 9 12 2	EE ME MD ED	15271   69478   65847   10975
Total Labor	=====     ===== 			======	161571   ====================================
  Total 1.1.6.0 	  ======    ======	=======			      161571 

# 1.1.6.1 Vacuum Chambers

1.1.6.1.1 Vacuum Chamber Components

1.1.6.1.1 Vacuum Chamber	<del></del>			======	
*** MATERIALS ***	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Conflat Flanges 4.5"	each	5	61	CP	305
Feed thru for BPM	set	4	65	CP	260
SST Tubing	each	2	4	EU	8
Junction Block	each	1	24	CP	24
BPM Parts	set	. 1	20	EU	. 20
Bellows	each	1	200	EU	200
Oval Flexture	each	6	. 5	EU	30
Tooling/Oval Flexture	each	0.031	5000	EU	156
Thin Tubing	ft	9	24	EU	204
Stiffening Ribs	each	270	0.50	EU	135
Tooling for Ribs	each	0.031	5000	EU	156
Total Materials/Chamber	=====  32 uni			.======================================	47952
	i				
	:   =====			=	
*** LABOR ***	# of  Units	Units hr	MM	Craft Code	Total Labor
*** LABOR *** ==================================				Code	
=======================================	Units  =====	hr =======	MM =======	Code	Labor
=======================================	Units  =====	hr =======	MM =======	Code	Labor
=======================================	Units  =====	hr =======	MM =======	Code	Labor
=======================================	Units  =====	hr =======	MM =======	Code	Labor
=======================================	Units  =====	hr =======	MM =======	Code	Labor
=======================================	Units  =====	hr =======	MM =======	Code	Labor
======================================	Units   ======	hr 34	MM =======	Code	Labor 900
======================================	Units	hr 34	MM 0.20	Code MM	Labor 900 28811
======================================	Units	hr 34	MM 0.20	Code MM	Labor 900
======================================	Units	hr 34	MM 0.20	Code MM	Labor 900
Machining	Units	hr 34 34 its	MM 0.20	Code MM	Labor 900 28811

#### 1.1.6.1 Vacuum Chambers

# 1.1.6.1.2 Vacuum Chamber Assembly

					=========
*** MATERIALS ***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Braze Flanges  Tooling for Brazing  Braze Alloy  Brazing	each   set   lot   each	14 0.031 1 1	10 5000 100 1300	EE EU EE EE	140 156 100 1300
Total Materials/Chamber	32 uni	ts			54280
====================================	=====      =====     # of  Units	Units	Total		Total
		hr	MM	Code	12000
	======	========	=======		Labor
=====================================	=====   1       	== <b>===</b>	0.04	 WV	235
	=====   1   	~========	========	======	=======
	=====   1   	~========	========	======	=======

#### 1.1.6.1 Vacuum Chambers

# 1.1.6.1.3 Straight Section

	:   =====	=======	=======	=======	==========
   *** MATERIALS *** 	  Unit	# of Units	Unit Cost	Cost Base	Total \$
Tubing, thin  Bolt Set  Rib Stamping  Flanges 4.5" 	ft set each each	7 1 100 4	15 35 0.50 61	EU CP EU CP	105 35 50 244
  ===================================	  ======  4 unit	======= S		=======	 1736
				=======================================	
	İ	•			
***	# of  Units	Units hr	Total MM	Craft Code	Total Labor
*** LABOR *** 					
 	Units  =====	hr =======	MM 	Code == <b>===</b> =	Labor =======
 	Units  =====	hr =======	MM 	Code == <b>===</b> =	Labor =======
 	Units  =====	hr =======	MM 	Code == <b>===</b> =	Labor =======
 	Units   ======   1	hr ====================================	MM 	Code == <b>===</b> =	Labor =======
=====================================	Units   ======   1                     	hr ====================================	MM 	Code == <b>===</b> =	Labor 450
Welding	Units   ======   1	hr ====================================	MM 	Code == <b>===</b> =	Labor 450

# 1.1.6, Vacuum Chambers

1.1.6.1.4 Welding Station

======================================	=====	=======		======	========
   *** MATERIALS *** 	  Unit	# of Units	Unit Cost	Cost Base	Total   \$
=====================================	=====  each  each  lot  Cyl  Cyl  set  each  each	1 1 1 1 6 2 1	2789 121 710 20 20 250 350 450	CP CP CP CP CP CP	2789   121   710   20   120   500   350   450
Total Materials	   ===== 				5060
====================================	=====      ======     # of  Units	Units	Total	Craft Code	Total Labor
	=====     				
 	]       				. [
   	   		·		
=====================================					
			,		·
=====================================	   				5060

# 1.1.6.82 Pumping System

1.1.6.2.1 Roughing System

l .		======	=====	=======	=======		
***	MATERIALS	***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Cross			each	4	113	CP	452
	e Vacsorbs		each	4	897	CP	2588
LN2 D	ewar ng Band		each each	2 4	920 245	CP CP	1840
	ction Gauge		each	4	481	CP	980 1924
	Angle Valves	·	each	8	454	CP	3632
	e Mech. Pump		each	1	2350	CP	2350
	Parts		lot	1	1000	EU	1000
Total	 Materials	======	====== 				15766
=====		======	<b></b>   			======	
***			======   ·	======		======	
=====	LABOR ***			Units MM ======	Total MM	Craft Code	Total Labor
=====	LABOR ***	======					
	LABOR ***						
	LABOR ***						
	LABOR ***						
===== Total							
Total	Labor						
Total	Labor						

# 1.1.6.2 Pumping System

# 1.1.6.2.2 Ion Pumping System

	=====	=======			
   *** MATERIALS *** 	Unit	# of Units	Unit Cost	Cost Base	Total \$
=====================================	=====   each   each   each   each   each	32 32 8 2 1	735 80 1600 10900 9280 1845	CP CP CP CP CP	23520   2560   12800   21800   9280 1845
  ===================================	   =====     ======				71805
====================================	  ======     # of  Units  ======	Units MM	Total MM	Craft Code	Total Labor
   	]       				
=====================================	======     ======   				0
=====================================	======     ======	=======================================			71805

#### 1.1.6.3 Pressure Monitoring

	: ======		=======		========
*** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
Ion Gauge Gauge Controller Tee's Model 531 TC Gauge	each each each each	8 8 8 8	325 875 90 48	CP CP CP	2600 7000 720 384
	\				
Total Materials	=====	=======	=======	=====	10704
	=====         ======			=======================================	
*** LABOR ***	# of  Units	Units MM	Total MM	Craft Code	Total Labor
					*======
	 		i i		
======================================	=====				0
=======================================			·		
Total 1.1.6.3	======			====== ======	10704

# 1.1.6.4 Cleaning/Installation

:					
   *** MATERIALS *** 	Unit	# of Units	Unit Cost	Cost Base	Total \$
Solv.(Alco.,Acet.,Freon)  Gloves,Foil,Towels	lot  lot	1	2134 3750	SP86 SP86	2134 3750
Alum.Foils	roll	18	7.43	SP86	134
Plastic Foil/Bags	lot	1	750	SP86	750
	each	1000	0.57	SP86	570
misc. Supplies	lot	1	4510	SP86	4510
Plastic Bags	lot	1	500	SP86	500
Clean Room Equipment	set	1	1215	SP86	1215
Gaskets  LN2 Dewar	each	300	2	SP86	600
Contract Labor	each   MM	2	920	CP	1840
====================================		18 ====-	JL 	EU 	55900
Total Materials	     <b>====</b>				71903
*** LABOR ***	# of  Units	Units MM	Total MM	Craft Code	Total Labor
Vacuum Engineer	1.00	6		 ME	
Installation Labor	•		_		46319
Installation Labor     	1.00   	9	9	TV	58422
Installation Labor         	•		_		
Installation Labor	•		_		
             =========================	•		_		58422
Installation Labor	•		_		
             =========================	•		_		58422

# 1.1.6.5 Beam Monitoring

	=====	=======		======	========
   *** MATERIALS *** 	    Unit  =====	# of Units	Unit Cost	Cost Base	Total \$
Synchr.Light Monitor  Toroid/Gap Monitor  Scrapers	each  each  each	1 . 2 2	19056 1060 7250	SLC SLC SLC	19056   2120   14500
misc. Materials	lot   	1 ·	2000	EU	2000
	     		·		
Total Materials	<b></b>     <b></b> 			=====	37676
*** LABOR ***	== <b>==</b>     # of  Units	Units MM	Total MM	Craft Code	Total Labor
Vacuum Engineer Installation Labor	   1   1	2 3	2 3	ME TV	15440 19474
======================================	     <b>====</b> =	=======	· •	=====	======================================
	=====      -=====				
Total 1.1.6.5	     ======				72590

Cost Estimate for 3 Ger Vacuum Chambers (7/261)

Excluding: Pumpout port/Junction Block/Bellows

		BF	PM		No Spares	key	· · · · · · · · · · · · · · · · · · ·
Item#	Item Description	10 ty/chamber	Modify Cost	per Chambon	to Order	Matils	Total Labor
	4/2" Conflat Flarges	Zea	\$61.00	/ hr. machinit		3904	2560 machinist
3	Oval Flexure Tooling (Dies) for item 2	1	\$ 5 (est) \$ 5 K (est)	)	192	960 5000 4480	
<i>4 5 6</i>	Brane Flanges Tooling (Dies) for item 4 Rila Stamming		# 10 (est) # 5 K (est) # 0,50ea (a	)	448   8640	5000	
7	Rib Stampings Tooling (Dies) for item 6 Thin Tubing (1.84"p)	10nly 8.5ft	\$5 K \$15/ft	(1.5 hr	272 ft	5000	1920 Machinist
9	Braying of Item 4	6 segments	\$100 (est. braze allo)	(Cut to long th) Per pieca: WLD: 5hr	32×3 WLP	3200	3840 wdaing
	to thin tube segments + spot welding ribs + braging ribs + braging ribs	· · · · · · · · · · · · · · · · · · ·		BRZ:1.0 hr Setup	1 1	(alloy)	19200 braze safap
10.50	Furnace Run for brazing	1 run/chmbr!	\$500 charace		32 ruw		16000 furnace run:
11	Welding Oval flexures to braye flanges	12 welds		3 hrs welder	96 has @40/hr		3840 welding
				5 W	1	5944 \ ± 2 Matts	47360 fab. Lulor

Matls + Fab, Labor: \$ 83,304 approx. \$83,3K

In addition: Design + Engineering (approx 10 drawings, checked etc = 4 weeks,

Plus approx 6 weeks vendor negociations over fabrication

options, tooling design + prices, bronze procedues etc)

- roughly \$\frac{1}{20K}\$

Expedititer (approx. 3 man months. (a) \$\infty\$ \$\frac{1}{25K}\$ month) = \$\frac{1}{25K}\$

Quick Estimate of Prototype additional costs: \$\frac{1}{22K}\$

Summary: "Energ. + Design \$ 20K Expediting From \$ 15K Falr (Matls + Lakor) 83K

with Prototype

# Estimated Costs assuming Interator builds chambers

Interator Quote for 32 chambers 2 meters long

Actual Chambers are 2.4 meters long, so I assume Interatom price would increase by  $\left(\frac{2.4}{2.0} = 120\%\right)$  say 10%;

⇒ \$181.5 K

Stanford Engineering + Design Staff work required to adequately specify, review, + negociate all details prior to and after award of contract: estimate approx. 6 weeks full time equivalent engineering + design, spread over a longer calender time, or approx. \$ 12 K.

This brings Interator quote to approx. \$ 193.5K

If they have to change cross section, it is quite possible their quote could increase substantially.

entre de la companya de la companya de la companya de la companya de la companya de la companya de la companya

المراجع والمنافع والمتابع والمنافع والمستقل والمنافع والمنافع والمستقل والمنافع والمنافع والمنافع والمنافع والم

en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de

Prototype, y built by SSRL

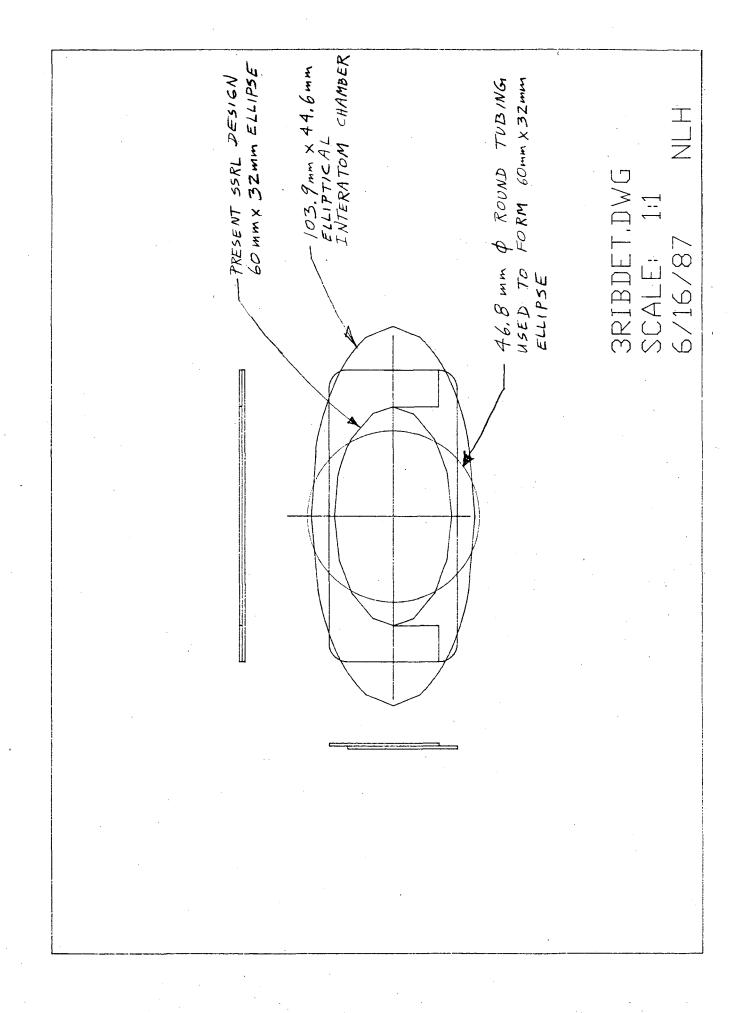
(Oval flexure not easy to prototype due to tooling charges)

.....

	Drawings: 2 wks	\$4K	 
	Machining braze flares	4 K	
	Procurement, thin tubing	IK	
	Machining ribs	6 K	•
	Braying	2 K	
	Misc.	5K	
MILLER TOTAL MILLER IN CASE CONT. T. COMMIN.	· · · · · · · · · · · · · · · · · · ·	# 72K	
******* * ****** * *** *** * * * * * *		. 4 6	 

Best Guess Companison

Interator final quote plus stanford interface  $\approx 3200 \, \text{K}$  (assuming they can make  $32 \times 60 \, \text{mm}$  section)


The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s 

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

Stanford costs for equavalent items, with prototype = \$150K

40,8 MM PRESENT SARL DESIGN PONNX DUNE ETTIBLE PONIBUT CHUCK & FORM GOMEN X32mm FLLIPTICAL FLLIPTICAL TWTERATOM CHAMBER

ENIENBY NLH
SCALE: 1:1
NLH



Review Vacuum Calculations for an assumed chamber

(ross Sectional Shape:

32mm

60mm

From Calculations found in my notes of 2/11/86 ("First Cost Estimate, 3 Gev Synchrotron for new SPEAR Sujector, VACUUM SYSTEM), for regularly spaced pumps (distance between pumps = L, = 2 L, each pump having pumping speed Sp) in a long duct, the average of the parabolically-varying pressure is

$$\overline{P} = \mathcal{R}_{3} BL \left( \frac{1}{5_{p}} + \frac{1}{3c} \right) \tag{1}$$

where B = duct perimeter,

C = conductance of a length L of this duct,

for = outgassing rate (Torr-liter/sec cm²)

For the latest version of the lattice (10/9/86),  $L_p = 2.7872$  meters, L = 1.3936 m.

For the elliptical cross section above with

$$a = 30 \text{ mm}$$

$$b = 16 \text{ mm}$$

$$posimeter$$

perimeter  $B = 0.14697 \text{ m} = 14.697 \text{ cm}^2$ area,  $A = .00147313 \text{ m}^2 = 14.73 \text{ cm}^2$ 

From Roth, P. 82

$$C \simeq 61.72 \frac{A^2 (A \text{in cm}^2)}{B(\text{in cm}) L(\text{in cm})} K$$
 (2)

where the factor K is assumed to be given by Table 3.5 p.82 in Roth which is for a rectangle with vatio ba. Here & = \frac{15}{30} = .533 and K \sim 1.146

Then 
$$C = \frac{61.72(14.73)^2}{(14.697)L}(1.146) = \frac{1044}{L(cm)}$$
 free (3)

 $= \underline{C_o}$  (3)

Substituting (3) into (1) >>

$$\overline{P} = g_D BL \left( \frac{1}{S_p} + \frac{L(c_n)}{3C_n} \right)$$

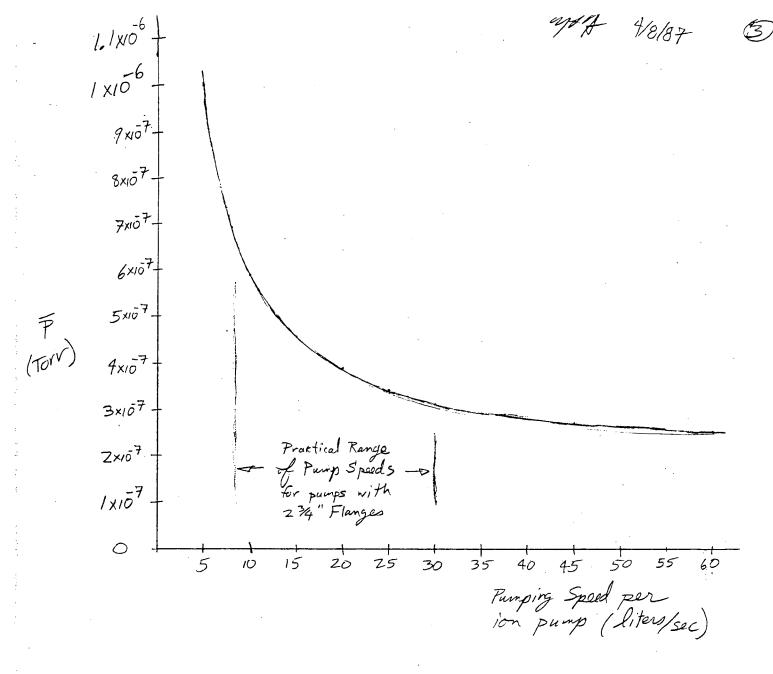
(A)

This yields pressure in Torr provided L and Bare expressed in cm, Sp in liter/sec, Co is the dimensionless numerator (= 1044) of (3), and go is in (Torr-liters)/sec cm²).

For the present design we are considering L=139,36 cm, B=14.697 cm, so

$$\overline{P}(forr) = g\left(\frac{T-l}{s-cm^2}\right)\left(2048\right)\left(\frac{l}{5p} + \frac{l}{22.47}\right)$$
 (5)

For unbaked, degreesed stainless steel (see Roth Fig 3.44)  $g \approx 2 \times 10^{-9} + l/see cm^2$ , (which could be improved by electropolishing) (or baking),


$$\bar{p} \approx 4.10 \times 10^{-6} \left( \frac{1}{57} + \frac{1}{27.47} \right) = C$$

For various commonly-sized ion pumps, the resulting pressures would be:

5,	Florge Size	P (Torr)
Parkin/Elmen, 11 /sec	2 3/4"	5.55×10 ⁻⁷
1 20 1/3	2 3/4"	3,87×10-7
25	3 38"	3,46×10+
Varian 201/3	2 34"	3,87×10-7
11. 30 1/3	4%"	3.19×10+
Varian Starcell 30/3	2%"	3.19x10-7
11 11 45/5	4.5"	Z.74×10+
Varian 8 /sec.	2 34"	6.95×10-7
5;=00		1.82×10 ⁻⁷

for assumed outgassing

The benefits of going to Sp > 20 /sec Sont lock that great. I would think we could live with 2 34" pumpout port flarges. This would still leave possible choices of 8,11, 20, or 30 /sec pumps.



Updated Got Estimate For Vacuum Chambers

for 3,0 Gev Anjector Synchrotron

- Basel on proposed duign as of 4/87

-assumes 36 identical chambers (32 regid plus 4 spares)

- assumes \$40/hr muchinist & welder laker costs and \$100/hr bruze tech labor costs

assumes each chamber has a BPM

- Gives several options for ion pumping system, lepanding on desired average prossure is cost tradeoff.

- No Conamic broaks are included at this time

CDR March 87 # 422,491

Prosent Est.

Vac. Chambers: 160K

Fumping Syst: 19.6K roughing

Pumping Syst: 19.6K roughing

95 K (Max) ion pumps + gate valise , 60.7K (min)

uncharged Presonce Monitorise: 10.7

Installation

462.3K (Mmx), 428 K (Min)

	~.											٠.
	Total Labor			7.2 hu (Mc)	324 hr (Mc)	7 20bn (MC)					54 hr (MC)	
soft Chang	Tatals	10980	0986	288	h%	720	7200	1080	5040	4860	4590	
32 Chambers	+ 4 spares	0.8/	/44	75	36	36	36	216	504	07.46	306 ft	·
	Labor (per chamber)	1		1 hr. Machinist	9 War Machinist	20 ha machinist	ı	١			1.5 hr. st mochinist cent to brights presymetre	
	Matil Cost	\$61 (CP)	\$65ea	#4	8165 55T @ #3/16 =#24	est. #.20	J2004st)	\$ 5 est. \$5K(est.),	\$ 10 est \$ 5K(est)	\$10.50ca \$5K	B15/A+	
_	Oty per chamber	5 ea /	4 ea .	2 er.	0	1 set	44	(non-recurring)	7 -,	7 042	8.5/10 1	
	I tem Desoriphion	412" & conflit Flanzes	BPM Elect. Feedthms	2 % ODX.049 wall x 4 "long SST Tubing	Juntion Block	BPM internal purts	Ballews	Oval Flexure Tocling Change (Dies) for	Braze Flanged of Tooling Chaye (Dis) for	Rib stampings of Tooling Charge for	Thin tubing.	

	,					30f (A)
brazing BPM;	~		(BZ) V	<i>y</i>	3662 (BZ)	
Srazing flanges + Ribs to thin talker	9	100 (est) Braze alloy	12hr ( (BZ)	o n	432 km (BZ)	
Welding Ports, Flunger, + ballows to Junction	_		1.75hz (WLD)	30	(D7M) 46 9	
Welding & PM			1.5 V (WLD)	36	54h (WLD)	
Welding oval floxumo	. 12		3.0.0	w	108 hr (WLD)	
			•			

Tot, maths: 59982 Total Labor: 100,008

MC: 1105.2kr.
@ \$45/kr.
BZ: 468 kr.
@\$109/kr.

00894 =

MLD: 225

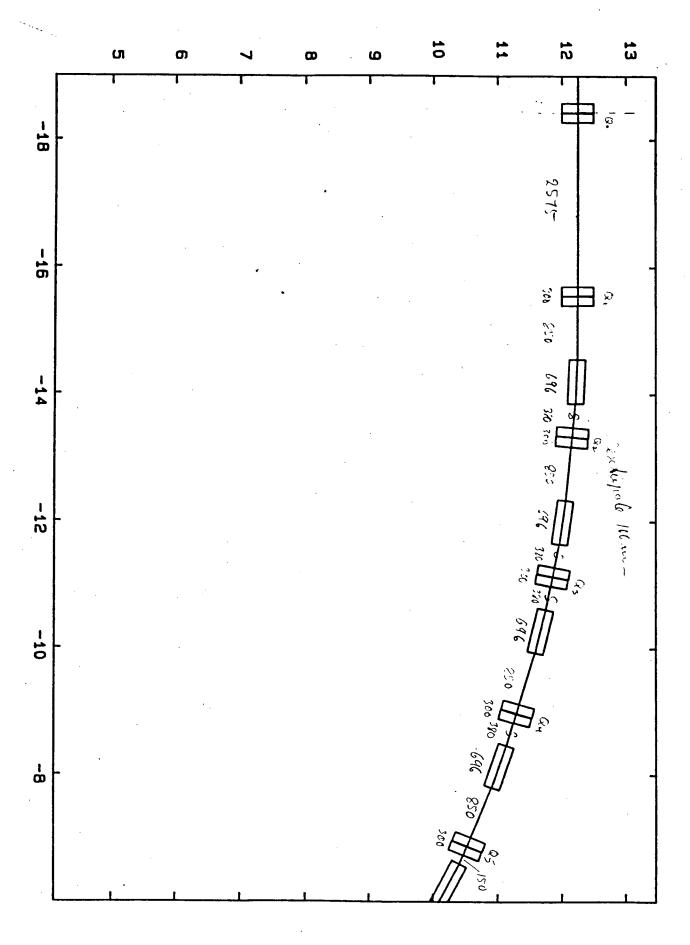
200'001

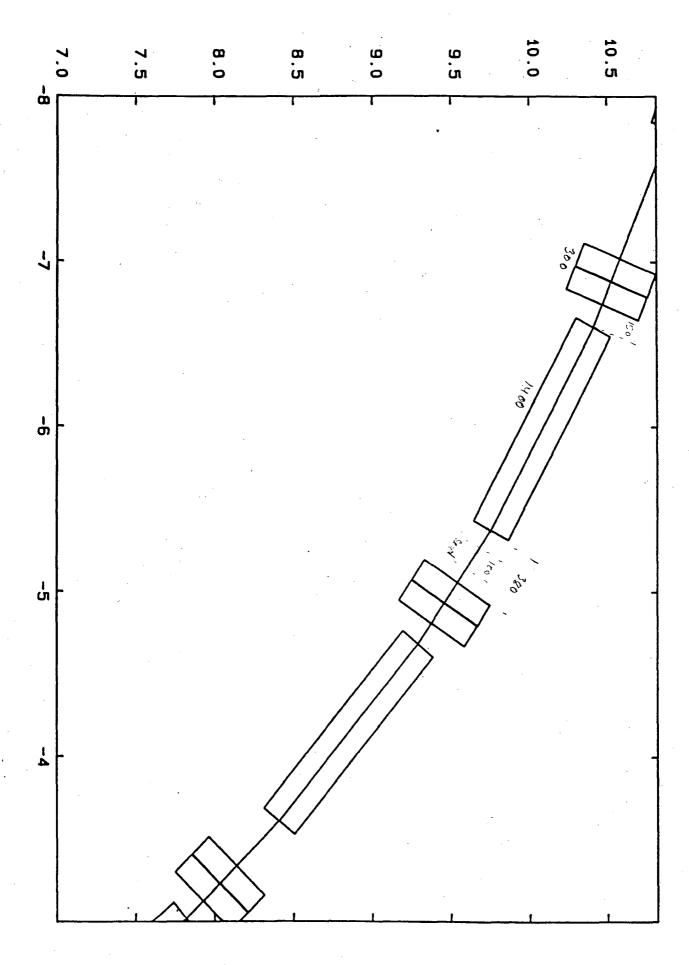
Ion Pumping System (Section 5.2,2)

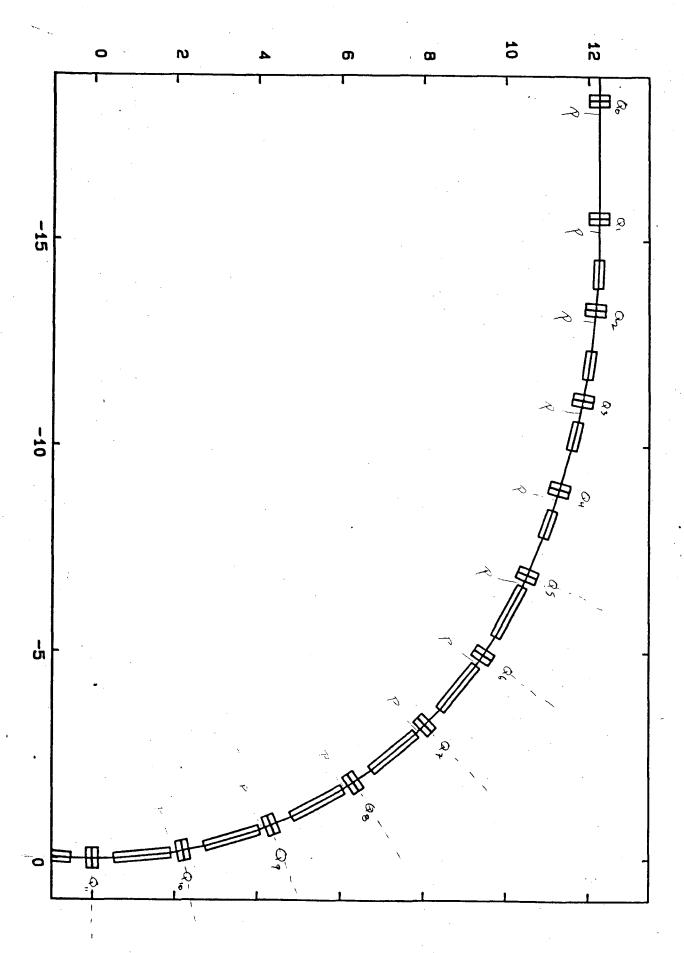
F (Tow)	7×101×7	3,9 X10	3.2 ×10-7	
Total	38,940	961960	3 73200	> 2/800
Cost Base (1886 pria)	(CP) (CP) (CP)	(CP) (CP.) (CP.)	(CP)	(CP)
Lund Cost		8009/	·	00601
# remt	0 2 6	36	n 20	74
Unit	ta ea	5	å Æ	ed 37-CE 44
world		20 1/s ion pump ea 412-to-274 reduing-thy en Medium Pump Supplies ea	30 % ion pump . " Medium Pump supples	Gate Valves (VAT series 58 all-metal 88mm ID cate valve "RF contact) (at: #58039-CE
Description	Either:	0   X	0 R	p lus

Sultotuls; \$ 60740 for 8 fsuc (7x10 Form)

or 91760 " 20 fsoc (3.9x10 7)

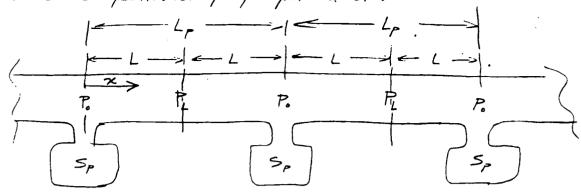

or 95000 " 30 fs (3.2x10 7) (This might be in RF system budget) 9280 (CP) = 11,125400 As ion pump + supply for RF cav.


First Cost Estimate


3 Gev Synchrotron for new SPEAR Synjector

Vacuum System

Proposed by N. Hower, SSRL 2/12/86







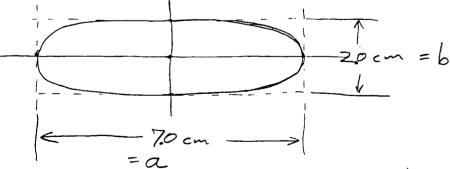

Element	Longth
- Q0	150 mm 2.725
D	7575
Q,	300
D.	850
B	696 2.226
D	140 (5.51")
5	100
D	140
Qz	300
$\mathcal{D}$	850 (33.46")
B	696 2.226
D	140
5	100
$\mathcal{D}$	140
() ₃	300
$\mathcal{D}$	140
5	100 2.226m
D	140
B	696
$\mathcal{D}$	850
$Q_{4}$	300
$\mathcal{D}$	140
, S	100 2.226
D	140
$\mathcal{B}$	696
D	850
1 25	300
Repeats D	150 (5.91")
6 times to B	2.23 140
A 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	100
7 4	V 140
- Q6	300

Consider a periodically-pumped duct:



From Roth, Vacuum Technology (North-Holland, 1976) P. 129,

$$P(x) = g_{D}B[L/s_{p} + \frac{\chi^{2}}{2CL}] = P_{o} + g_{D}B\left[\frac{\chi}{C} - \frac{\chi^{2}}{2LC}\right]$$


$$P_L - P_0 = \frac{g_D B L}{2C}$$

in which go = outgassing rate (Torr-liter/sec cm2)

C = Conductance of a pipe of length L Sp = pump speed

B = duct perimeter

The cross-section is approximately elliptical, 20mm x 70 mm as shown;



I take as a first approximation the conductance of this tube to be about that of a rectangular cross section or dimensions a & b, for which (Roth p. SZ) for \$ =0.286  $(K \simeq 1.23)$ 

$$C_{ain} = 38.0 \frac{a^2b^2}{(a+b)L}$$
 inter/sec

where a, b, EL are in cm.

For 
$$d=2cm$$
,  $b=7cm$ , this yields

$$C_{ini} = \frac{828}{L(cm)} \text{ litar/soc}$$
(Thus a 1 meter length has conductance of 8.28 less).

The average pressure is

$$\overline{P} = \frac{1}{L} \int_{-R(c)}^{L} dx = \frac{1}{L} \left\{ P_{c}L + \frac{1}{2}B \left[ \frac{L^{2}}{2} - \frac{L^{32}}{2(3)L} \right] \right\}$$

$$= P_{c} + \frac{1}{2}BL + \frac{1}{2}BL = \frac{1}{2}BL \left( \frac{1}{2} + \frac{1}{3}C \right)$$
On the arc portions of the ring, the cells repairly in units of 2.23 meters long. Suppose we place one pump every cell, so  $L_{p} = 2L = 2.23 \text{ m}$  and  $L=1.115$ .

Then  $\overline{P} = \frac{1}{2}D (2)(9cm)(111.5cm) \left[ \frac{1}{2} + \frac{111.5}{3(828)} \right]$ 

$$= \frac{1}{2}D (2)(9cm)(111.5cm) \left[ \frac{1}{2} + \frac{111.5}{3(828)} \right]$$

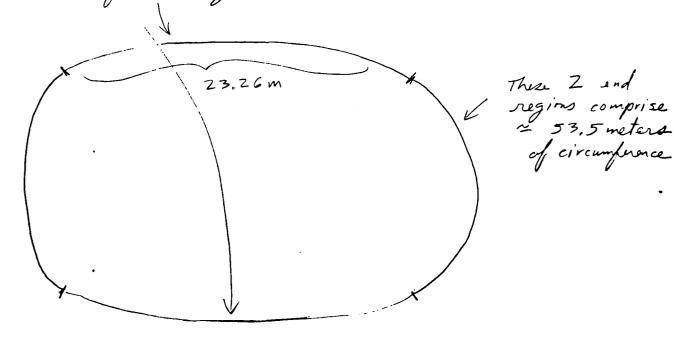
$$= 2007 \left( \frac{1}{2} + \frac{1}{22.28} \right) \mathcal{F}_{D}$$
A minimum requirement on  $\overline{P}$  is that  $\overline{P} \approx 10^{-6}$  Torn, although this lowes little conservation. assuming  $\overline{P} \approx 10^{-6}$  Torn and  $\overline{P} = 2 \times 10^{-6}$  Torn and  $\overline{P} = 2 \times 10^{-6}$  Torn and  $\overline{P} = 2 \times 10^{-6}$  Torn down, degreesed stainless steel, not backet.

A minimum requirement on P is that P = 10° Torn, although 90 = 2×109 Tour-liter/sec cm² (See Rothip. 142 - this is a median value for down, degreesed stainless steel, not bother.

$$S_p \simeq \frac{1}{P_{2007 gp} - \frac{1}{22.28}}$$

= 4,9 liter/sec.

Notice that because of the conductance - limited nature & this cross-section, the minimum gaverage pressure which could ever be reached using one pump per 2.23 mutch column the Sp =  $\infty$  and  $g_D = 2 \times 10^{-9} \text{ T-l/sec cm}^2$  is  $P_{min} \simeq 1.80 \times 10^{-76}$ 


	S, (litysec)	P(Torr)	Po (Torr) = FoBL (at the pump) Sp	Pump Lifetime
	00	1.8 ×10-7	•	(approx.)
Varia \$1330	20 Sec	3.8x10-7	2.0 x10-7	Zo years
Varian \$735	8 Sec	6.8 × 10-7	5.0 x 10 7	9.1 years
	4.9 /sec	1.0 × 10-6	8.2 ×10-7	.0
Valia \$500	30 /soc	3.14×10-4	1,34 × 10-4	30 years

L = 2.23 m in the previous results and the minimum achievable average pressure would be (for infinitely-fast pumps)

 $\frac{\overline{P}}{P_{min}} \simeq (2 \times 10^{9})(2)(9)(223.0) \left\{ \frac{1}{\infty} + \frac{223}{3(828)} \right\} \simeq 7.2 \times 10^{-7}$ (for one pump)
every 2 cells

while using, say, 20 Usec pumps would give  $P = 1.12 \times 10^{-6}$  Thus the omitting of every other pump would probably lead to unsatisfactorily high pressures.

What about in the remainder of the ring (i.e., in the "flatter" regions:



In examining the lattice dimensions on pg 1 above, the cells of 2.226 m length are almost the same length (2.230 m) as those previously considered. While there appear to be more open areas to mount pumps in the "flat" regions, if the vacuum chamber cross section remains the same 20x70 mm area, the conductance limitation will still exist and the pumping requirements will remain as found above.

As a first-cut design therefore we propose a system of nearly equally-spaced pumps at intervals of about 2,23 meters. The number of pumps would be approximately 100m/2.23m = 45 pumps. One could use 20 fee pumps giving P = 3.8x107 Torr (\$60K for pumps or 8 flee pumps giving P = 6.8x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$133K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$130K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$130K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$130K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$130K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps or 30 flee pumps giving P = 3.1x107 Torr (\$100K for pumps giving P = 3.1x107 Torr (\$100K for pumps giving P = 3.1x107 Torr

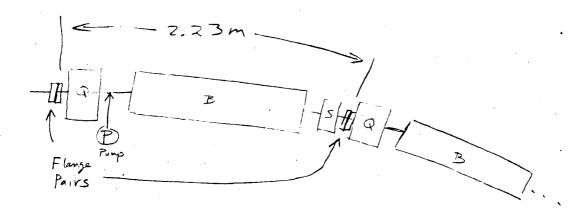
Synchrofien Rodintion Heating of the wall of the vacuum chamber can be shown to be guite negligible, so no cooling is anticipated for the vacuum system.

# Items to cost:

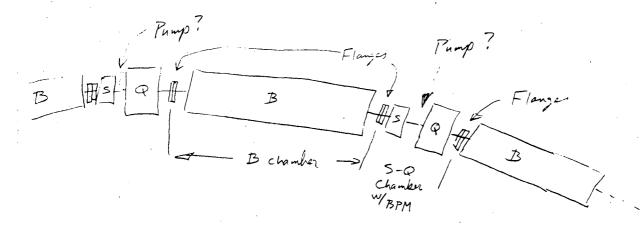
I. Pumps (see above)

II. Maths + Labor to Fabricate chambers

~ III. Sector Valves (to isolate ring into 2 or 4 sections)


V II. Beam Position Monitors (Included in)

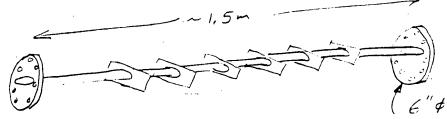
I. Roughout System


II. Pump Power Supplies

VIII. Misc. Valves + Vacuum Hardware

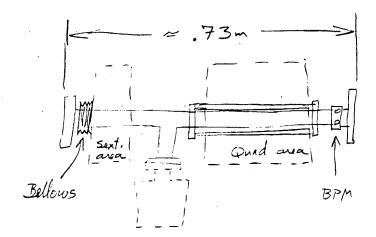
V VIII. Pressure Monitoring Devices




# Option B



Pro: Shorter chambers to handle


Con: Extra flange pair uses up space possibly needed for pumpout ports.

Consider Option B:



A. Bond Chambers

Flanges



# B. Sextypole/Quadrupole Chambers

Estimates:

A. Band Chambers: 2 ea 6" & Flanges @\$ 75 su = 150

1 bolt set @\$ \$35 = 35

Tubing, thin @\$ \$15/ft \sim 75

Reinforcing rib stampings 1500 @\$5 \sim 75

subtot, meths 335

Labor: 8 hrs Welding, Brazing @\$50/n = 400

6 hrs machining @\$50/m = 300

sub, lafor 700

Total, Band Chambers \sim \$\$\\$ 1.035 K, ea

B. Sextupole/Quedrupole Chambers

Zea 6'\$ Flanges @#75 = 150

1 ea both set @ 35 = 35

Tubing @\$15/ft = 35

Special Stiffeners (not desiral) = 100

BPM Feedthrus 4@\$65 = 260,

Bellows 1ea @ = 200

\$780 mat/s

Labor: Machining: (BPM parts, bellows rings, special stiffeness etc) Estimate 20 hrs @ \$50 = Brazing/welding: 10 hrs @ 50

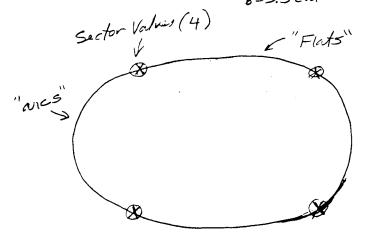
1000

Total, sextupole/Quadrupole chambiers: \$2,28 K

1.035K + 2.28K = \$ 3.32 K overall length; 2,23m

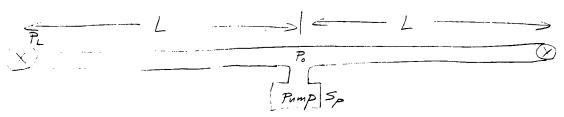
Estimated cost meter = 1.49 K, say \$1.5 K/meter

:. For 100 meter circumference, allow approx \$ 150 K


## I. Roughort System

Starting Pressure Regid: 1x10 Torr (or slightly greater)

Total Internal Volume: V= Hab L = 110 liters.


Including ion pumps + Mise, lets

say Votal = 120 liters.



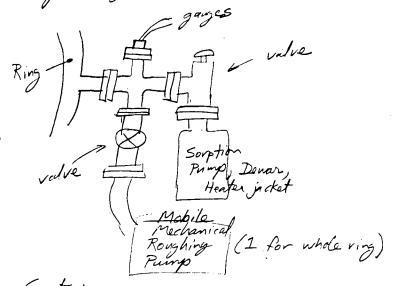
Assume each of the 4 sectors is about equal in volume (= 30 liters), length (= 25 meters), and conductance, and that we rough out each section separately.

Try one roughout port/sector:



Here L = 12.5 m

$$P_{L} = g_{D}BL\left[\frac{1}{5p} + \frac{1}{2C}\right]$$


$$P_{L_{min}} = \frac{g_p BL}{2C} = \frac{g_p B \cdot L^2}{2(828)} = \frac{(2 \times 10^9 T - l)(18 cm)(1250 cm)}{2(828)}$$

= 3.4 ×10 Torr

This should be good enough to start the ion pumps.

The total gas load is 760 Torr x 30 liter = 23000 Torr-liters, well below the 170,000 Torr-liter pumping capacity of a double sized Varian Vacsort pump.

The proposed roughout system would thus consist of the fellowing



4ea - Cross, 2 4" Flanger @ \$113 ca = \$ .452 K

4ea - Double Vacsorbs Varian PN 941-6502 @\$ 897ea = 3,59 K

4ea - LN2 Dewar for ), P/N 944-00/2 @ 920 = 3.68

4 ta - Heating Band P/N 944-0045 @ 245 = 0.98

4ea - GP Series 275 Convection Gauge System @ 481 = 1,92

Model 275094

8ea - Varian PN 951-5092 1/2" @ 799 = 6,39 Hand operated Right angle Valves

1 ea - Mobile Mechanical Pump (Varian SD-700) al 2350 = 2.35 \$\frac{\pm 19.36 K}{\pm}\$

Say \$ 20 K

III. Sector Valves: Assume 4 ea GP valves (or equiv. radiation - resistent all-metal valves) @ \$10 kea = 40k

II. Pump Power Supplies

A more economical system might be possible to division, but due to the fairly high aperating pressures a starting pressure, I will assume that I medium power supply (Varian P/N 921-0062 @ \$1600 ea) is regid for every tirrection pamps, for a total of \$\frac{45}{5} = 15 units

Total; \$\frac{424}{5} K

VIII. Pressive Monitoring Divices

8 ea Modil 580 Node @ \$319 iongange (Varian) = \$ 2,55 K 8 ea 234" Tee's @ \$ 90 = .72 8ea Varian Model 843 @ 875

Ion Gauge & TC Gauge

Controller

8ea Mell 531 TC Gauge @ \$148 = 7,00

- .38 \$ 10.65K Total

VII. Misc. Valves + Hardwere

Estimate approx \$ 20 K for as-yet-unspecified hardware.

#### 12

# Cost Summary - Vacuum System for 3 Gev Injector Synchrotron

Citigory	Description	Estimated Cost
1	Matil + Fab. Labor for fabricating thin-walled vacuum system, 100 m total length (see pp. 6,7,8), including BPMs.	# 150.0K
2	Sector Valves (see p. 10)	40.0
3.	Roughout System (sie pp 9+10)	20.0
4.	Pressure Monitoring Equipment (p. 11)	11.0
<i>5</i> .	Misc. Valves + Vacuum Hardware (p.11)	20.0
· 6.	Ion Pump Power Supplies (p.10)	24.0
7.	Ion Pumps - 45 pumps Assuming 20 //sec pumps (P=4x10 Torr) Alternate: 8 //s pumps (P=7x10 Torr)	60,0 or(33.0)

# 325 K (or \$298 K wing 8 //sec pumps)

#### SCIENTIFIC INTERNATIONAL INC.

P.O. Box 143 Princeton, N.J. 08542 Tel. (609) 924-3011

June 4, 1987

Professor Helmut Wiedemann Applied Physics Department Stanford Synchrotron Radiation Laboratory Bin 69 - Box 4349 Stanford, CA 94305

Reference: Thin-walled Ribbed Beam Pipes

Dear Professor Wiedemann:

Pursuant to our previous discussions regarding your potential need for thin-walled ribbed beam pipes, and yesterday's verbal telephone offer, we are now able to confirm our offer as follows:

#### QUANTITY OF 32 CHAMBERS, ELLIPTICAL CROSS-SECTION -

Wall thickness: 0.3 mm

Height of Chamber: 44.6 mm

Width: 103.9 mm

Length: 2 meters, each Chamber

Material: TP 321

Number of ribs per Chamber: 92

One vacuum flange at each end of Chamber

Final design according to SLAC specifications

Manufacturing of one prototype

Leak testing

Tooling

PRICE: Approximately \$165,000.00 f.o.b. Princeton, New Jersey.

A vacuum bakeout is not included in the above monetary value.

Continued . . . .

Professor Helmut Wiedemann Stanford Synchrotron Radiation Laboratory June 4, 1987 Page Two

We must stress that our given price only presents an approximate value, since the detailed specifications are not known at this time. This price is also based on the current \$-DM exchange rate. However, we included in our calculations 8.7% Import Duty; SLAC can legally be exempted from these latter charges according to Customs Regulation Item 851.60, provided an application for exemption is filed PRIOR to importation of goods.

We hope to have given you adequate information at this point, and we would be delighted to pursue some further discussions in reference to your particular needs.

Sincerely,

Hans D. Gerwers

HDG/bb

### SCIENTIFIC INTERNATIONAL INC.

P.O. Box 143 Princeton, N.J. 08542 Tel. (609) 924-3011

February 25, 1987

2-24-87

CC WINNER MANNEY

WIEDONNAMAN

GOVE

GOVE

MORRIEDO

NORRIEDO

NORRIEDO

Mr. Richard Boyce STANFORD LINEAR ACCELERATOR CENTER P.O. Box 4349 Bin 69 Stanford, CA 94305

Reference: Elliptical-Shaped, Thin-Walled Beam Pipes

Dear Richard:

Pursuant to our several preliminary discussions regarding Elliptical-Shaped, Thin-Walled Beam Pipes, we include herewith some Xerox copies of similar chambers which have been built by the European INTERATOM CORPORATION, a 100-percent daughter company of SIEMENS AG, the latter being a company with over 35 billion dollars in annual sales volume. SCIENTIFIC INTERNATIONAL, INC. is the official U. S. Representative for INTERATOM.

The Beam Pipes, delineated in the photocopies, have a wall thickness of 0.3 millimeters and are manufactured from Stainless Steel. The use of INCONEL material is also possible. INTERATOM recommends, based on their experience, the incorporation of heater elements into the Beam Pipe structure. Such elements can be brazed directly to the Chamber Ribs. The degassing rate of the ribbed beam tubes is in the range of:

equal/less than 10⁻¹³ mbar x liters/second.

The final vacuum in those Chambers can be maintained at:

equal/less than  $10^{-11}$  mbar.

INTERATOM presently builds such Chambers for CERN in Geneva, Switzerland, and GSI in Darmstadt, West Germany. For the latter facility, the ribbed beam tubes will be installed in magnets whose fields will vary a few Teslas a second. The ribbed tubes are designed to withstand at least 25 Situ heating intervals over a 24-hour period, at 300° Celsius, without damage.

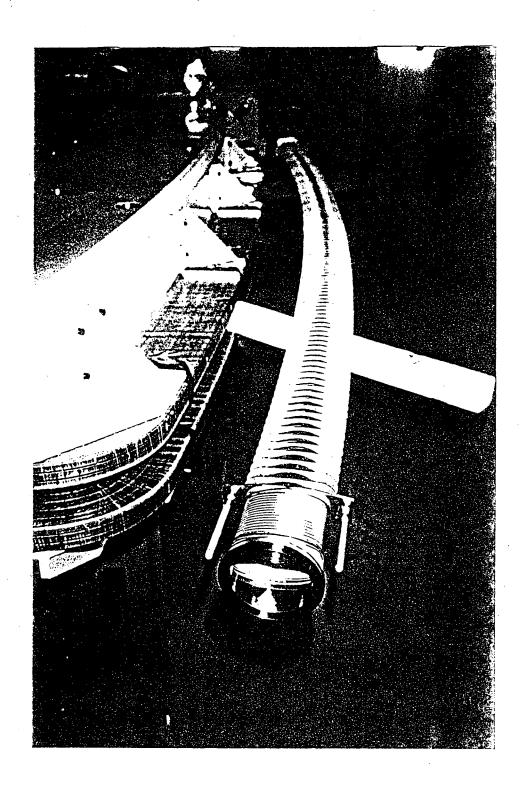
Without being bound to the following price level, the cost for such structures is likely to be around \$3,000 per meter, without Import Duty. As mentioned on previous occasions, SLAC can legally be exempted from Import charges, provided that an application is filed before importation of goods. Please consider the price above as a ballpark figure only.

Continued . . . .

Mr. Richard Boyce STANFORD LINEAR ACCELERATOR CENTER February 25, 1987 Page Two

Please take the enclosed information only as a starting point for futher discussions. INTERATOM will exhibit some sample Chambers during the upcoming IEEE Particle Accelerator Conference in Washington; SCIENTIFIC INTERNATIONAL was informed that the possibility exists for a visit by INTERATOM Personnel to your facility, following the IEEE Conference, if you should so desire.

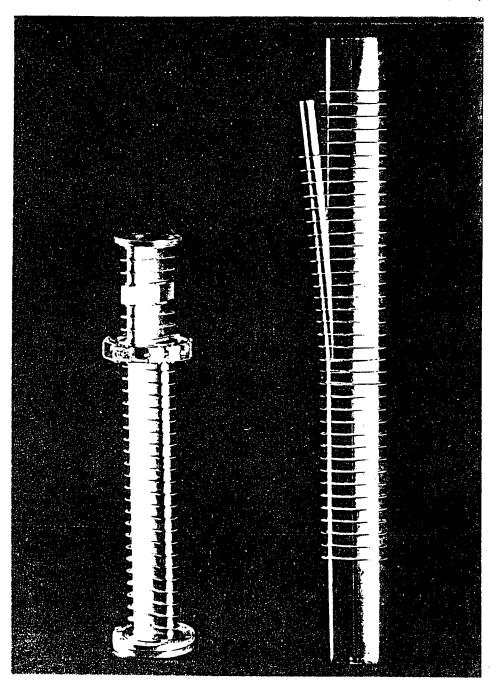
We look forward to hearing from you in this regard in the near future.


Sincerely,

Hans D. Gerwers

HDG/bb

Enclosures


P.O.Bex 143 Princeton, N.J. 08542 Tel. (609) 924-3011



Ribbed Magnetic-Vacuum-Chambers for Accelerator Plant "ELSA" University Bonn

## SCIENTIFIC INTERNATIONAL INC.

P.O.Box 143 Princeton, N.J. 08542 Tel. (609) 924-3011



"Magnetic-Vacuum-Chambers for Accelerators"

#### 1.1.7 RF SYSTEM

## 1.1.7.0 E D & I

	=====			======	========
*** LABOR ***	# of   Units	Units MM	Total MM	Craft Code	Total Labor
Electr. Engineering  Mech. Engineering  Mechanical Designer  Electrical Designer  Coordinator  Documentation Clerk		12 2 2 6 12 6	12 2 2 6 12 6	EE ME MD ED CS DC	91625   15440   10975   32924   63045   16469
Total Labor	======     ======				230477
Total 1.1.7.0	     =====				230477   =========

#### 1.1.7 RF SYSTEM

### 1.1.7.1 RF Power Source

## 1.1.7.1.1 Klystron Assembly

======================================		========		======	
   *** MATERIALS *** 	Unit	# of Units	Unit Cost	Cost Base	Total \$
Klystron  Klystron Focus Magnet  Klystron Temp. Mon.  Water Rack & Hose	set   set   set   set	1 1 1	130000 3000 340 4120	SLAC EU SP86 SP86	130000 3000 340 4120
misc.Klystron Services  Klystron Focus Control  Klystron Monitor Panel  Contract Labor	set   set   set   hr	1 1 1 693	4480 5900 14150 JL	SP86 SP86 SP86 SP86	4480 5900 14150 12440
Total Materials	   =====     =====	=======================================		======	174430
	     =====		· •========		· •
*** LABOR ***	 	Units MM	Total MM	Craft Code	Total Labor
RF Engineer RF Technician		1	1	EE TE	7635 4246
Total Labor	    ====== 			=====	11881
	=====	.=======		======	

#### 1.1.7 RF SYSTEM

#### 1.1.7.1 RF Power Source

#### 1.1.7.1.2 HV Supply

====================================	l ======	=======		=====	==
   *** MATERIALS *** 	    Unit  ===-	# of Units	Unit Cost	Cost Base	Total \$
HV Power Supply (refurb.) HV Box/Crow Bar AC Contacter Installation/Mat. Contract Labor	each each each each hr	1 1 1 550	12000 7380 5000 3100 JL	VQ86 SP86 SP86 SP86 SP86	12000 7380 5000 3100 9873
*****************	           ======			****	
Total Materials  ====================================	   =====         ======	=======================================			37353 ==================================
*** LABOR ***	# of  Units	Units MM	Total MM	Craft Code	Total Labor
RF Engineer RF Technician	1	1 1	1 1	EE TE	7635 4246
======================================	   ===== 				======================================
	<u> </u>				
#======================================	=====			======	=========

#### 1.1.7 RF System

#### 1.1.7.2 RF Cavity

=====================================	======		======	=======	-
   *** MATERIALS *** 	    Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
prep.Cavity (SLAC Surpl.)  Tuner Motor  Misc. Support Materials  Waveguides  Contract Labor	set   set   set   set   hr	1 1 1 1 447	10000 10660 5000 26800 JL	SP86 SP86 EU VQ86 SP86	10000 10660 5000 26800 8024
    =================================	     =====			======	
Total Materials  ====================================	  ======     	=======			60484
*** LABOR ***		Units MM	Total MM	Craft, Code	Total Labor
RF Engineer  RF Technician  Mechanical Engineer 	1 1 1 1	1.0 1.0 1.0	2 1 1	EE TE ME	15271 4246 7720
  Total Labor 	=====     =====   			======= ===========	27237 
	=== <b>==</b>	========		======	========

## 1.1.7 RF System

## 1.1.7.3 Drive System

Unit	# of Units	Unit Cost	Cost Base	Total \$
each set	1	13000 22500	SP86 SP86	13000 22500
set	1	28400	SP86	40000 28400 9800
set set	1			1250 7300
hr	1744	JL	EU	31307
=====			=======	153557
=====:	=======	.======	======	===========
# of Units	Units MM	Total MM	Craft Code	Total Labor
1 1 1	1 3 1	1 3 1	EE TE DB	7635 12738 9340
	=======		=======	
				29713
				29713 
	set set set set set set funits	set     1       set     1       set     1       set     1       set     1       hr     1744       ====================================	set     1     22500       set     1     40000       set     1     28400       set     1     9800       set     1     1250       set     1     7300    # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Units  # of Unit	set     1     22500     SP86       set     1     40000     SP86       set     1     28400     SP86       set     1     9800     SP86       set     1     1250     SP86       set     1     7300     SP86    # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM Code  # of Units Total Craft Units MM MM MM Code  # of Units Total Craft Units MM MM MM Code  # of Units Total Craft Units MM MM MM Code  # of Units Total Craft Units MM MM MM MM MM MM MM MM MM MM MM MM MM

## 1.1.7 RF System

#### 1.1.7.4 RF Utilities

======		======	======	========		======	========
***	MATERIALS	***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
LCW to Cables	Klystron Cavity Trays/Conduct Labor	iits etc	set   set   set   hr	1 1 1 754	500 500 2730 JL	SP86 SP86 SP86 EU	500 500 2730 13535
Total M	aterials		   ======     =====		 	======	17265 
***	LABOR ***	 	# of Units	Units MM	Total MM	Craft Code	Total Labor
RF Tech			1	0.5	0.5	TE	2123
Total I	=======================================						2123
Total	1.1.7.4	ļ			=======================================		19388 

## TECEPHONE QUITE FOR WAVEGUIDE 358 MH3 SYSTEM

PIRECTIONAL Couples			
	1680 54	X 2	3,360
D BELLOWS	15 30° EA	x 4	6120
C) 90° E" PLANG BOD (Sweep)	880000		3,520
4) 90°H" fichie BEND (Sueen)	/030°26A		1,030
e) 160°H PLINE SELD	1830°6A	х 2	3660
FLANGED POTH ELDS	0%t 1080°£A.	х 3	3240
3) 12' STRIFIT SECTION 310+50	9102h	X 5	4,550
W FLANCES	16500	×8	
			26800

- DALL ABOVE MATERIAZ WILL WITHSTAND 14"PSIG INTERNAL A'IR PRESSURE
- 2) WAVEGUIDS = 3/16" WALL THICKNESS
- 3) MATGRIAL ALUMINUM
- 4) ALL ITEMS PACKAGED IN PLYWOOD CRATES AT FACTURY
- 5) ABOVE PRICES ARE FIO.B. RAYMOND MAINE 04071
- O, WAVE GUDG HANGERS NOT PRICED
- 7 WAVE GIDG SUPPRET SYSTEM, NOT INCUDED
- 8) ESTIMATE DOES NOT TAKKIDG WINDOWS.
- 9) NO MECHANICAL SHOPS OR LABOR TACKNOWN

TELEPHONE QUOTE FROM

Ferm ACENCE CHASI 723-0151 MICROLAVE TECHNIQUES
ATT. ED SAVOIE
(207)-655-3881
ROUTE 302
RAYMOND ME 04071

Marie Rollan in The

REV. REV SHEET →4003.77 DWG. NO. LAB. ABOR OTY K& HRS RATE INS TALL ATION 538 104 1.20 7537 08/ 516 152 65 13.0 200 0.66 327 120 ಜ್ಞ 7.38 310 .25/192 14.15/140 SIZE FSCM NO. 138.58 28.4 4.48 <u>o</u> 34 5,00 8.6 0 10 21.7 SCALE STANFORD X-RAY CENTER ESTIMATE SHEET EACH MATER DRAWN ISSUED CONSTRUCT ITEM 5 00 **9**|1 0 SHEET (C) WBS Ō 5 207  $\overline{\infty}$ S 6 8 7 2 4

SH I REV DATE 7-8-56 TABINA KAL DWG. NO. 1) 0 F / 3 LAB INSTALL AT ION K\$ HRS RATE 3 7 30 On 8 **⊘** MAT 1.8 300 200 222 Š 20 2 QTY ESTIMATE SHEET 40/ က က 40 M 40 00 00 Ø EACH MATER 50, 00 500 100 2,25 57 200 CONSTRUCTION QUADEADLEY CGCEPT/BLE EARTH QUAKING MTG ANALOG VOLTAGE CARLE Andre Bucher Chare CONTROLS CHAGE CABCE SPAGE GAR DRINES CROWBAR DOUGLE BAY RACK Mise Counceture MONITOR (HV) FABBLED PICKE DC CONTROLS SUMPLY CAP Box スロンエン WBS

REV 7.38 310 SIZE FSCM NO. STANFORD X-RAY CENTER DRAWN 5 0 <u>o</u>  $\overline{\varphi}$ 2 ဖ 7 001 2 3 4  $\infty$ 4

SHEET

SCALE

ISSUED

3EV REY HS. DATE 7-8-86 SHEET DWG. NO. 13 SF BOR OTY K& HRS RATE LABL DWG. NO. INSTALLATION 0 L SIZE FSCM NO. 5,0: MAT 5,0 SCALE STANFORD X-RAY CENTER ESTIMATE SHEET 0 0 EACH MATER KS DRAWH ISSUED UNKNOWN AT PLECENT CSTIMATE AC COMACTOR WBS 201 8 0 Ō 2/2 7 5 9 8 28 4

REV. HS! DATE 7-8-84 TAMMAT X<del>\$</del> X<del>\$</del>T SHEET INSTALL NTION TOTAL DWG. NO. LAB HRS RATE 120 40 2 MAT Oc SIZE FSCM NO. | K\$ 3.1 Po ર્વ્ SCALE QTY STANFORD X-RAY CENTER ESTIMATE SHEET Ģ, 9 00 m EACH MATER .05 DRAWN ISSUED Ruga Sypoly Taxin untion JUNION CONTROL CARGE CONSTRUCT LINKS TO UNT? etc ピラハナパシャ C+がした Traction Box HW HV Power Syzely ITEM WBS 万つと 5 9  $\infty$  Q  $\hat{Q}$ 7 <u>O</u> 17 2 9 7 4

**'** 

SH REV DATE 7 ESTIMATE SHEET BAX

TEM		IAL	 c-5																					REV.	
TEM					•		<b>-</b> .																	.0.	10:0
TEM	ILLATION	LAB	HRS RATE	8	٠.	<b>∞</b>	72	24	34	24.	18	32	32	36	24	72	18	24	24	مد	120	238		DWG. N	
TEM   FACH   CARONSTRUCTION   EACH   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR   LAFOR	AT SNI	MAT	¥ ₩	30,	,35,	135	2001	1,0	1,0	52'	1,0	1.5	8•	2,0	57	1.S-	1.51	6.	1.2	9.	3.9	_	<del></del>		
ITEM  LOW LEVEL PLA 206-414  PATCH PNL' BNC  TOWER DRIVER 206-402  CAN PHASE DET 206-403  CAN PHASE DET 206-403  CAN PHASE DET 206-403  CAN PHASE DET 206-403  CAN PHASE CONT 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFL. PUR DET 206-403  REFR. ATTEN 206-403  RESTRICAN PHASE DET 206-403  LOC.OSC FAHOUT 206-403  LOC.OSC FAHOUT 206-403  LOC.OSC FAHOUT 206-403  LOC.OSC FAHOUT 206-403  LOC.OSC FAHOUT 206-403		I	LABOR OT	0	1 8	- ⊗		24 /	1 hz	2 y 1	181	32 1	32	3.6	24	24	1 8/	24	1 62	81			D X-RAY		
ITEM  LOW LEVEL PLA 206-414  PATCH PALL BNG  TONER DEIVER 206-402  CAV PHASE DET 206-403  CAV PHASE DET 206-403  CAV CHASE DET 206-403  CAV CHASE DET 206-403  CAV CHASE LONT 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  REFL. PUR DET 206-408  LOCASTRUM PHASE DET 206-408  RESTRUM PHASE DET 206-408  LOCASS FANOUT 206-408  DOUBLE GRAY BACK BUILD		EAC	MATER	0.05	.35	.35	۰ و ه	1.0	1,0	,75	0'/	1.5	٥	2.5	ر کر ر	ا•ک	1,5	6.	1.2	7	1.3		STANFOR	PAWN	
	UCTION	<b>L</b> .		206-414		ن	206-402	. 206-403	206-412	844-907	206-407	506-425	804-997	514-902	120-902 HS	206-452	54 206-429	206-416	SET 206-403	206-420				ā	<u> </u>
	CONSTR	•	TEM	LEVEL Pun	H PNL "N'	CH PNL'BN	2 DRIVER	PHASE DET	SERVO AMP	DETECTUR	COLTAGE CONT	. Pur DET	L OSCILLATION	) 77Ew	ING PHASE	T R.F. DUMP	TILSON PHASE	SE LOCK Amo	Ten PHASE		BLG BAY RAC				
			WBS		PATC	PATO	TUNE	CAN	CAN	ARC	19AD	REFL	(DCA)	RFF	NULL	FAS	SX7X	PHA	KLYK	707	Do				

שי שונים נישר שונים וישונים וינים שנים שנים

REV. REV. DATE 7-1 SHEET LABIL DWG. NO. QTY K\$ HRS RATE INS TALL AT ION 91 SIZE FSCM NO. ` ⊗, SCALE (Pesz STANFORD X-RAY CENTER ESTIMATE SHEET EACH MATER 150 DRAWN ISSUED BLOWER CROSSCONNECTS WBS アセス 3 201  $\infty$ 0 Ō. 32 7 5 ဖ 8 7 4

REV. REV. HS DATE 7-7-86 50A 18 SHEET DWG. NO. DWG. NO. INSTALL NTION LAB QTY K\$ HRS RATE 1.6: 516 カセ 02/ 320 52 7 00 SIZE FSCM NO. MAT 2.25 00. 28.4 90.0 0,04 4,2 SCALE A S t 1 STANFORD X-RAY CENTER 0 ESTIMATE SHEET 74 00 双 00 EACH MATER 00 '50 .255 040. 2,25 Ö ó 2,0 کڑ ISSUED DRAWN LOCALY REMOTE Sut 206302 163-603 206-314 206-300 135-568 RFSTATION CONTOS/108 206-301 685-521 509-802 206-609 CONSTRUCT DC CHCUIT BREAKERS ANALOG MON (SAN) DIGITAL MUNITUR DIGTAL . CONTEN Choss connects CRATE COMESIEM BRANCH DECKNOW INDIGATION PARELL CRATE VERIGE ANALOG Contra SPLT BUS TIC ITEM CAMAC CRATE WBS 8 0 0 2 17 201 0 0 7 5 4

lack

REV REV DATE 7/8/ TAWMAPH X<del>S</del> X<del>SP</del>H SHEET QTY K\$ HRS RATE LAE DWG. NO. INSTALLATION 40 152 48 8 SIZE FSCM NO. MAT 8.8 0 ' SCALE 2. Asy STANFORD X-RAY CENTER ESTIMATE SHEET 047 84. EACH MATER Ò ISSUED DRAWN KLYSTED My HV Controls 206-602 THERMSCOPEL MONETA (MOS) RF POWER METER RF POWER METER ITEM 240 Power Supy CROSS COMPECTS WBS  $B \oplus A$ 00 5 201 00 7 တ 8 4 7

SH REV. AB MAL DATE 7-8 BWG. NO. /6 of 18 LAB INS TALL NT ION K\$ HRS RATE 100 カラ 9/ Ø 00 60 00 MAT :48 20, ,o, 80 70 201 Š 40. BOR QTY 100 N ESTIMATE SHEET 0000 00 *∞* Do 100 EACH MATER 90. ,05 . c8 ,05 5 ,05 رم ٥٥ ₹0 RG-58/h RG-214 120 16 12c 16 CONSTRUCTION #2 AWG 2016 RG-142 PPI PCR TANSFOR PLI VACUM INTOLLY KLY ALLY CONT I EM PF STATION Rwen (24V) PATCH PATER CABLES TO WBS  $\overline{\circ}$ 5 O 12 ဖ 201  $\infty$ 7 4 2 3 4

REV. SHEET DWG. NO. 1.25 /192 SIZE FSCM NO. SCALE STANFORD X-RAY CENTER DRAWN ISSUED

AS SOCIED STANDANCE ACTIONS CAST

8

SH | REV REV. SHEET DWG. NO. LAB INS TALL NTION K\$ HRS RATE 1.31/28 000 8 SIZE FSCM NO. MAT 4.8 SCALE QTY Days. SMOD STANFORD X-RAY CENTER ESTIMATE SHEET EACH MATER DRAWN ISSUED CONSTRUCTION RELAY MODULES Cluss Connects WBS のする 20/ Ŏ. 7 5 9 17  $\infty$ 0 2 8 4

SH | REV. REV TAW MAY XAY XAY DWG. NO. 4 OF 15 SHEET DWG. NO. LAB INS TALL NT ION K\$ HRS RATE 32 13.0 1/ 200 3 SIZE FSCM NO. MAT 0 ペイ <u>.</u> ۲ SCALE QTY /NS STANFORD X-RAY CENTER ESTIMATE SHEET .32 20 09 EACH MATER 001 M Co DRAWN ISSUED 208-608 324- 902 108-905 TUNER DRIVER MOTOR 75 CONSTRUCT Lon level Pwe Sy RFDISPLAN PANGL ANALOG DIST COUT ALMLES DET (IN) Closs Connect LLEM WBS BAY O <u>Q</u> 3 9  $\infty$ 7 501  $\infty$ D 7 4

,

REV REV R 1E 7-8-46 DWG. NO. 18 OF 18 SKEET BOR OTY K& HAS RATE DWG. NO. LAB INS TALL NT ION 23.73 348 94 28 20 40 SIZE FSCM NO. TOTAL MAT 90. So 3,73 SCALE STANFORD X-RAY CENTER ESTIMATE SHEET 2 04 348 2/5 40 80 741 EACH MATER 90. 50 9. DRAWN ISSUED LCW WATGR TO KLYSTRON RG 220 CABIG THIBY Closs connect of Linbert External CABCES ITEM CABLES (CHASSI CABLE TENYS Mise GNOVIT リアノレノブー WBS ō 0 15 8 9 2 001  $\infty$ タ 7 4

SH | BEV REV. DATE 7/8/86 DWG. NO. 9 OF 15 SHEET DWG. NO. LAB INS TALL ATION OTY K& HRS RATE 000 9 10.661 327 **~**9 SIZE FSCM NO. MAT 21.19 50 36 200 90. 70 ,00 0/ 90 SCALE N STANFORD X-RAY CENTER ESTIMATE SHEET 0 2 EACH MATER w. 15 90. 2.15 ,05 90. 90' Sos 90 90. 90. DRAWN ISSUED CONSTRUCTION CAB LG CARK CABLE CABLE TUNE DEN ASSY (FRE) CHANGE JUNG DEINER KAN FLOW Suntaker CAN FWD PWR CLAY CAN RFF DUR COM TUNER DRIVER ASSY CAV LIMIT SWITCHS CAN MOTOR WINDING THERMOCHION CHBUCK ARC DETECTION CAU JUNCHIN BOX ITEM CAN Position CAVII WBS S 2001  $\infty$ įΩ 25 4 5 9 ^ 8 4

SH REV. Æ LAB MAY 2/20 SHEET DWG. NO. DWG. NO MAT. LAB. LAB INSTALL NTION 2.9/104 9  $\infty$ 3 9 SIZE FSCM NO. ين 8 5 72. 15. 75 SCALE QTX STANFORD X-RAY CENTER ESTIMATE SHEET 0000 0 ٩ **(**>0 EACH MATER 3 3 ٥ ۲. DRAWN ISSUED AC POWER DISCOMED AC CIRCLI BROKEN KLY FOWS MONITOR AC BUS PULDIST 1/5 1 KLY GOLL 1822 GROUND BUS ITEM 34 BUS TIE AC CROSS CONNECT KLY FICLS WBS のなり 5 9 8 2007 <u>Ó</u> 22 7 2/2  $\infty$ 9 7 4

REY PEY. FS_ DATE 7-8-56 DWG. NO. 10 OF 18 SHEET DWG. NO. K\$ HRS RATE LAE INS TALL AT TON 74 180 9 0 0 0 0 O 0 Oc SIZE FSCM NO. MAT 4.48 80. .05 So ó 30, S S છું 8 9 SCALE QTY STANFORD X-RAY CENTER ESTIMATE SHEET 200 ۵ 00 ∞ 20 00 Ò Ø Ф 00 EACH MATER ò 9 20, 120 õ 0 2 5 M 7 9 ڡ DRAWN **PSSUED** K 62.11 R5214 To PATEM RG214 8c-16 8C-16 SC-16 CONSTRUCTION RG-214 RG 214 KLYSTROW MONITOR PPACE 17 Priven Meter : CABLE 30-16 3-16 TIREX Der 200-16 WARGENDE PRESS S. V ... 3-16 30//5 RF DRIVE TO PATCH (FROM 20D BOYER 12 x A KLYSTAN PRESS Sw, 7cH Control RF DRIVE INPO VARIAN CARUL Kry Has Paa ITEM INTERUCT RCfurton KUN HEARCA REFLECTED Ac Pouga ARC DGT. RG 220 VAC KLYSTRON WBS A security Comme 2010 0 Ō 25 9 3  $\infty$ V **u**) / 4

				i	- 1	<u> </u>	ī	<del></del>	- 1				-							- 1	- 1			1	
		J.A.L															-							REV.	_
7-5 36	517	MATITO	X															·							SHEET
1	AT TOT	LABILAB	RATE KS																					DWG. NO.	
	ALLATION	۲/	(0)	40	40	25	24	36	8	•												180			
	INS TA		X X S	5/3	1,2	34.	∞ -	.3	400													4.12,	7	SIZE FSCM NO.	SCALE
} — ·			HE OT	0	0 4	4	+	-											-				AY.	T	S
<u>וון</u>		EACH	\ \ \ \	7	7	A	•	8	<i>D</i> 0														STANFORD X-RAY	יבואונים	
Lit E	ر مستعدد می جود آگر		ストアス	5.	س	218	٧,	m	40.	~								***************************************					STANK		ISSUED
	CONSTRUCTION	de de despressiones de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa del la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa del la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa	TEV		TO KLYSTEN		+'ttg	AL BRIDFING		Tibes	1			der der der der der der der der der der	de California de desta de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de California de Cali	and the control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of			Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Anderson and Ander						
Whase RACK		-		となる	1-10505 70	GAGES	Flow Suititle	Mechanic	CABUC	PLUMBING			and the second teachers of the second teachers and the second teachers and the second teachers are the second teachers and the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the second teachers are the												
KLYSTE			WBS		2	3	4	5	9	7	8	0	01		12	13	14	15	91	21	13				

SH REV. DWG. NO. 15 0/- 18 MAT. LAB INS TALL AT ION 2 0 150 40. LABOR OTY نغ ESTIMATE SHEET 4 00 EACH MATER ,00 80 CONSTRUCTION JUNCTION BUX KLYSTEN AT JUNTER SENSORS CABLE WBS <u>ō</u> 5 9 201 O 2 7  $\infty$ 3 4 4

REV. SHEET DWG. NO. .34° 65 SIZE FSCM NO. SCALE STANFORD X-RAY CENTER ISSUED DRAWN

8

REV. 98-8-1 ABMA احر SHEET <del>∨</del> ¥ DWG. NO. LAB K\$ HRS RATE INSTALLATION 140 20 32 20 74 00 00 SIZE FSCM NO. MAT 14.15 38 12 K 3.0 7.5 SCALE QTY S 0/ STANFORD X-RAY CENTER ESTIMATE SHEET 4 7 I 2 V 0 90 EACH MATER N .050 15/5 80 ~ 2,0 DRAWN ISSUED B Connections (MISC) FLROWS CONSTRUCT PRESSURE SWITCHES Teaminary SWITCH (RF Type) JOY I ITEM * Guess in Phice Couples TSOCATOR Amplifier MUNITER PAIRL PADS 50 se * * * 水 * * * WBS 18 0 Ó 7 ဖ 15 3 201  $\infty$ 4 / 4

SH | REV.

DWG. NO. 17

#### 1.1.8 I & C SYSTEM

## 1.1.8.0 E D & I

====================================	=====   	Units MM	Total MM	Craft Code	Total Labor
Electr. Engineering  Coordinator  Electrical Designer  Documentation Clerk	1 1 1 1	21 18 18 9	21 18 18 9	EE CS ED DC	160345   94568   98771   24703
Total Labor  ====================================					378386   ====================================
Total 1.1.8.0  ====================================	 	=======		======	378386 ===================================

### 1.1.8.1 Beam Diagnostics

# 1.1.8.1.1 Beam Position Monitoring

oft ach ach ach ach	# of Units ====================================	Unit Cost 600 4000 2000 1200	Cost Base ====== SP86 SP86 SP86	Total \$ ===================================
ach ach ach ach	1 1 1	4000 2000	SP86	
ach ach ach	1	2000		
ach ach	ī		SP86	
ach	_	1200		2000
	•	1200	SP86	1200
ach	1	2000	SP86	2000
	1	4000	SP86	4000
ach	10	1250	SP86	12500
hr	478	JL	SP86	8581
ch	28	200	EU	5600
hr	296	JL	SP86	5314
ot	1	30000	CP	30000
====	======	=======	======	========
				91994
====	=======			
its	Units MM	Total MM	Craft Code	Total Labor
.00	2 4	2 4	EE TE	   15271   16984
				1
			=====	32254
	•			124249
	ch hr ot ===== of its ===== .00 .00	ch 28 hr 296 ot 1 of Units its MM00 2 .00 4	ch 28 200 hr 296 JL ot 1 30000	ch 28 200 EU hr 296 JL SP86 ot 1 30000 CP

#### 1.1.8.1 Beam Diagnostics

1.1.8.1.2 Intensity Monitoring (Electronics)

_======================================	=====	=======	=======	======	=========
	    Unit	# of Units	Unit Cost	Cost Base	Total \$
Synchr.Light TV/Camera  Gap Monitor  Profile Monitor  Faraday Cup  Tune Monitor  Scrapers  Assembly/Installation  misc. materials  Cabling  Instrumentation	each   each   each   each   each   lot   lot   set	1 4 1 1 2 840 1 1	5200 1200 6300 2200 15200 1600 JL 1500 5000 9000	SP86 SP86 SP86 SP86 SP86 SP86 EU EU CD	5200 4800 6300 2200 15200 3200 15079 1500 5000 9000
=====================================	=====     =====		======= ==============================		67479
     =================================	     <b>====</b> =			======	
*** LABOR ***	   # of  Units	Units MM	Total MM	Craft Code	Total Labor
Installation	=====   1   1	4 1	 4 1	EE DB	30542   9340
Total Labor	<b>===</b> ===			====== ===============================	39882
Total 1.1.8.1.2	     ======				======================================
	•				

### 1.1.8.1 Beam Diagnostics

# 1.1.8.1.3 Timing System

====================================	=====     ***   	Unit	# of Units	Unit Cost	Cost Base	Total
Master Oscillator  Set of Prog. Delay U  Inj./Ejec. Timing  Contract Labor  Instrumentation	Units	each set each hr lot	1 1 1 530 1	12100 16000 4000 JL 25000	SP86 SP86 EU EU CP	12100   16000   4000   9514   25000
  ===================================	=====	   	=======================================		======	======================================
			Units MM	Total MM	Craft Code	Total Labor
		1	2 2	2 2	EE TE	15271 8492
	=====   =====   	======				23763   ======
=====================================	=====    -====	=====		========	======	90377 =========

### 1.1.8.2 Control System

1.1.8.2.1 Interface/Controllers

======================================	]======	=======		======	=======================================
   *** MATERIALS *** 	    Unit 	# of Units	Unit Cost	Cost Base	Total
	=====  each   each	1 1	4200 2000	SP86 SP86	4200
Control Cabling	each	1			2000
Pulsed Magnet Controls		_	4200	SP86	4200
Prog Controllers	each   set	4	2100	SP86	8400
Cross Connects		1	9000	SP86	9000
•	each	1	1000	SP86	1000
DACS	each	20	1500	A86	30000
SAMS	each	10	1500	A86	15000
Fanout Chassis  Fanin Chassis	each	2	2000	A86	4000
ranin Chassis	each	2	2000	A86	4000
  Assembly/Installation 	   hr 	450	JL	SP86	8078
Total Materials	   				89878
*** LABOR ***	=====   	Units MM	Total MM	Craft Code	Total Labor
*** LABOR ***					
*** LABOR ***	Units  ======   1	MM ===================================	MM ===================================	Code ====== EE	Labor ====================================
======================================	Units  ======   1	MM ===================================	MM ===================================	Code ====== EE	Labor ====================================
====================================	Units  ======   1	MM ===================================	MM ===================================	Code ====== EE	Labor ====================================
======================================	Units  ======   1	MM ===================================	MM ===================================	Code ====== EE	Labor ====================================
	Units  =====   1   1 	MM 2 6	MM 2 6	Code EE TE	Labor ====================================

# 1.1.8.2 Control System

# 1.1.8.2.2 Software

*** MATERIALS ***     *** MATERIALS ***     ===============================	======      Unit  ======   lot   lot	# of Units ====================================	Unit Cost 1000 1000	Cost Base EU EU	Total \$
			,		
  Total Materials	=====		======	=====	2000
	======				======================================
*** LABOR *** 	# of Units	Units MM	Total MM	Craft Code	Total   Labor
System Prog.  Application Prog.	1	6 12	6 12	PR PR	38342   76683
	·				   
     Total Labor 	=====				======================================
			,		
					=======================================

### 1.1.8.2 Control System

# 1.1.8.2.3 Racks/Cables/Tr

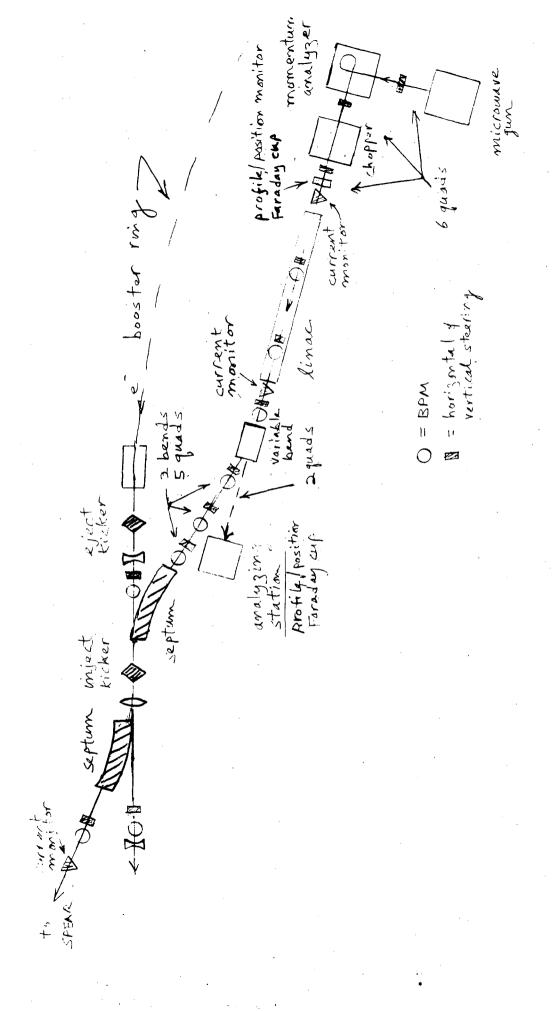
	======      Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
Racks  Trays  Tray EL's  Misc. Materials	each 100 ft each lot	13 18 48 1	2000 550 50 2000	A86 SP86 SP86 SP86	26000   9900   2400   2000
Total Materials	=====				40300
	======     •   ======		· -		======================================
					i
*** LABOR ***   	# of Units	Units MM	Total MM	Craft Code	Total Labor
*** LABOR ***   					,
*** LABOR ***    ================================	Units	MM ========	MM =======	Code ======	Labor =======
*** LABOR *** 	Units	MM ========	MM =======	Code ======	Labor =======
	Units	MM ========	MM =======	Code ======	Labor =======
*** LABOR *** 	Units	MM ========	MM =======	Code ======	Labor =======
	Units	MM ========	MM =======	Code ======	Labor 

# 1.1.8.2 Control System

1.1.8.2.4 Computer Controls

	=========	======	=====		=======		========
***   *** 	MATERIALS	***	    Unit  ======	# of Units	Unit Cost	Cost Base	Total \$
Camac Crate Crate Opera Contra	nals Interface Crates Controller Verifier tor Console act Labor Materials		each each each each each hr lot	2 1 4 4 1 1040 1	1500 9000 2275 2900 1000 40000 JL 2500	CP SP86 SP86 SP86 SP86 SP86 EU	3000 9000 9100 11600 4000 40000 18669 2500
Total	Materials		·				97869
***	LABOR ***		  ======     # of  Units	Units	Total	 Craft Code	Total
=====			=====			======	========
			1.00   1.00	2 4	2 4	EE TE	15271 16984
							_
							_
•	Labor						_
Total							16984 =======
Total	Labor			 		TE	16984 32254  130124

### 1.1.8 I & C System


# 1.1.8.3 Protection System

*** MATERIALS ***  ==================================	======    Unit  ======   each   each   each   ft   lot   hr	# of Units ====================================	Unit Cost 7500 3000 1500 3	Cost Base ====================================	Total
  ===================================	   =====     =====     =====				35611 =
*** LABOR ***	# of  Units	Units MM	Total MM	Craft Code	Total Labor
=====================================	======   2                 	1.50	3	 DB	 28020
=====================================	=====     ===== 				 28020 

### 1.1.8 I & C System

### 1.1.8.4 Communication

=======		======	=====	=======	=======	======	==========
***	MATERIALS	***	Unit	# of Units	Unit Cost	Cost Base	Total \$
	/Intercom		each each	1 1	2500 5000	EU EU	2500 5000
	======================================		     =====     ======				7500 :
***	LABOR ***	======	     # of  Units 	Units MM	Total MM	Craft Code	Total Labor
Install	lation		1	0.50	1	DB	4670
		·					
Total I	Labor		=====     ====== 	=======		======	4670 
Total	1.1.8.4		=====   			======	12170



and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	:		: !	. :		;	)	•	111111
	11001	5	- Z	3: TesT	INST. MAT.	-	LASOR	H	Ormony
2402121EM	GUHHI	×	HRS	2	X	HRS	بر لا	47 ¥	KEINITICK
1. LARGE SUPPLY	7	C	70		Ņ	po	•	3.3	DOGS ME
000	1 7	نم م	. [	١	4	М	`.	80.	S080LY
TO TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF	104	176.8	١	1	1	150	2.4	179.2	Section Pro-
SACACATION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	*	00	l	1	i	ţ	1	∞.	,
04CS	` 00	•	l	l	1	1	1	7.7	
Dower Bussing	,coo'h h	-	ſ	1		385	9.9	9.00	
NE RACKS #4 WIRE	2		200	3,3	1	. 50	0.1	14.3	
GWIN GONTRUL CABLING	1 set	W:	8	1.4		80	7:1	6.9	•
SISTHUM LINGT (14)	<i>y</i>	<b>*</b>	١		1			<b>&gt;</b>	
PPLIES (5x1C)	70	37,3	1	1	1	24	ľ.	37.8	
	w,	ં૭	1	1	1	ľ	١	س	
2 8 055 126,	74 000 r	ار 	(1	١ ١	I ~	240	17.	ر س	
	- «	<u>च</u>	40	ώ,	`	907	U.	3.0°	
CONTROL CABLING	1 sec	7	94	` •	•		7	12.2	
BULK SUPPLIES	9	2	١	1	1	) \			
4. PULSED CONTROLS	*	∞	00/	1.7	`	00/	7.7	12.4	DOES NO
THE CHOOL SAIL									20 777 00
2 CCNT.									
VUV BYPASS SWITCHES	40	4.0	0	<u> </u>	lo O	<u>9</u>	6,3	6.2	
									,
		2171	500	001	ב	101	707	346.7	

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			. ;		33.	•	)		A /1.50/11
Subsystem		MAT L KB	HOY.	3i TesT	INST. MAT.	INST	LABOR	Tor	REMARK
1 DOSITION MONITORS	50			2		:		<b>j</b>	
CABLING CABLING	38000	29,1	360	7.6	1	760	4,6	38,3	
	. `	7	40		1.	01	, 2	4.9	
RIOT MUX	30	75	250	1	١	25	0.5	29.9	·
ATTEN MOD.	7	4	OH		١	1	١	44	
PROCESSOR MODULE	_	7	100	1.7	ł	100	1.7	y 10'	
SAM CONTROL CABLES	- \	9 -	18	1 ,	1 4	20	13	7.3	
2. DCCT	` \	, 7	09/	2.8	2	70	>	3.4	
3. SYNC LIGHT MON		S	200	٦. ٢	2	70	j 7	7.7	
4. SCRAPERS	2 (x, v)	· W	120	u O	7.	7 70	7	· · · ·	
701	_	15	/20	200	ý v	07.2	j	N. W.	
GAV MONITOR		N -	200	. 7.	7.	20	Ya	ov	
	7	. 9	80	7.7	· M	o }		3 0 7	
6. MISC CONSOLE #901P	_	20	1	1	1	1			
122025									
							The second second		
							•		
		101.1	1470	25.6	1.0	575	iO (o	159.0	

REMIARK		•
70T7	22.8	41,2
LARCR	y v v	2.6
INST.	9 8 %	150
Inst. mat. K&		2.1
1 TEST KS	1 1 1 2	6.5
ENT.	1 8 8	380
MAT L K\$	1 10 W	30
GUANT	\[ \tau_{\tau} \]	
Suosystem	1. MASTER OSCILLATOR 2. PROG. DEL. UNITS 3. INJ TIMING	TOTALS

Cukeyetem	Though	MATL	-174	Ji Test	INST. MAT.		LABOR	TOT	REMARK
2402121E11	INTERNATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	44	HRS	2	A.X	HRS	Y Y	×	
1, PROG CONTROLLER	<del>-</del> -	1208	(	١	Ŋ	8	14	2.//	
2. CROSS CONNECTS	Н	~	1	1	4	60	\	3,2	
3. OPEISATOR & CONFUTCR ENT. 1EDIEM, 1IDOM, PANEL	H	**	8	ÿ	· ·	70	ż	6%	
									·
									•
									· · · · · · · · · · · · · · · · · · ·
		11	7	//	13	18v	3./	198	

REMARK	- La granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la granda de la			•	7300	UAT UALUES	1-	<b>5</b>	-				diament of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta
Torr	39.0	7,4	16.3	26,0	7.0	5,0							97.7
LABOR K.R.	1.3	١	ŵ	0,1	9,1	0.6							එ
INST.	72	١	9	48	240	30							4 OC
Inst. mat. K&	؈	1	1	1	1,1 (CABLE)	0		<del></del>		- Alle Carrier and a second	 *******	 	0
KST TEST	L H .7	١	١	١	-	9.0					 	1	۲. ۲
ENT.	270	1	١	l	1	20	<del></del>						300
MATIL Kå	27.0	5,4	16.0	24.0	-	3,0							76.5
GUAPHT	8	ā	80	000	80 (Boxes)	9	1	)					MORE IN THE SERVE SERVE
Subsystem	1. GUAGE CONTIN	BAKA 13 LE STATE CABLES	2. Pump supplies	BAKABLE CABLE	CABLE DIST SYSTEM (SUNCTUN BOXES		4. FAST VALVE CONT	5. FAST SENSORS					

		ε	EN.	) test	INST. MAT.	; -	LABOR	TOT	
Swosystem	GUANI	K	HRS	3	K\$	HRS	KS	×	KEIMITIEK
& ENTRY STATIONS	7	70K	7 30	3.4	7	200	3.7	28.8	
		-		/ / /	•		1	1.9	
2. MAIN CONTROL PANEL	`	W	08	<i>\'</i>	\	0 1	- 1	1	
3. EMEP. OFF BUTTOWS	/0	м Ж	40	. 7	`.	40	` `	ر ر	
h	, 444,	W.	ı	l	~	28	3.4	6.4	
THE PLANT	000		Č		<b>)</b>	Į	1.7	\ \	
S. MISC INT.	~	/ ×	0 00	ナ'ー	~				
				•					
TOTALS		27	400	6.3	7.1	\$80	6.6	50.9	

	Sudsystem	GUANT	SATL	ENT.	Bi Test	INST. MAT.	INST.	LABOR	1TOT	REMARY
<u> </u>	RACKS (DOUBLES) CONSTRUCTOR NO PURSUS VARE	8/	36	720	11.7			3.4	51.1	
જં	TRAYS RING-350' X26-8" TO RACKS-120' - 12" TO CR - 80' - 12"  Y" // U DUT BAUK-350+75' TO TRUNK 30'- 12"  IN JECTION # 75x24-8" ENS 4" DUEF 75-4"	850'- 5'7 230'-12" 500'- 4'08 20 EL'ST	5° %	111	1 1 ₁		150	ന പ ത <u>്</u>	15.6	
<b>~</b>						-		•		
1	TOTALS		440	720	11.7		460	9.2	1.6.7	

	STANFORD SYNCHROTRON RADIATION LABORATORY ENGINEERING NOTE	PAGE
	R. Helled, P. Wang Injector 10-8	7
	RF & It C Instrumentation	
	1.1.4.7 Linac Beam Diagnostics	
	a. 478161+ HP809C+ HP447B  (Slotted line + Carriaget probe)  5. Misc.  Total: 5%	
	1.1.7.3 RF Drive System/antrols	
	a. HP 8656B Signal Generator + options \$ 76	<
		7 <i>k</i>
	C. HP 435B Power Metert Sensors  2.  2.  2.  2.  2.  2.  2.  2.  2.  2	3 K
		25
	f. == HP 5350A + options Frequency Counter 6.	5 K
:	g. Misc.	5K
	Total=	40K
	1.1.8.1.1 Boam Position Monitoring	
	a Tektronia 2467 Scope+protestant 13K	
	b. Tektronix C-30B opt 01 Scope Camera 1.5% C. SLAC Foot Pulser 1,2%	1
	d. HP8495A FodB Attenuator .56	
	e. HP8494A 11 dB Attenutor .71	
	Total = 16	·9 K
	a. Taktronix 7L14 + R7603 Spactrum Analyzar 21.5	sk
	6. HP3314A Function benevator opt 601 4.5	5K
	c. HP3457A DMM + accessories d. Misc tools + cables  Total=	K
	1.1.8.1.3 Juning System	30.5K
	a. HP8082 A Pulse Constator + accessores SIK	1
5425(	C. Teletronis 2465 Scope + options 6K	
-009	d. Pomer Supplies: HP 6236R+ HP62378+ HP6205c 2.1k	
	RL-3220 (Rev. 5/75)	

1.1.9.0 E D & I

*** LABOR ***	   # of  Units = ======	Units MM	Total MM	Craft Code	Total Labor
Electr. Engineering Mech. Engineering Mechanical Designer Electrical Designer		6 12 12 6	6 12 12 6	EE ME MD ED	45813 92638 65847 32924
Total Labor	=   =====       =   ===== 				237221 ========
Total 1.1.9.0	=   <b>====</b> =   _				237221

### 1.1.9.1 Transport Lines

1.1.9.1.1 Linac-Booster 150 MeV

_======================================	=====	=======	=======	======	========
   *** MATERIALS *** 	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Bend Magnets	each	<b></b> 2	750	EU	1500
Quadrupoles	each	5	500	EU	2500
Steering Magnets	each	6	250	EU	1500
Support  Power Supplies	set	1	2000	EU	2000
small Power Supplies	each   each	7	1600	A86 A86	11200
	lot	6	800	EU	4800
misc. Materials	lot	1 1	2500 1800	EU	2500
misc. Macerials	1	1	1800	EU	1800
Contract Labor	   hr  =====	480	JL	EU	8617
Total Materials					36417
	     =====	=======			
*** LABOR ***	 	Units hr	Total MM	Craft Code	Total Labor
*** LABOR ***   					
*** LABOR *** 	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
*** LABOR ***	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
*** LABOR ***	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
*** LABOR ***	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
*** LABOR ***   =================================	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
*** LABOR ***	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor ====================================
	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor 1785 9005
	Units  =====   1	hr 	MM ===================================	Code ====== ME	Labor 1785 9005

### 1.1.9.1 Transport Lines

1.1.9.1.2 Booster-SPEAR 3.0 GeV

	:   ======	=======		======	=======
   *** MATERIALS ***   	  Unit	# of Units	Unit Cost	Cost Base	Total \$
Bend Magnets   Quadrupoles   Steering Magnets   Supports   Contract Labor   Hoses   Termials/Brackets   Misc. Materials	each each each each hr each set	3 6 8 9 400 72 9	8867 3981 400 600 JL 5 102 500	SP86 SP86 EU EU EU A86 A86 EU	26601 23886 3200 5400 7180 360 918 500
Bend Magnets   Quadrupoles   Steering Magnets   Supports   Contract Labor   Hoses   Termials/Brackets   Misc. Materials	each   each   each   each   hr   each   set   lot	al straigh	8867 3981 400 600 JL 5 102 1000	SP86 SP86 EU EU EU A86 A86 EU	88670 39810 4800 12000 21541 800 2040 1000 170661
Total Materials					238707
*** LABOR ***	=====     # of  Units	Units MM	Total MM	Craft Code	Total Labor
	1 1 1 3	4 3 3	4 3 9	ME TM DB	30879 19474 84060
====================================	:   =====   :   ===== 				134413
======================================	======     ======				373120

### 1.1.9.1 Transport Lines

# 1.1.9.1.3 Power Supplies

				=======	
*** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
Bend Supply  Quad Supplies  Trim Supplies  Racks  Trim Cabling  Contract Labor	kW   each   each   each   100 ft	150 13 18 5 60 1700	480 1600 800 2000 60 JL	SLC A86 SP86 A86 EU	72000 20800 14400 10000 3600 30517
Misc. Materials  Cabling/Pulling/Term.   	lot   each 	6	2000 5000	EU EU	2000 30000
Total Materials	======     ======	=======================================			183317
	   				========
   *** LABOR ***   	 	Units Hours	Total MM =======	Craft Code	Total Labor
*** LABOR *** 				Code	
*** LABOR *** 	Units  ======   1   1	Hours ====================================	MM  0.46 0.92	Code  ME TM	Labor ====================================
====================================	Units  ======   1   1	Hours ====================================	MM  0.46 0.92	Code  ME TM	Labor ====================================
	Units  ======   1   1	Hours ====================================	MM  0.46 0.92	Code  ME TM	Labor 3570 6004 7288

### 1.1.9.1 Transport Lines

1.1.9.1.4 Vacuum System

1.1.9.1.4 Vacuum System	1				
*** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
Chamber Position Monitors Roughing System Pressure Monitoring	=====   m   each   each	100 9 3 3	500 950 1381 1332	EU SLC CP CP	50000 8550 4143 3996
Supports Misc. Materials misc. Valves/Flanges/Bolts Mobile Mechanical Pump	each	100 1 1	150 1379 6800 2350	EU EU EU CP	15000 1379 6800 2350
Cleaning/Installation Contract Labor	lot   MM  =====	1 8 ========	5000 JL	EU EU	5000 24844 =========
Total Materials	   ======   				122062 
*** LABOR ***	=====     # of  Units	Units	Total MM	Craft Code	Total Labor
·	1 1	160 960	0.92 5.55	ME TV	7140 36021
e e e e e e e e e e e e e e e e e e e	1	480	2.77	TO	12732
	1       	480			
Total Labor	1             	480			
Total Labor	1            ======   	480			12732

### 1.1.9 Injection/Ejection

### 1.1.9.2 Pulsed Magnets

### 1.1.9.2.1 Kicker Magnets/Pulser

	======	=======		======	========
*** MATERIALS ***	Unit	# of Units	Unit Cost	Cost Base	Total \$
Injection Kicker Magnet   Injection Kicker Pulser   3GeV Kicker Booster/SPEAR   3 GeV Kicker Pulser   Misc. Materials   Contract Labor	each each each lot MM	1 4 4 1 12	6500 5500 30000 40000 3000 JL	EU EU EU EU EU	6500 5500 120000 160000 3000 37267
=====================================				=======	332267
*** LABOR ***	# of Units	Units hr	Total MM	Craft Code	Total Labor
	1 1 1	2 4 2 4	2 4 2 4	EE TE ME TM	15271 16984 11580 25965
 			=======		
Total Labor					69799
<u> </u>	• .				

#### 1.1.9.2 Pulsed Magnets

#### 1.1.9.2.2 Septa Magnets

	.2.2 Septa F	=======	=====	=======		======	========
   ***	MATERIALS	***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Boosto   Boosto   SPEAR   Suppos   Power   Misc.	er Injection er Ejection Injection		each   each   each   each   each   lot   hr	1 1 3 3 1 1086	5000 25000 25000 2000 6600 2000 JL	EU EU EU EU A86 EU	5000 25000 25000 6000 19800 2000 19495
=====  Total  =====	Materials		   =====     ===== 				102295 
<b>***</b>	LABOR ***	·	     # of  Units	Units hr	Total MM	Craft Code	Total Labor
<b></b>     	·	·		120 960	0.69 5.55	ME TM	5355 36021
	·		!     				
===== Total ======	Labor		         ===== 				41376

### 1.1.9 Injection/Ejection

### 1.1.9.3 Instrumentation (including Electronics)

=====================================	i =====			======	=========
*** MATERIALS ***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
Gap Monitors  Profile Monitor  Faraday Cup	each each each	2 1 1	1060 1340 2680	SLC SLC SLC	2120 1340 2680
  Misc. Materials  BPM Electronics 	   lot  each 	1 9	500 1250	EU SLC	500   11250
Contract Labor   	hr   	950	JL	SLC	17054
	======				34944
	       =====		=======		
	1				
*** LABOR *** 	# of  Units	Units hr	Total MM	Craft Code	Total Labor
*** LABOR ***   					
*** LABOR *** 	Units  ======   1	hr  80	MM ======== 0.46	Code EE	Labor ====================================
*** LABOR *** 	Units  ======   1	hr  80	MM ======== 0.46	Code EE	Labor ====================================
*** LABOR *** 	Units  ======   1	hr  80	MM ======== 0.46	Code EE	Labor ====================================
====================================	Units  ======   1	hr  80	MM ======== 0.46	Code EE TE	Labor 3531 2945
	Units  ======   1	hr 80 120	MM  0.46 0.69	Code EE TE	Labor 3531 2945

Earty, Michay  Lunch of Michay  Lunch of Michay  Lunch Strain (4) 0.2m  Luy, Kieler PS  Santon British (4)  Santon Coanting	57.2 6.4 46.2 54.1 36.2	15.3 6.5 <b>48.</b> 7 53.3	ED-7 6.6 6.64 24.9 24.9	Votal 51.8 12.6 120.4 132.3 72.39
Entre Soption (4)	70.0	2.0	6.0	مرد
Coto Soptime (4) goidscol Sopre, 1026,00	8au 30.0	60	1. C	30
9/1/2 (0) N PO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 60 70	0.0 0.0 7.9	0.0 0.0 0.0	60 60 70

12.7 E

22.7 U3.8 more
43.2 22.2

43.2 22.2

43.2 22.2

44.0 12

44.0 12

36.0V

77 ML - 6 God Deiry Colling Collect
200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 200 Med 20

505 300 - 49 505 709 709

TIPS:

SSRL: 478 K\$

BEND HAGNETS for transport Line

Vahe 3 SPRI magnets:

Steel 3 × 1789.6 = 5368.8

Cails name as for SPRI = 3172.0 Machiele, associably little larger early stope.

E540.8

Misse Mat 326.7

2866.2 Vahe for niviector

GUPSRUPCLES

Sauce as SPRL-QF

injector (weaker, magnet by factor 8/29)

Cails

Cails

Miss. meadenials

1800 less man

1950 less Ci

231

3981

. .

TRANPORT LINE Dauping wing Estimate (983).
DWP16117:
DODINER MANIFOR OCH for Danguing Pring (198?) Profile Maiix and D.WAIZ/W D-W) \$1/25 Serap 10 (2) 6100 Equation allow You (2) 5300 rost for I+C 2250 Taraday lig (2) 16,000 SLH (1) Toraid/Gay Mon (6) 58765

1.2 Project Management and Administration 1.2.1 Technical Project Management 1.2.1.1 Technical Coordination

=============	=====			======:	
*** MATERIALS ***	    Unit  ====	# of Units	Unit Cost	Cost Base	Total   \$
Vendor Liaison/QC	====  each  each  lot  all  lot  each  each	3 2 6 1 1 1 4	4500 700 1500 8000 11750 15000 1398	CP CP CP SP86 EU EU CP	13500   1400   9000   8000   11750   15000   6000   1398
Total Materials	=====     ===== 				66048   ====================================
*** LABOR ***	  # of	Units	Total	Craft	Total
	Units	MM =======	MM ======	Code	Labor
======================================	Units  =====   1   1   1   1	MM ===================================	MM  21 12 3	Code SC CP CN	229214 102159 22516
Project Director Project Coordinator	=====   1   1	21 12 3	21 12 3	SC CP CN	229214 102159
Project Director Project Coordinator Consultants	=====   1   1	21 12 3	21 12 3	SC CP CN	229214 102159 22516

2	local trip	s/weel	h for	2 years	0430
	100 × 2 × 3	0 =	\$ 6000	)	
5	area trij	us (21	7 etc)		
	5 × 350				
4	Lnijes do	east	coast		
	4 × 1000	T	4000	)	
			1750	)	

# ALIGNHENT

Scale	1378	CP	Tayor Eng.
TRIPODS	795	1,	Silent Machine
INST STAND	1160	1	<i>''</i>
TARGET	40	4	BRinson Zunt,
BUBBLES	502	4,	. "
DDAPTER	1613	٨	Tayor
Align Stand	50	. 4	
Mouran.	55	- <i>f</i>	
Seale Holder	88	CP	
Zustr. Hands	500	EU	
Alien Equip.	1087	CP	PRUSON
Y	8283	CP	Nasellad Sirvey
Theodolike	27065	CP	Haselbad Survey Kenn Lush,
Alg. Mouram.	1200	CP	Tasper Eng, Bear Fall
Precision Lift	7436	CP	
Algu. Tools	8132	CP	BRU <b>NGON</b>
`			

51664

Madeira Parts 6000 Hall Inipad (3) 4500 Lighting Henand \$2500 for callination 2000

Rt Eulonprise

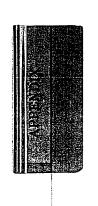
GG 664

Barnieades 1350
67014

1.2 Project Management and Administration
1.2.1 Technical Project Management
1.2.1.2 Accelerator Physics

=======================================	=====	<b></b>			======	
*** MATERIALS *	**	Unit	# of Units	Unit Cost	Cost Base	Total \$
Research Associate Graduate Students		each each	1.50	3000 1800	SSRL SSRL	4500 5400
	!			•	·	
Total Materials	=====	=====     ===== 				9900
*** LABOR ***		=====    # of  Units	Units MM	Total MM	Craft Code	Total Labor
Research Associate Graduate Students		1 3	12 18	12 54	RA ST	76683 86269
	=====	     =====				
Total Labor	=====	=====			, =======	162952 ========
Total 1.2.1.2	=====	=====     =====				172852

1.2 Project Management and Administration
1.2.1 Technical Project Management
1.2.1.3 Quality Control and Installation Coordination


*** MATERIALS ***	    Unit 	# of Units	Unit Cost	Cost Base	Total \$
PC's	each		4500	CP	9000
Alignment Instruments	lot	ī	43935	CP	43935
Theodolite	each	1	23065	CP	23065
Equipm. for Qual. Control		. 1	15000	EU	15000
	lot	1	3500	EU	3500
Fork Lift 7-ton	each	1	30000	CP	30000
Contract Labor	   MM ·	30	JL	EU	93167
Total Materials	===== 			======	217667
*** LABOR ***	    # of  Units	Units MM	Total MM	Craft Code	Total Labor
Mechanical Engineer	i 1	9	9	ME.	69478
	   1   1	9 9	9 9	ME EE	
Electrical Engineer	•		_		68719
Electrical Engineer Technician Systems Coordinators	j 1	9 24 15	9 24 15	EE TO CS	68719 110136
Electrical Engineer Technician Systems Coordinators Electrical Designer	1   1   1   1	9 24 15 3	9 24	EE TO	68719 110136 78806 16462
Mechanical Engineer Electrical Engineer Technician Systems Coordinators Electrical Designer Mechanical Designer	1   1   1   1	9 24 15 3 3	9 24 15 3	EE TO CS ED MD	69478 68719 110136 78806 16462 16462
Electrical Engineer Technician Systems Coordinators Electrical Designer Mechanical Designer	1   1   1   1	9 24 15 3	9 24 15 3	EE TO CS ED	68719 110136 78806 16462 16462
Electrical Engineer Technician Systems Coordinators Electrical Designer Mechanical Designer Documentation Clerk	1   1   1   1	9 24 15 3 3	9 24 15 3	EE TO CS ED MD	68719 110136 78806 16462 16462 24703
Electrical Engineer Technician Systems Coordinators Electrical Designer Mechanical Designer Documentation Clerk  ===================================	1   1   1   1	9 24 15 3 3	9 24 15 3	EE TO CS ED MD	68719 110136 78806 16462
Electrical Engineer Technician Systems Coordinators Electrical Designer Mechanical Designer Documentation Clerk	1   1   1   1   1   1     1 	9 24 15 3 3 9	9 24 15 3	EE TO CS ED MD DC	68719 110136 78806 16462 16462 24703

Project Management and Administration
Administrative Services
Project Planning and Budget Office 1.2 1.2.2 1.2.2.1

	==== =====	=======		======	=========
*** MATERIALS **	*     Unit	# of Units	Unit Cost	Cost Base	Total \$
Construction Reviews Office Supplies	each  month	6 36	1500 500	EU EU	9000 18000
Pubs/Reports/Conferen		1	10000	EU	10000
Computer Software PC	lot  each	1	3000 4500	CP CP	3000
	l		4500	CF	4500
Total Materials					44500
	    	=======		· =======	=======================================
*** LABOR ***	# of  Units	Units MM	Total MM	Craft Code	Total Labor
Admin. Assistant Data Aid	1 1	36 18	36 18	AA DA	164432 47863
			:		
		=======================================	======:		212294
	   		:		
Total 1.2.2.1	:====   ===== !	======			256794
		======		======	========

- 1.2 Project Management and Administration 1.2.2 Administrative Services 1.2.2.2 SSRL Administrative Services

======================================	=====	=====	=======		======	=========
   *** MATERIALS	***	Unit	# of Units	Unit Cost	Cost Base	Total   \$
  Total Materials 	=====     ====			=======================================		:=======     -========
	į					
====================================		# of Units	Units MM	Total MM	Craft Code	Total   Labor
Contract Serv. Manag  Financial Admin.  Personnel Admin.	    	1 1 1	3 6 9	3 6 9	AC AF AP	33259   33066   41301
=====================================	   					107627
  Total 1.2.2.2	.————   					107627
	=====	=====		======		



.

.

# Appendix

Detailed

**Booster Lattice Information** 

В1

**B2** 

ODH

QFH

SF

SD

END

STRT

0 0

0 0

0 0

0 0

0 0

0 0

0 0

3

0 0

```
A MAXIMUM OF 1000 ELEMENTS PER SUPERPERIOD A MAXIMUM OF 200 DIFFERENT ELEMENTS AND
```

A MAXIMUM OF 300 MULTIPOLE MAGNETS PER SUPERPERIOD

#### INPUT-DATA FOR THE PROGRAM PATRICIA

```
3 GEV BOOSTER
$PARAM
ENERGY =
           3.000000000000000
           1.5000000000000000
ENO
DEN
         0.5000000000000000
CHROMX =
          0.000000000000000E+00,
          0.000000000000000E+00,
HARM
                 120,
NSUP
                  1.
SYM
       =
DELMAX =
           2.500000000000000
NHAR
                 200,
          0.000000000000000E+00,
RFV
         1.700000000000000E-03,
       =
TOU
TRACE
           1.0000000000000000
BETX0
ALX0
          0.000000000000000E+00,
         0.0000000000000000E+00,
ETAX0
       = 0.00000000000000E+00.
ETXP0
           1.000000000000000
BETY0
ALY0
          0.0000000000000000E+00,
ETAY0
          0.000000000000000E+00,
ETYP0
       = 0.00000000000000E+00,
       = 0.00000000000000E+00.
PETROS
PROTON = F
$END
$TRP
TURNS
                  10,
TRACK
       = T.
TRSYN
       = F,
OFFEN
       = F,
DAMP
       = F,
JPRINT
PLOTS
           2.000000000000000
       . =
SPECT
       = F,
DYNAP
SEND
                1
                   1
                       1
                           1
                               1
                                   1
                                      0 0 0
                                                  0 0 0 0 0
           -26.08080 26.08080
                               0.00000 31.88900
                                                   6.00000
                       0 0
                                   0.000000D+00
                                                      0.0000000D+00 0.0 0.0
          STRT
                       0 0
                                   0.000000D+00
                                                      0.0000000D+00 0.0 0.0
                                                                               0.00000
           DR
                       0 0
                                   0.0000000D+00
                                                      0.0000000D+00 0.0
                                                                         0.0
                                                                               0.00000
           LO
                  1
                       0 0
                                   0.1250000D+00
                                                       0.0000000D+00 0.0
                                                                         0.0
                                                                               0.00000
           Ll
                  1
                       0 0
                                   .0.2500000D+00
                                                       0.0000000D+00
                                                                    0.0
                                                                         0.0
                                                                                0.00000
          L2A
                                   0.2000000D+01
                                                       0.0 00+d0000000.0
                                                                         0.0
                                                                               0.00000
          L2B
                       0 0
                                   0.300000D+01
                                                       0.0000000D+00 0.0
                                                                               0.00000
                                                                         0.0
           L3
                       0 0
                  1
                                   0.7500000D+00
                                                       0.0000000D+00 0.0
                                                                         0.0
                                                                                0.00000
           L4
                       0 0
                                   0.3500000D+00
                                                       0.0000000D+00 0.0
                                                                         0.0
                                                                                0.00000
           L5
                  1
                       0 0
                                   0.1500000D+00
                                                       0.0000000D+00 0.0
                                                                         0.0
                                                                                0.00000
                                                       0.0000000D+00 0.0
           L6
                  1
                       0 0
                                   0.5000000D+00
                                                                         0.0
                                                                                0.00000
                                                      -0.7639437D+01 30.0 17.0
            В
                  2
                       0 0
                                   0.200000D+01
                                                                                0.00000
```

0.1200000D+01

0.1200000D+01

0.1436000D+00

0.1436000D+00

0.00000000+00

0.0000000D+00

0.0000000D+00

0 0 0

-0.7639437D+01 30.0 17.0

-0.1145915D+02 30.0 17.0

0.1447811D+01 30.0 30.0

-0.1976623D+01 30.0 30.0

0.0000000D+00

0 0 0 0

0.0000000D+00 0.0

0.0000000D+00 0.0 0.0

0.0 0.0

0

0.0

0 0

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0 0

```
LO
1
QDH L0
1 1
                 B L1 QFH QFH L0
                                   SF
        SD
                                             1
         1
             1
                    1
                        1
                            1
                                1
                                    1
                 1
                 B L1 QFH QFH L0
1 1 1 1 1
                                             В
                                               L1 QDH
                                   SF
                                       LO
        SD
            LO
                                                        0
                                                            0
                                        1
                                                                            0
                                    1
                                       SF L6
                                           L6 B1 L6 L5
1 1 1 1
B2 L5 L5 QDH
QDH L5 SD L6 B1 L6 L5 QFH QFH L5
1 1 1 1 1 1 1 1 1 1 1 1
0
                                                            1
                                                                0
                                                                            0
QDH L2B QFH
1 1 1
                                             0
                                     0
                                         0
1 1 1
QFH L2A QDH
1 1 1
QDH L5 L5
                     0
                             0
                                 0
                         0
             0
                     0
                       DR QFH QFH L5
                                       L5
                                            В2
                                               L6
                                                   L6 QDH
            B2 L6
1 1
B1 L6
                    L6
                                                             0
                                                                            0
                                     1
                                                                    0
                                                                        0
                         1
               L6 L5 QFH QFH L5
1 1 1 1 1
B L1 QFH QFH L0
                                   SF
                                       L6
QDH
                                        1
                                             1
                                                1
                                                    1
                                                                            0
                                    1
                                                        1
             1
                                   SF
                                       L0
                                             B L1 QDH
QDH
    LO SD LO
                                                1
                                                                            0
 1 1 1
                        1
                           1
                                1
                                    1
                                        1
                                             1
                                                    1
                                   SF L0
QDH LO SD LO
                 B L1 QFH QFH L0
                                             B L1 QDH
                                                1
                                                                            0
                        1
                            1
                                    1
                                            1
                                                         0
                                                                        0
     1
        1
 1
  0.00000
           0.00000 0.00000 0.00000
                                        0.00000
                                                 0.00000
                                                            0.00000
                                                                      0.00000
  0.00000
```

-REAL-TIME SO FAR =

3 GEV BOOSTER

NR	•	3 GEV 1	SOSIEK			÷	
TYPE	******	******	*****	*******	*******	******	KW(1) = 1
TYPE							
1 STRT	LATTICE-	-PARAMETER	UNITS: RHO(M),K(1/M	**2),SM(1/M**2),FDR	IF(M), LENGTH(M)	,LTOT(M)	
1 STRT				•			
1 STRT			DUO K-SM	CRADIENT	FRRIE	LENGTH	T.TYOT
1	NR	TYP	RHO-K-SI1	GIADILIA:	, PDRIF	MINGIN .	1101
1				•			
2	1	STRT	0.000000	0.0000000	0.00000	0.00000	0.00000
3				0.0000000	0.00000	0.14360	0.14360
5 LO 0.0000000 0.000000 0.00000 0.12500 0.39360 7 LL1 0.0000000 0.00000 0.00000 0.25000 0.239360 7 LL1 0.0000000 0.000000 0.00000 0.00000 0.25000 0.243460 2.39360 8 QFH -1.3766225 0.0000000 0.00000 0.00000 0.14360 2.39360 10 LD 0.0000000 0.000000 0.00000 0.14360 2.39360 11 LD 0.0000000 0.000000 0.00000 0.00000 0.14360 2.39360 11 LD 0.0000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000				0.0000000	0.00000	0.12500	0.26860
6 B -7.6394373 0.0000000 0.00000 2.00000 2.39360 7 LL 0.00000000 0.00000 0.00000 0.00000 0.00000 0.05000 2.39360 8 GPH -1.9766225 0.0000000 0.00000 0.00000 0.14360 2.78720 10 LD 0.00000000 0.000000 0.00000 0.00000 0.14360 2.78720 11 SF 0.0000000 0.000000 0.000000 0.00000 0.12500 3.05500 11 SF 0.0000000 0.000000 0.000000 0.00000 0.12500 3.05500 11 SF 0.0000000 0.000000 0.000000 0.00000 0.12500 3.05500 11 SF 0.0000000 0.000000 0.00000 0.00000 0.12500 3.18000 11 SF 0.0000000 0.000000 0.00000 0.00000 0.00000 0.12500 3.18000 11 SF 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	4	SD	0.000000	0.0000000	0.00000	0.00000	0.26860
The company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the	- 5	LO	0.000000	0.000000	0.00000		0.39360
8			-7.6394373	0.000000	0.00000		
9		Ll					
10							
11 SF							
12							
13							
14							
15							
16							
17 LO 0.0000000 0.000000 0.125000 5.84300 18 SD 0.00000000 0.000000 0.00000 0.00000 5.84300 19 LO 0.0000000 0.000000 0.00000 0.12500 5.96800 20 B 7.6394373 0.0000000 0.00000 0.250000 3.96800 21 LI 0.0000000 0.000000 0.00000 0.25000 8.21800 22 QFH -1.9766225 0.0000000 0.00000 0.13500 8.21800 23 QFH -1.9766225 0.0000000 0.00000 0.13500 8.50500 25 SF 0.0000000 0.000000 0.00000 0.13500 8.50500 25 SF 0.0000000 0.000000 0.00000 0.13500 8.63020 26 LO 0.0000000 0.000000 0.00000 0.13500 8.63020 27 B 7-6394373 0.0000000 0.00000 0.25000 8.75520 28 LI 0.0000000 0.000000 0.00000 0.25000 8.75520 29 QCM 1.4478109 0.0000000 0.00000 0.13460 11.13680 30 QCM 1.4478109 0.0000000 0.00000 0.14360 11.14880 31 L5 0.0000000 0.000000 0.00000 0.14360 11.14880 31 L5 0.0000000 0.000000 0.00000 0.15000 11.44240 32 SD 0.0000000 0.000000 0.00000 0.15000 11.44240 33 L6 0.0000000 0.000000 0.00000 0.00000 0.13460 11.34240 34 BI 7-6394373 0.0000000 0.00000 0.05000 0.144240 35 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 11.44240 36 L5 0.0000000 0.000000 0.00000 0.05000 0.13460 11.34240 37 QFH -1.9766225 0.0000000 0.00000 0.05000 0.15000 11.42240 38 L6 0.0000000 0.000000 0.00000 0.05000 0.15000 11.42240 39 L6 0.0000000 0.000000 0.00000 0.05000 0.134640 13.93600 40 SF 0.0000000 0.000000 0.00000 0.05000 0.134640 13.93600 41 L478109 0.0000000 0.00000 0.00000 0.15000 13.42240 42 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 13.42240 43 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 13.6240 44 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 13.6240 45 L5 0.0000000 0.000000 0.00000 0.00000 0.15000 13.6240 46 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 13.6240 47 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 13.6240 48 L5 0.0000000 0.000000 0.00000 0.00000 0.15000 13.62500 49 B2 -1.4766225 0.0000000 0.00000 0.00000 0.15000 13.62500 40 SF 0.0000000 0.000000 0.00000 0.00000 0.15000 0.142960 41 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 0.142960 42 L6 0.0000000 0.000000 0.00000 0.00000 0.150000 0.142960 43 L5 0.0000000 0.000000 0.00000 0.00000 0.15000 0.							
18							
19							
20 B -7.6394373							
21 LL 0.0000000 0.0000000 0.00000 0.25000 8.21800 22 QPH -1.9766225 0.0000000 0.00000 0.14366 8.56160 23 QPH -1.9766225 0.0000000 0.00000 0.14366 8.56160 25 SF 0.0000000 0.000000 0.00000 0.12500 8.63020 25 SF 0.0000000 0.000000 0.00000 0.00000 0.15000 8.63020 26 LD 0.0000000 0.000000 0.00000 0.00000 0.15500 8.63020 26 LD 0.0000000 0.000000 0.00000 0.00000 0.15500 8.63020 27 BB -7.6394373 0.0000000 0.00000 0.10000 0.25000 11.0552 29 QPH 1.4478109 0.0000000 0.00000 0.00000 0.14366 11.14880 30 QPH 1.4478109 0.0000000 0.00000 0.14366 11.14880 31 L5 0.000000 0.00000 0.00000 0.14366 11.14880 31 L5 0.0000000 0.00000 0.00000 0.14366 11.14820 33 L6 0.0000000 0.000000 0.00000 0.14366 11.14820 33 L6 0.0000000 0.000000 0.00000 0.14366 11.14820 33 L6 0.0000000 0.000000 0.00000 0.00000 0.14366 11.14820 33 L6 0.0000000 0.000000 0.00000 0.00000 0.00000 0.14366 11.44240 33 L6 0.0000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.14366 11.44240 33 L6 0.0000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.15000 11.44240 35 L6 0.0000000 0.000000 0.00000 0.00000 0.00000 0.15000 11.94240 37 QPH -1.9766225 0.0000000 0.00000 0.00000 0.15000 11.39600 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.99500 11.							
22							
23							
24 LD 0.0000000 0.000000 0.00000 0.12500 8.63020 26 LD 0.0000000 0.00000 0.00000 0.00000 8.63020 26 LD 0.0000000 0.000000 0.00000 0.00000 0.12500 8.75520 27 B							
25 SF 0.0000000 0.000000 0.000000 0.00000 0.12500 8.75520 27 B -7.6394373 0.0000000 0.00000 0.00000 1.075520 29 QCH 1.4478109 0.0000000 0.00000 0.00000 0.14360 11.05520 30 QCH 1.4478109 0.0000000 0.00000 0.00000 0.14360 11.14880 30 QCH 1.4478109 0.0000000 0.00000 0.14360 11.14880 31 L5 0.0000000 0.000000 0.00000 0.14360 11.14880 32 SD 0.0000000 0.000000 0.00000 0.00000 0.15000 11.44240 33 L6 0.0000000 0.000000 0.000000 0.00000 0.00000 0.15000 11.44240 33 L6 0.0000000 0.000000 0.000000 0.000000 0.000000							
26 LO 0.000000 0.000000 0.00000 0.12500 8.75520 27 B -7.6394373 0.0000000 0.00000 0.25000 11.05520 28 L1 0.0000000 0.000000 0.00000 0.25000 11.00520 29 QCH 1.4478109 0.0000000 0.00000 0.14360 11.14880 30 QCH 1.4478109 0.0000000 0.00000 0.15000 11.4280 31 L5 0.0000000 0.0000000 0.00000 0.15000 11.44240 33 L6 0.0000000 0.0000000 0.00000 0.50000 11.44240 33 L6 0.0000000 0.0000000 0.00000 0.50000 11.44240 34 B1 -7.6394373 0.0000000 0.00000 0.50000 13.14240 35 L6 0.0000000 0.0000000 0.00000 0.50000 13.14240 36 L5 0.0000000 0.0000000 0.00000 0.50000 13.42240 37 QFH -1.9766225 0.000000 0.00000 0.50000 13.79240 38 QFH -1.9766225 0.000000 0.00000 0.15000 13.79240 40 SF 0.0000000 0.000000 0.00000 0.15000 14.22960 41 L6 0.0000000 0.000000 0.00000 0.15000 14.22960 41 L6 0.0000000 0.000000 0.00000 0.15000 14.22960 42 B1 -7.6394373 0.0000000 0.00000 0.55000 14.22960 43 L6 0.0000000 0.000000 0.00000 0.55000 15.29960 44 L5 0.0000000 0.000000 0.00000 0.55000 15.79260 44 L5 0.0000000 0.000000 0.00000 0.55000 15.29960 45 QCH 1.4478109 0.0000000 0.00000 0.55000 15.29960 46 L5 0.0000000 0.000000 0.00000 0.55000 15.29960 47 L6 0.0000000 0.000000 0.00000 0.55000 15.29960 48 L6 0.0000000 0.000000 0.00000 0.55000 15.29960 49 B2 -11.4591500 0.0000000 0.00000 0.15000 17.86680 49 B2 -11.4591500 0.0000000 0.00000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.00000 0.15000 17.86680 51 L5 0.0000000 0.000000 0.00000 0.15000 17.36680 52 L5 0.0000000 0.000000 0.00000 0.15000 17.36680 53 QFH -1.9766225 0.0000000 0.00000 0.15000 17.36680 54 QFH -1.9766225 0.0000000 0.00000 0.15000 17.36680 55 L5 0.0000000 0.000000 0.00000 0.15000 0.15000 17.36680 56 L6 0.0000000 0.000000 0.00000 0.050000 0.15000 17.36680 56 L6 0.0000000 0.000000 0.00000 0.050000 0.15000 17.36680 56 L6 0.0000000 0.000000 0.00000 0.00000 0.15000 0.15000 17.36680 56 L6 0.0000000 0.000000 0.00000 0.00000 0.13360 22.29760 61 QCH 1.4478109 0.0000000 0.00000 0.00000 0.13360 22.29760 62 L2B 0.0000000 0.000000 0.000000 0.00000 0.13360 22.29760 63 QCH 1.4478109 0.0000000 0.000000 0.00000 0.1						0.00000	8.63020
28 L1 0.0000000 0.0000000 0.00000 0.25000 11.00520 29 QDH 1.4478109 0.0000000 0.00000 0.14360 11.14880 30 QDH 1.4478109 0.0000000 0.00000 0.14360 11.129240 31 L5 0.0000000 0.0000000 0.000000 0.150000 11.44240 32 SD 0.0000000 0.0000000 0.000000 0.00000 0.150000 11.44240 33 L6 0.0000000 0.0000000 0.000000 0.500000 11.94240 34 B1 -7.6394373 0.0000000 0.000000 0.50000 1.20000 13.14240 35 L6 0.0000000 0.0000000 0.000000 0.50000 13.64240 36 L5 0.0000000 0.0000000 0.000000 0.50000 13.64240 37 QFH -1.9766225 0.0000000 0.00000 0.14360 13.79240 38 QFH -1.9766225 0.0000000 0.00000 0.14360 14.07960 39 L5 0.0000000 0.0000000 0.00000 0.14360 14.22960 40 SF 0.0000000 0.0000000 0.000000 0.14360 14.22960 41 L6 0.0000000 0.0000000 0.000000 0.15000 14.22960 41 L6 0.0000000 0.0000000 0.000000 0.50000 14.22960 42 B1 -7.6394373 0.0000000 0.00000 0.50000 15.92960 43 L6 0.0000000 0.000000 0.00000 0.50000 15.92960 44 L5 0.0000000 0.000000 0.00000 0.50000 15.92960 44 L5 0.0000000 0.000000 0.00000 0.50000 15.92960 45 QDH 1.4478109 0.0000000 0.00000 0.15000 16.57960 46 QDH 1.4478109 0.0000000 0.00000 0.14360 16.75960 47 L6 0.0000000 0.000000 0.00000 0.14360 16.75960 48 L6 0.0000000 0.000000 0.00000 0.14360 16.75960 49 B2 -11.4591500 0.0000000 0.00000 0.14360 16.8680 50 L5 0.0000000 0.000000 0.00000 0.14360 16.8680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.16680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.16680 51 L5 0.0000000 0.000000 0.00000 0.14360 19.16680 52 L5 0.0000000 0.000000 0.00000 0.14360 19.16680 53 QFH -1.9766225 0.0000000 0.00000 0.14360 19.16680 54 QFH -1.9766225 0.0000000 0.00000 0.14360 19.16680 55 L4 0.0000000 0.000000 0.000000 0.00000 0.14360 19.16680 56 L6 0.0000000 0.000000 0.000000 0.00000 0.14360 19.16680 56 L6 0.0000000 0.000000 0.000000 0.00000 0.14360 19.16680 56 L6 0.0000000 0.000000 0.000000 0.00000 0.14360 19.16680 56 L6 0.0000000 0.000000 0.000000 0.00000 0.14360 22.44120 66 QDH 1.4478109 0.0000000 0.000000 0.14360 22.44120 67 QDH 1.4478109 0.0000000 0.000000 0.14360 22.44120 68 L5 0.0000000 0.000000 0.0000			0.000000	0.0000000	0.00000	0.12500	8.75520
29 QPH 1.4478109 0.0000000 0.00000 0.14360 11.14880 30 QPH 1.4478109 0.0000000 0.00000 0.14360 11.29240 31 L5 0.0000000 0.000000 0.000000 0.15000 11.44240 32 SD 0.0000000 0.0000000 0.000000 0.000000 11.44240 33 L6 0.0000000 0.0000000 0.000000 0.000000 11.44240 34 B1 -7.6394373 0.0000000 0.00000 0.00000 0.500000 13.14223 35 L6 0.0000000 0.000000 0.000000 0.000000 0.500000 13.14220 36 L5 0.0000000 0.000000 0.000000 0.500000 13.14220 36 L5 0.0000000 0.000000 0.000000 0.500000 13.79240 37 QPH -1.9766225 0.0000000 0.000000 0.14360 13.79240 38 QPH -1.9766225 0.0000000 0.000000 0.14360 13.79360 39 L5 0.0000000 0.000000 0.000000 0.14360 14.27960 40 SF 0.0000000 0.000000 0.000000 0.14360 14.27960 41 L6 0.0000000 0.000000 0.000000 0.15000 14.22960 41 L6 0.0000000 0.000000 0.000000 0.000000 14.22960 42 B1 -7.6394373 0.0000000 0.000000 0.50000 14.72960 42 B1 -7.6394373 0.0000000 0.000000 0.50000 15.99260 44 L5 0.0000000 0.000000 0.000000 0.50000 15.99260 44 L5 0.0000000 0.000000 0.000000 0.50000 15.99260 44 L5 0.0000000 0.000000 0.000000 0.50000 16.22960 44 L5 0.0000000 0.000000 0.00000 0.50000 16.22960 45 QPH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.86680 48 L6 0.0000000 0.000000 0.000000 0.14360 16.86680 48 L6 0.0000000 0.000000 0.000000 0.14360 16.86680 48 L6 0.0000000 0.000000 0.000000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.00000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.15000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.000000 0.15000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.00000 0.15000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.000000 0.15000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.000000 0.15000 0.15000 17.86680 50 L5 0.0000000 0.000000 0.000000 0.000000 0.150000 0.150000 0.150000 0.15000 0.15000 0.15000 0.15000 0.15000 0.15000 0.15000 0.15000 0.	27	В	-7.6394373	0.0000000	0.0000	2.00000	10.75520
30 QPH 1.4478109 0.0000000 0.000000 0.14360 11.29240 31 L5 0.0000000 0.000000 0.000000 0.150000 11.44240 32 SD 0.0000000 0.0000000 0.000000 0.000000 11.44240 33 L6 0.0000000 0.0000000 0.000000 0.000000 11.94240 34 B1 7-6394373 0.0000000 0.000000 0.500000 13.14240 35 L6 0.0000000 0.000000 0.000000 0.000000 0.500000 13.42240 35 L6 0.0000000 0.0000000 0.000000 0.000000 0.500000 13.64240 36 L5 0.0000000 0.000000 0.000000 0.000000 0.50000 13.64240 36 L5 0.0000000 0.000000 0.000000 0.000000 0.150000 13.79240 37 QFH -1.9766225 0.0000000 0.00000 0.14360 14.07960 39 L5 0.0000000 0.000000 0.000000 0.14360 14.07960 40 SF 0.0000000 0.000000 0.000000 0.14360 14.22960 40 SF 0.0000000 0.000000 0.000000 0.150000 14.22960 41 L6 0.0000000 0.000000 0.000000 0.000000 0.500000 14.22960 41 L6 0.0000000 0.000000 0.000000 0.000000 0.50000 14.22960 41 L6 0.0000000 0.000000 0.000000 0.000000 0.50000 14.22960 41 L6 0.0000000 0.000000 0.000000 0.50000 15.92960 43 L6 0.0000000 0.000000 0.000000 0.00000 0.50000 15.92960 44 L5 0.0000000 0.000000 0.000000 0.00000 0.50000 15.92960 44 L5 0.0000000 0.000000 0.000000 0.00000 0.50000 15.29960 44 L5 0.0000000 0.000000 0.000000 0.00000 0.50000 15.29960 44 L5 0.0000000 0.000000 0.000000 0.00000 0.50000 15.29960 45 QPH 1.4478109 0.0000000 0.00000 0.13600 16.72960 46 QPH 1.4478109 0.0000000 0.00000 0.13600 16.72960 47 L6 0.0000000 0.000000 0.000000 0.00000 0.13600 16.72960 48 L6 0.0000000 0.000000 0.000000 0.00000 0.13600 16.72960 48 L6 0.0000000 0.000000 0.000000 0.00000 0.13600 16.72960 47 L6 0.0000000 0.000000 0.000000 0.00000 0.13600 16.72960 47 L6 0.0000000 0.000000 0.000000 0.00000 0.13600 16.72960 47 L6 0.0000000 0.000000 0.000000 0.000000 0.13600 0.13600 17.36680 50 L5 0.0000000 0.000000 0.000000 0.000000 0.13600 0.136600 50 L20000 0.000000 0.000000 0.000000 0.136600 50 L200000 0.000000 0.000000 0.000000 0.136600 50 L	28	L1	0.000000	0.0000000	0.00000	0.25000	11.00520
15	29	QDH	1.4478109	0.000000	0.0000		11.14880
32 SD 0.0000000 0.000000 0.00000 0.00000 11.44240 33 L6 0.0000000 0.000000 0.00000 0.50000 11.94240 34 B1 -7.6394373 0.0000000 0.00000 1.20000 13.14240 35 L6 0.0000000 0.0000000 0.000000 0.50000 13.14240 36 L5 0.0000000 0.000000 0.000000 0.50000 13.64240 37 QPH -1.9766225 0.0000000 0.00000 0.13500 13.79240 38 QPH -1.9766225 0.0000000 0.00000 0.14360 13.93600 39 L5 0.0000000 0.000000 0.00000 0.14360 14.22960 40 SF 0.0000000 0.000000 0.00000 0.55000 14.22960 41 L6 0.0000000 0.000000 0.00000 0.55000 14.22960 42 B1 -7.6394373 0.0000000 0.00000 0.55000 14.2960 43 L6 0.0000000 0.000000 0.00000 0.55000 14.2960 44 L5 0.0000000 0.000000 0.00000 0.55000 16.42960 44 L5 0.0000000 0.000000 0.00000 0.55000 16.72960 45 QPH 1.4478109 0.0000000 0.00000 0.14360 16.57360 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.57360 47 L6 0.0000000 0.000000 0.00000 0.14360 16.72320 48 L6 0.0000000 0.000000 0.00000 0.14360 16.573660 49 B2 -11.4591500 0.0000000 0.00000 0.50000 17.36680 49 B2 -11.4591500 0.0000000 0.00000 0.50000 17.36680 50 L5 0.0000000 0.000000 0.00000 0.50000 17.36680 51 L5 0.0000000 0.000000 0.00000 0.15000 19.216680 52 L5 0.0000000 0.000000 0.000000 0.15000 19.36680 53 QPH -1.9766225 0.0000000 0.000000 0.15000 19.36680 54 QPH -1.9766225 0.0000000 0.000000 0.15000 19.36680 55 L6 0.0000000 0.000000 0.000000 0.15000 19.36680 56 L6 0.0000000 0.0000000 0.000000 0.15000 19.36680 57 B2 -11.4591500 0.0000000 0.000000 0.15000 19.36680 58 L5 0.0000000 0.000000 0.000000 0.15000 22.00000 59 L5 0.0000000 0.000000 0.000000 0.15000 22.00000 59 L5 0.0000000 0.000000 0.000000 0.15000 22.00000 59 L5 0.0000000 0.000000 0.000000 0.14360 12.85400 56 L6 0.0000000 0.000000 0.000000 0.14360 22.29760 61 QPH -1.9766225 0.0000000 0.000000 0.14360 22.29760 62 L2B 0.0000000 0.000000 0.000000 0.00000 0.14360 22.29760 63 QPH -1.9766225 0.0000000 0.000000 0.14360 22.58400 66 QPH 1.4478109 0.0000000 0.000000 0.14360 22.58400 66 QPH 1.4478109 0.0000000 0.000000 0.14360 22.58400 66 QPH 1.4478109 0.0000000		QDH	1.4478109	0.000000			
33							
1		,					
35							
36 L5 0.0000000 0.000000 0.15000 1.3.79240 37 QFH -1.9766225 0.0000000 0.00000 0.14360 13.93600 38 QFH -1.9766225 0.0000000 0.00000 0.14360 14.07960 39 L5 0.0000000 0.0000000 0.000000 0.15000 14.22960 40 SF 0.0000000 0.0000000 0.000000 0.50000 14.22960 41 L6 0.0000000 0.0000000 0.000000 0.50000 14.72960 42 B1 -7.6394373 0.0000000 0.00000 0.50000 15.92960 43 L6 0.0000000 0.000000 0.00000 0.50000 16.42960 44 L5 0.0000000 0.000000 0.00000 0.50000 16.79960 45 QDH 1.4478109 0.0000000 0.00000 0.14360 16.57960 46 QDH 1.4478109 0.0000000 0.00000 0.14360 16.73220 48 L6 0.0000000 0.000000 0.00000 0.14360 16.73220 49 B2 -11.4591500 0.0000000 0.00000 0.50000 17.86680 50 L5 0.0000000 0.000000 0.00000 0.50000 17.86680 50 L5 0.0000000 0.000000 0.00000 0.15000 19.66680 50 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 51 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 52 L5 0.0000000 0.000000 0.00000 0.15000 19.36680 53 QFH -1.9766225 0.0000000 0.00000 0.14360 19.36680 54 QFH -1.9766225 0.0000000 0.00000 0.14360 19.36680 55 L4 0.0000000 0.000000 0.00000 0.15000 19.21680 55 L4 0.0000000 0.000000 0.00000 0.15000 19.36680 56 L6 0.0000000 0.000000 0.00000 0.14360 19.36680 57 B2 -11.4591500 0.0000000 0.00000 0.14360 19.36680 58 L5 0.0000000 0.000000 0.00000 0.14360 19.8680 59 L5 0.0000000 0.000000 0.00000 0.14360 19.8680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.8680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.8680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.36680 50 L5 0.0000000 0.000000 0.00000 0.14360 19.5680							
37							
38 QFH -1.9766225 0.0000000 0.000000 0.14360 14.07960 39 L5 0.0000000 0.000000 0.00000 0.15000 14.22960 40 SF 0.0000000 0.000000 0.00000 0.50000 14.22960 41 L6 0.0000000 0.000000 0.00000 0.50000 14.22960 42 B1 -7.6394373 0.0000000 0.00000 1.20000 15.92960 43 L6 0.0000000 0.000000 0.00000 0.55000 16.42960 44 L5 0.0000000 0.000000 0.00000 0.55000 16.57960 45 QDH 1.4478109 0.000000 0.00000 0.15000 16.57960 46 QCH 1.4478109 0.000000 0.00000 0.14360 16.72320 47 L6 0.0000000 0.000000 0.00000 0.14360 16.86680 48 L6 0.0000000 0.000000 0.00000 0.55000 17.36680 49 B2 -11.4591500 0.000000 0.00000 0.55000 17.36680 50 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 51 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 51 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 52 L5 0.0000000 0.000000 0.00000 0.15000 19.36680 53 QFH -1.9766225 0.0000000 0.00000 0.14360 19.36680 54 QFH -1.9766225 0.0000000 0.00000 0.14360 19.66400 55 L4 0.0000000 0.000000 0.00000 0.15000 19.51680 56 L6 0.0000000 0.000000 0.00000 0.15000 19.51680 57 B2 -11.4591500 0.0000000 0.00000 0.15000 19.51680 58 L5 0.0000000 0.000000 0.00000 0.15000 12.516400 56 L6 0.0000000 0.000000 0.00000 0.15000 22.15400 57 B2 -11.459150 0.0000000 0.00000 0.15000 22.15400 58 L5 0.0000000 0.000000 0.00000 0.14360 22.29760 61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 62 L2B 0.0000000 0.000000 0.00000 0.14360 22.44120 63 QFH -1.9766225 0.0000000 0.00000 0.14360 25.72840 66 QCH 1.4478109 0.0000000 0.00000 0.14360 25.72840 66 QCH 1.4478109 0.0000000 0.00000 0.14360 25.72840 66 QCH 1.4478109 0.0000000 0.00000 0.14360 25.72840 67 QDH 1.4478109 0.0000000 0.00000 0.14360 27.72840 68 L5 0.0000000 0.000000 0.00000 0.14360 27.72840 69 L5 0.0000000 0.000000 0.00000 0.14360 27.72840 69 L5 0.0000000 0.000000 0.00000 0.14360 27.72840							
39							
40 SF 0.0000000 0.0000000 0.000000 14.22960 41 L6 0.0000000 0.0000000 0.000000 0.50000 14.72960 42 B1 -7.6394373 0.0000000 0.000000 1.20000 15.92960 43 L6 0.0000000 0.0000000 0.000000 0.50000 16.42960 44 L5 0.0000000 0.0000000 0.000000 0.15000 16.57960 45 QDH 1.4478109 0.0000000 0.00000 0.14360 16.57960 46 QDH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QDH 1.4478109 0.0000000 0.00000 0.14360 16.86680 47 L6 0.0000000 0.000000 0.000000 0.50000 17.36680 48 L6 0.0000000 0.000000 0.000000 0.50000 17.36680 49 B2 -11.4591500 0.0000000 0.00000 0.50000 17.36680 50 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 51 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 52 L5 0.0000000 0.000000 0.00000 0.15000 19.21680 53 QFH -1.9766225 0.0000000 0.00000 0.14360 19.66880 54 QFH -1.9766225 0.0000000 0.00000 0.14360 19.6680 55 L4 0.0000000 0.000000 0.00000 0.14360 19.6680 56 L6 0.0000000 0.000000 0.00000 0.14360 19.6680 57 B2 -11.4591500 0.0000000 0.00000 0.14360 19.66940 58 L5 0.0000000 0.000000 0.00000 0.14360 19.86400 59 L5 0.0000000 0.000000 0.00000 0.15000 20.55400 59 L5 0.0000000 0.000000 0.00000 0.15000 22.55400 60 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 62 L2B 0.0000000 0.000000 0.00000 0.14360 22.29760 63 QFH -1.9766225 0.0000000 0.00000 0.14360 22.29760 64 QFH -1.9766225 0.0000000 0.00000 0.14360 22.29760 65 L2A 0.0000000 0.000000 0.00000 0.14360 22.29760 66 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 67 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 68 L5 0.0000000 0.000000 0.00000 0.14360 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.72840 67 QDH 1.4478109 0.0000000 0.00000 0.14360 27.72840 68 L5 0.0000000 0.000000 0.00000 0.14360 27.87200 69 L5 0.0000000 0.000000 0.00000 0.14360 27.87200 69 L5 0.0000000 0.000000 0.000000 0.14360 27.87200 69 L5 0.0000000 0.000000 0.000000 0.14360 27.87200 69 L5 0.0000000 0.000000 0.000000 0.14360 27.87200							
41         L6         0.0000000         0.000000         0.50000         14.72960           42         B1         -7.6394373         0.0000000         0.00000         1.20000         15.92960           43         L6         0.0000000         0.000000         0.50000         16.42960           44         L5         0.0000000         0.000000         0.15000         16.57960           45         QDH         1.4478109         0.0000000         0.00000         0.14360         16.73220           46         QDH         1.4478109         0.0000000         0.00000         0.14360         16.73220           46         QDH         1.4478109         0.0000000         0.00000         0.14360         16.86680           47         L6         0.0000000         0.000000         0.00000         0.50000         17.36680           48         L6         0.0000000         0.000000         0.00000         0.50000         17.36680           49         B2         -11.4591500         0.0000000         0.00000         0.15000         19.21680           51         L5         0.0000000         0.000000         0.15000         19.36680           52         L5         0.00							
### ### ##############################							
16							
44							
45 QPH 1.4478109 0.0000000 0.00000 0.14360 16.72320 46 QPH 1.4478109 0.0000000 0.00000 0.14360 16.86680 47 L6 0.0000000 0.000000 0.000000 0.50000 17.36680 48 L6 0.0000000 0.000000 0.000000 0.50000 17.36680 49 B2 -11.4591500 0.0000000 0.00000 0.50000 17.36680 50 L5 0.0000000 0.000000 0.000000 0.15000 19.21680 51 L5 0.0000000 0.000000 0.000000 0.15000 19.21680 52 L5 0.0000000 0.000000 0.000000 0.15000 19.51680 52 L5 0.0000000 0.000000 0.000000 0.15000 19.51680 53 QFH -1.9766225 0.0000000 0.00000 0.14360 19.66040 54 QFH -1.9766225 0.0000000 0.00000 0.14360 19.80400 55 L4 0.0000000 0.000000 0.00000 0.35000 20.15400 55 L4 0.0000000 0.000000 0.00000 0.35000 20.15400 56 L6 0.0000000 0.000000 0.00000 0.55000 20.15400 57 B2 -11.4591500 0.0000000 0.00000 0.55000 20.65400 59 L5 0.0000000 0.00000 0.00000 0.15000 22.00400 59 L5 0.0000000 0.000000 0.00000 0.15000 22.00400 59 L5 0.0000000 0.000000 0.00000 0.15000 22.00400 60 QPH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QPH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QPH 1.4478109 0.0000000 0.00000 0.14360 22.29760 62 L2B 0.0000000 0.000000 0.00000 0.14360 22.29760 61 QPH 1.4478109 0.0000000 0.00000 0.14360 22.29760 63 QFH -1.9766225 0.0000000 0.00000 0.14360 22.29760 65 L2A 0.0000000 0.000000 0.00000 0.14360 22.29760 66 QPH 1.4478109 0.0000000 0.00000 0.14360 22.58480 64 QFH -1.9766225 0.0000000 0.00000 0.00000 0.14360 22.58480 64 QFH -1.9766225 0.0000000 0.00000 0.00000 0.14360 22.58480 64 QFH -1.9766225 0.0000000 0.00000 0.00000 0.14360 22.58480 65 L2A 0.0000000 0.000000 0.00000 0.00000 0.14360 25.58480 66 QPH 1.4478109 0.0000000 0.00000 0.00000 0.14360 25.58480 66 QPH 1.4478109 0.0000000 0.00000 0.00000 0.14360 25.58480 66 QPH 1.4478109 0.0000000 0.00000 0.00000 0.14360 25.58480 66 QPH 1.4478109 0.0000000 0							
46         QDH         1.4478109         0.0000000         0.000000         0.14360         16.86680           47         L6         0.0000000         0.0000000         0.50000         17.36680           48         L6         0.0000000         0.0000000         0.50000         17.86680           49         B2         -11.4591500         0.0000000         0.00000         1.20000         19.06680           50         L5         0.0000000         0.000000         0.00000         0.15000         19.21680           51         L5         0.0000000         0.000000         0.15000         19.21680           52         L5         0.0000000         0.000000         0.15000         19.21680           53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.51680           54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.000000         0.00000         0.14360         19.80400           57         B2         -11.4591500         0.0000000         0.00000         0.50000         0.50000         20.55400           58							
47							
48         L6         0.0000000         0.0000000         0.50000         17.86680           49         B2         -11.4591500         0.0000000         0.000000         1.20000         19.06680           50         L5         0.0000000         0.000000         0.15000         19.21680           51         L5         0.0000000         0.000000         0.15000         19.36680           52         L5         0.0000000         0.000000         0.15000         19.36680           53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.66040           54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.000000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.50000         0.55000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.05400           59         L5         0.0000000 <td< th=""><th></th><th>_</th><th>0.000000</th><th>0.0000000</th><th>0.0000</th><th>0.50000</th><th>17.36680</th></td<>		_	0.000000	0.0000000	0.0000	0.50000	17.36680
49         B2         -11.4591500         0.0000000         0.000000         1.20000         19.06680           50         L5         0.0000000         0.000000         0.15000         19.21680           51         L5         0.0000000         0.000000         0.15000         19.36680           52         L5         0.0000000         0.000000         0.15000         19.51680           53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.66040           54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.000000         0.00000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.00000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           59         L5         0.0000000         0.000000         0.00000         0.14360         22.29760           61         <			0.000000	0.0000000	0.00000	0.50000	17.86680
51         L5         0.0000000         0.0000000         0.15000         19.36680           52         L5         0.0000000         0.000000         0.15000         19.51680           53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.66040           54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.000000         0.00000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.00000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120		B2	-11.4591500	0.0000000	0.00000	1.20000	
52         L5         0.0000000         0.0000000         0.000000         0.15000         19.51680           53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.66040           54         QFH         -1.9766225         0.0000000         0.000000         0.14360         19.80400           55         L4         0.0000000         0.0000000         0.000000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.00000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         0.1436	50	L5	0.0000000	0.000000	0.00000	0.15000	19.21680
53         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.66040           54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.0000000         0.000000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.00000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.1436	51	L5	0.000000	0.0000000	0.00000		
54         QFH         -1.9766225         0.0000000         0.00000         0.14360         19.80400           55         L4         0.0000000         0.000000         0.00000         0.35000         20.15400           56         L6         0.0000000         0.0000000         0.000000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.000000         0.00000         0.14360 <th>52</th> <th>L5</th> <th>0.0000000</th> <th>0.0000000</th> <th></th> <th></th> <th></th>	52	L5	0.0000000	0.0000000			
55         L4         0.0000000         0.0000000         0.000000         0.35000         20.15400           56         L6         0.0000000         0.000000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.0000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.000000         0.00000         0.14360         25.72840           66         QDH         1.4478109         0.0000000         0.00000         0.14360         27.87200	53	QFH	-1.9766225	0.0000000			
56         L6         0.0000000         0.000000         0.50000         20.65400           57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.00000         0.15000         22.00400           59         L5         0.0000000         0.0000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         3.00000         25.44120           63         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.000000         0.00000         0.14360         25.78240           66         QDH         1.4478109         0.0000000         0.00000         0.14360         27.8720	54	QFH					
57         B2         -11.4591500         0.0000000         0.00000         1.20000         21.85400           58         L5         0.0000000         0.000000         0.000000         0.15000         22.00400           59         L5         0.0000000         0.000000         0.00000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         0.00000         3.00000         25.44120           63         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.000000         0.00000         2.00000         27.72840           66         QDH         1.4478109         0.0000000         0.00000         0.14360         27.87200           67         QDH         1.4478109         0.0000000         0.00000         0.143	55			· ·			
58         L5         0.0000000         0.0000000         0.000000         0.15000         22.00400           59         L5         0.0000000         0.0000000         0.000000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.00000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.00000         0.14360         22.44120           62         L2B         0.0000000         0.000000         3.00000         25.44120           63         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.0000000         0.00000         2.00000         27.72840           66         QDH         1.4478109         0.0000000         0.00000         0.14360         27.87200           67         QDH         1.4478109         0.0000000         0.00000         0.14360         28.01560           69         L5         0.0000000         0.0000000         0.00000         0.15000         28.	56	L6	0.000000				
59         L5         0.0000000         0.0000000         0.000000         0.15000         22.15400           60         QDH         1.4478109         0.0000000         0.000000         0.14360         22.29760           61         QDH         1.4478109         0.0000000         0.000000         0.14360         22.44120           62         L2B         0.0000000         0.000000         3.00000         25.44120           63         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.58480           64         QFH         -1.9766225         0.0000000         0.00000         0.14360         25.72840           65         L2A         0.0000000         0.0000000         0.00000         2.00000         27.72840           66         QDH         1.4478109         0.0000000         0.00000         0.14360         27.87200           67         QDH         1.4478109         0.000000         0.00000         0.14360         28.01560           68         L5         0.0000000         0.000000         0.00000         0.15000         28.31560           69         L5         0.0000000         0.0000000         0.000000         0.15000         28.	57	B2	-11.4591500				
60 QDH 1.4478109 0.0000000 0.00000 0.14360 22.29760 61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.44120 62 L2B 0.0000000 0.0000000 0.00000 3.00000 25.44120 63 QFH -1.9766225 0.0000000 0.00000 0.14360 25.58480 64 QFH -1.9766225 0.0000000 0.00000 0.14360 25.58480 65 L2A 0.0000000 0.000000 0.00000 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 68 L5 0.0000000 0.000000 0.00000 0.14360 28.01560 69 L5 0.0000000 0.000000 0.00000 0.15000 28.31560							
61 QDH 1.4478109 0.0000000 0.00000 0.14360 22.44120 62 L2B 0.0000000 0.0000000 0.000000 3.00000 25.44120 63 QFH -1.9766225 0.0000000 0.00000 0.14360 25.58480 64 QFH -1.9766225 0.0000000 0.00000 0.14360 25.72840 65 L2A 0.0000000 0.000000 0.00000 2.00000 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 68 L5 0.0000000 0.000000 0.00000 0.15000 28.31560 69 L5 0.0000000 0.000000 0.00000 0.15000 28.31560							
62 L2B 0.0000000 0.000000 0.00000 3.00000 25.44120 63 QFH -1.9766225 0.0000000 0.00000 0.14360 25.58480 64 QFH -1.9766225 0.0000000 0.00000 0.14360 25.72840 65 L2A 0.0000000 0.000000 0.00000 2.00000 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 68 L5 0.0000000 0.000000 0.00000 0.15000 28.31560 69 L5 0.0000000 0.000000 0.00000 0.15000 28.31560							
63 QFH -1.9766225 0.0000000 0.00000 0.14360 25.58480 64 QFH -1.9766225 0.0000000 0.00000 0.14360 25.72840 65 L2A 0.0000000 0.0000000 0.000000 2.00000 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 28.01560 68 L5 0.0000000 0.000000 0.00000 0.15000 28.31560 69 L5 0.0000000 0.000000 0.00000 0.15000 28.31560							
64 QFH -1.9766225 0.0000000 0.00000 0.14360 25.72840 65 L2A 0.0000000 0.0000000 0.00000 2.00000 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 28.01560 68 L5 0.0000000 0.0000000 0.00000 0.15000 28.16560 69 L5 0.0000000 0.0000000 0.00000 0.15000 28.31560							
65 L2A 0.0000000 0.0000000 0.000000 27.72840 66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 28.01560 68 L5 0.0000000 0.0000000 0.00000 0.15000 28.16560 69 L5 0.0000000 0.0000000 0.00000 0.15000 28.31560							
66 QDH 1.4478109 0.0000000 0.00000 0.14360 27.87200 67 QDH 1.4478109 0.0000000 0.00000 0.14360 28.01560 68 L5 0.0000000 0.000000 0.00000 0.15000 28.16560 69 L5 0.0000000 0.0000000 0.000000 0.15000 28.31560							
67 QDH 1.4478109 0.0000000 0.00000 0.14360 28.01560 68 L5 0.0000000 0.000000 0.000000 0.15000 28.16560 69 L5 0.0000000 0.0000000 0.000000 0.15000 28.31560							
68 L5 0.000000 0.000000 0.00000 0.15000 28.16560 69 L5 0.0000000 0.000000 0.00000 0.15000 28.31560							
69 L5 0.0000000 0.0000000 0.00000 0.15000 28.31560							
20 0000							
/0 62 -11.4351300 0.0000000 0.000000 1.20000 25.33300							
	/0	DZ	-11.4751300	0.000000			

71	L6	0.000000	0.0000000	0.00000	0.50000	30.01560
72	L6	0.000000	0.0000000	0.00000	0.50000	30.51560
73	DR	0.000000	0.000000	0.00000	0.00000	30.51560
74	QFH	-1.9766225	0.0000000	0.00000	0.14360	30.65920
75	QFH	-1.9766225	0.0000000	0.00000	0.14360	30.80280
76	L5	0.000000	0.0000000	0.00000	0.15000	30.95280
77	L5	0.000000	0.0000000	0.00000	0.15000	31.10280
78	B2	-11.4591500	0.0000000	0.00000	1.20000	32.30280
79	L6	0.0000000	0.0000000	0.00000	0.50000	32.80280
80	L6	0.0000000	0.000000	0.00000	0.50000	33.30280
81	ODH	1.4478109	0.0000000	0.00000	0.14360	33.44640
82	QDH	1.4478109	0.0000000	0.00000	0.14360	33.59000
83	L5	0.000000	0.0000000	0.00000	0.15000	33.74000
84	L6	0.000000	0.0000000	0.00000	0.50000	34.24000
85	B1	-7.6394373	0.0000000	0.00000	1.20000	35.44000
86	L6	0.000000	0.0000000	0.00000	0.50000	35.94000
87	L5	0.000000	0.0000000	0.00000	0.15000	36.09000
88	QFH	-1.9766225	0.0000000	0.00000	0.14360	36.23360
89	QFH	-1.9766225	0.0000000	0.00000	0.14360	36.37720
90	LS	0.000000	0.0000000	0.00000	0.15000	36.52720
91	SF	0.000000	0.0000000	0.00000	0.00000	36.52720
92	L6	0.000000	0.0000000	0.00000	0.50000	37.02720
93	В1	-7.6394373	0.0000000	0.00000	1.20000	38.22720
94	L6	0.000000	0.0000000	0.00000	0.50000	38.72720
95	<b>L</b> 5	0.000000	0.0000000	0.00000	0.15000	38.87720
96	QDH	1.4478109	0.0000000	0.00000	0.14360	39.02080
97	QDH	1.4478109	0.000000	0.00000	0.14360	39.16440
98	LO	0.000000	0.0000000	0.00000	0.12500	39.28940
99	SD	0.000000	0.0000000	0.00000	0.00000	39.28940
100	ĽO	0.000000	0.0000000	0.00000	0.12500	39.41440
101	В	-7.6394373	0.0000000	0.00000	2.00000	41.41440
102	L1	0.000000	0.0000000	0.00000	0.25000	41.56440
103	QFH	-1.9766225	0.0000000	0.00000	0.14360	41.80800
104	QFH	-1.9766225	0.0000000	0.00000	0.14360	41.95160
105	LO	. 0.0000000	0.0000000	0.00000	0.12500	42.07660
106	SF	0.000000	0.0000000	0.00000	0.00000	42.07660
107	LO	0.000000	0.0000000	0.00000	0.12500	42.20160
108	В	-7.6394373	0.0000000	0.00000	2.00000	44.20160
109	L1	0.000000	0.0000000	0.00000	0.25000	44.45160
110	QDH	1.4478109	0.000000	0.00000	0.14360	44.59520
111	QDH	1.4478109	0.000000	0.00000	0.14360	44.73880
112	LO	0.000000	0.0000000	. 0.00000	0.12500	44.86380
113	SD	0.000000	0.000000	0.00000	0.00000	44.86380
114	ro	0.000000	0.0000000	0.00000	0.12500	44.98880
115	В	-7.6394373	0.0000000	0.00000	2.00000	46.98880
116	L1	0.0000000	0.0000000	0.00000	0.25000	47.23880
117	QFH	-1.9766225	0'.0000000	0.00000	0.14360	47.38240
118	QFH	-1.9766225	0.000000	0.00000	0.14360	47.52600
119	ro	0.0000000	0.0000000	0.00000	0.12500	47.65100
120	SF	0.0000000	0.0000000	0.00000	0.00000	47.65100
121	LO	0.0000000	0.0000000	0.00000	0.12500	47.77600
122	В	-7.6394373	0.0000000	0.00000	2.00000	49.77600
123	L.1	0.000000	0.0000000	0.00000	0.25000	50.02600
124	QDH	1.4478109	0.0000000	0.00000	0.14360	50.16960
					REAL-TIME SO FAR	= 4.

TRANSFORMATION	MATRICES
----------------	----------

MATRIX-X

MATRIX-Y

DP/P =

0.00000E+00

0.02851126

1.61029576 0.76786803 0.49044463 0.47575345

6.29003134

0.00000000

-0.62049912 0.00000000

0.02851126 0.00000000 -0.12299758 0.00000000 0.47575345

0.00000000 1.00000000

### PERIODIC LATTICE FUNCTIONS

BETA-X =

ALPHA-X =

0.00000

1.61095 M 7.15119 M 0.79040 M BETY-Y = ETA-X =

ALPHA-Y =

0.00000 0.00000 RAD

ETA-Y = 0.00000 M ETAP~X = ETAP-Y =

0.00000 RAD

-REAL-TIME SO FAR =

*** PROGRAM P A T R I C I A 85.5 ***

KW(2) = 1

DEFINITION:  $\langle FUNCT \rangle = INTEGRAL$  OF FUNCT ALONG NSUP SUPERPERIODS DIVIDED BY TOTAL INTEGRATION LENGTH CHROMATIC TERMS (SEE H.WIEDEMANN DESY H5/71-10)

### ELECTRON STORAGE RING PARAMETERS

CIRCUMFERENCE (M) RF-FREQUENCY (MHZ) MOMENTUM COMPACTION FACTOR (%) ENERGYSPREAD (%) DAMPING PARTITION NUMBER	0.03	485 40384 05393 * E( 0	GEV)	HARMON NAT EN	TIONFREQUE IIC MUMBER LITTANCE(HO TION ENERG	RIZ)(RAD*M		2987.79 120 5.307E-0 4.30179	8 * E(GEV))
RADIATION AND OTHER INTEGRALS	S (SEE R.H.H	ELM ET AL.	SLAC-FUB-	-1193 AND H	.WIEDEMANN	PEP-NOTE	39 :)		
<pre><k*betax> = <dx r="">+<ddx r="">*DP/P = &lt;1/R**2&gt; = &lt;1/R**3&gt; = &lt;(GAMMAX*DX**2+BETAX*DP) &lt;(GAMMAY*DY**2+BETAY*DP) &lt;2*K**2*DX**2&gt;/&lt;1/R**2&gt; <dx*(isec r)="" r**3-2*k=""> = <dy*(isec r)="" r**3+2*k=""> =</dy*(isec></dx*(isec></ddx></dx></k*betax></pre>	(**2+2*ALPHA = =	,		-0.79855 0.54038 0.78326 0.99349 0.28268 0.00000 0.77153 0.00000	E-01 E-02 E-03 E-03 E+00 E+02 E+00	KATEB> KATEB> KAMAD> KAMAD> KAMAD> KATE> KATE> KATE> KATE>	> = > = > =	4. 6. 0. 0. 0. 0.	63690E+00 3902 M 3178 M 8059 1/M 5882 1/M 6907 M 56070E-01 00000E+00 70256E-02 00000E+00
MOMENTUM (GEV/C)	3.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000
ENERGYLOSS/TURN (MEV)	0.896	0.056	0.177	0.432	0.896	1.660	2.833	4.537	6.915
RF-PHASE (DEGREE)	29.852	21.130	24.646	27.482	29.852	31.645	32.880	34.137	35.126
RF-VOLTAGE (MVOLT)	1.801	0.155	0.425	0.937	1.801	3.165	5.218	8.085	12.019
SYNCHR. FREQUENCY (KC)	69.252	29.837	42.160	55.337	69.252	84.213	100.461	117.053	134.586
SYNCHROTRON TUNE (1/1000)	23.178	9.986	14.111	18.521	23.178	28.186	33.624	39.177	45.045
QUANTUMLIFETIME (HOURS)	0.002	0.019	0.008	0.004	0.002	0.002	0.002	0.002	0.002
SYNCH-DAMP-TIME (MSEC)	1.120	8.963	3.781	1.936	1.120	0.706	0.473	0.332	0.242
BET-DAMP-TIME-HOR (MSEC)	2.241	17.925	7.562	3.872	2.241	1.411	0.945	0.664	0.484
BET-DAMP-TIME-VER (MSEC)	2.241	17.925	7.562	3.872	2.241	1.411	0.945	0.664	0.484
NAT.EMITTANCE (RAD*M)								1.07E-06	1.33E-06
BUNCHLENGTH (MM)	34.111	39.586	37.354	35.574	34.111				29.253
BUNCHLENGTH (PSEC)	113.781	132.046		118.661				100.974	97.578
ENERGYSPREAD (PERCENT)	0.092	0.046	0.061	0.076	0.092	0.107	0.122	0.137	0.153
RING ACCEPTANCE FOR A MONOCHE	ROMATIC BEAM	IN MM*MRA	D (DP/P =	0.000000	)				

LIMITED IN MAGNET QFH AT J =

B2 AT J =

LIMITED IN MAGNET

EPSX-MAX =

EPSY-MAX =

69.43

22.39

-REAL-TIME SO FAR = 13. SEC

30.00 MM

17.00 MM

-REAL-TIME SO FAR =

HALF APERTURE

HALF APERTURE

88

57

# *** PROGRAM P A T R I C I A 85.5 *** KW(3)= 1

 $p_{P} = 0.00000E+00$ 

			-	INGTH ARE ME	DP/P		0000E+00 SIGMA-TOT:	PARAMETE	RS AT THE E	ND OF ELE	MENTS	
MAGNET				BSCX(MM)	ETAX	DNUEX	BETAY	ALFAY	BSCY (MM)	ETAY	DNUEY	TOT-L
LIMINET	. J	BETAX	ALFAX	BSCX (PPI)								
									•			
STRT	1	1.61095	0.00000	11.37494	0.79040	0.00000	7.15119	0.00000	13.06883	0.00000	0.00000	0.0000
QDH	2	1.67245	-0.43256	11.57188	0.80223	0.01401	6.94266	1.43767	12.87688	0.00000	0.00323	0.1436
LO	3	1.79168	-0.52128	11.93397	0.82288	0.02551	6.59014	1.38245	12.54570	0.00000	0.00617	0.2686
SD	4	1.79168	-0.52128	11.93397	0.82288	0.02551	6.59014	. 1.38245	12.54570	0.00000	0.00617	0.2686
LO	5	1.93310		12.33133	0.84352	0.03621	6.25143	1.32724	12.21905	0.00000	0.00927	0.3936
В	6	7.12026	-2.01344	22.62397	1.43036	0.12567	. 2.46895	0.49882	7.67899	0.00000	0.09428	2.3936
LI	7	8.17134	-2.19089	24.26385	1.53748	0.13089	2.25116	0.37237	7.33248	0.00000	0.11118	2.6436
QFH	8	8.46948	0.14298	24.71362	1.56736	0.13362	2.24487	-0.32797	7.32222	0.00000	0.12143	2.7872
QFH	9	8.09143	2.45386	24.16424	1.53357	0.13636	2.44471	-1.08251	7.64119	0.00000	0.13126	2.9308
LO	10	7.49152	2.34539	23.25672	1.47666	0.13891	2.72921	-1.19355	8.07358	0.00000	0.13896	3.0558
SF	11	7.49152	2.34539	23.25672	1.47666	0.13891	2.72921	-1.19355	8.07358	0.00000	0.13896	3.0558
LO	12	6.91873	2.23692	22.35350	1.41975	0.14168	3.04148	-1.30460	8.52296	0.00000	0.14587	3.1808
В	13	1.46538	0.52115	11.00211	0.77986	0 24831	11.42749	-2.74389	16.52050	0.00000	0.20095	5.1808
L1	14	1.25904	0.30421	10.25183	0.73187	0.27777	12.84608	-2.93047	17.51592	0.00000	0.20424	5.4308
QDH	15	1.22596	-0.07155	10.07398	0.71511	0.29630	13.30658	-0.24435	17.82710	0.00000	0.20598	5.5744
QDH	16	1.30096	-0.45594	10.27754	0.71976	0.31452	12.98366	2.47066	17.60947	0.00000	0.20771	5.7180
LO	17	1.42945	-0.57200	10.64868	0.73312	0.32913	12.37454	2.40227	17.19144	0.00000	0.20928	5.8430
SD	18	1.42945	-0.57200	10.64868	0.73312	0.32913	12.37454	2.40227	17.19144	0.00000	0.20928	5.8430
LO	19	1.58696	-0.68805	11.07144	0.74648	0.34236	11.78253		16.77517	0.00000	0.21092	5.9680
В	20	7.93757	-2.52382	22.44304	1.21807	0.43640	4.15924	1.34640	9.96678	0.00000	0.25704	7.9680
L1	21	9.25751	-2.75593	24.21531	1.31061	0.44104	3.52831	1.17733	9.17975	0.00000	0.26743	8.2180
QFH	22	9.67433	-0.10718	24.74082	1.33678	0.44344	3.34083	0.14592	8.93254	0.00000	0.27413	8.3616
QFH	23	9.31741	2.55881	24.26548	1.30866	0.44583	3.44220	-0.86138	9.06704	0.00000	0.28092	8.5052
LO	24	8.69037	2.45755	23.42053	1.26071	0.44804	3.66545	-0.92463	9.35646	0.00000	0.28652	8.6302
SF	25	8.69037	2.45755	23.42053	1.26071	0.44804	3.66545	-0.92463	9.35646	0.00000	0.28652	8.6302
LO	26	8.08864	2.35630	22.57928	1.21277	0.45041	3.90452	÷0.98789	9.65676	0.00000	0.29178	8.7552
В	27	1.93756	0.75466	11.63714	0.71467	0.53365	9.47962	-1.70358	15.04677	0.00000	0.34510	10.7552
L1	28	1.61086	0.55214	10.78362	0.68461	0.55624	10.35714	-1.80650	15.72779	0.00000	0.34911	11.0052
QDH.		1.51455	0.12518	10.52963	0.67750	0.57097	10.56796	0.35307	15.88705	0.00000	0.35129	11.1488
QDH	30	1.53751	-0.28669	10.65280	0.69066	0.58604	10.15836	2.47088	15.57612	0.00000	0.35348	11.2924
	31	1.63936	-0.39227	11.01042	0.71509	0.60110	9.43283	2.36596	15.00958	0.00000	0.35592	11.4424
SD	32	1.63936	-0.39227	11.01042	0.71509	0.60110	9.43283	2.36596	15.00958	0.00000	0.35592	11.4424
L6	33	2.20759	-0.74419	12.59775	0.79652	0.64343	7.24173	2.01624	13.15130	0.00000	0.36555	11.9424
B1	34	4.99156	-1.58535	18.36520	1.08520	0.70205	3.29184	1.23464	8.86680	0.00000	0.40507	13.1424
L6	35	6.75288	-1.93728	21.27762	1.24533	0.70203	2.24891	0.85122	7.32881	0.00000	0.43449	13.6424
L5	3 <i>5</i>	7.34990	-2.04286	22.16961	1.29336	0.71916	2.01079	0.73619	6.92997	0.00000	0.44573	13.7924
			0.05306	22.10901	1.31277	0.72219	1.89268	0.73619	6.72335	0.00000	0.45753	13.9360
QFH	37	7.63958	2.14045	22.06676	1.27885	0.72522	1.95325	-0.52507	6.83010	0.00000	0.45753	14.0796
QFH	38	7.32024										
L5	39	6.69526	2.02608	21.06890	1.21586	0.72863	2.12547	-0.62304	7.12484	0.00000	0.48124	14.2296 14.2296
SF	40	6.69526	2.02608	21.06890	1.21586	0.72863		-0.62304	7.12484	0.00000	0.48124	
L6	41	4.85980	1.64484	17.80640	1.00590	0.74260	2.91179	-0.94960	8.33926	0.00000	0.51344	14.7296
B1	42	2.01737	0.73362	11.24234	0.59810	0.80493	6.03158	-1.61809	12.00227	0.00000	0.55966	15.9296
L6	43	1.47437	0.35238	9.41908	0.46684	0.85174		-1.91803	13.64851	0.00000	0.57128	16.4296
L5	44	1.38581	0.23801	9.02955	0.42746	0.86847		-2.00801	14.15439	0.00000	0.57423	16.5796
QDH	45	1.37375	-0.15321	8.87583	0.39597	0.88515	8./1813	-0.26422	14.42977	0.00000	0.57689	16.7232

MAGNET	J	BETAX	ALFAX	BSCX(MM)	ETAX	DNUEX	BETAY	ALFAY	BSCY (MM)	ETAY	DNUEY	TOT-L
	<del></del>											
					0.37633	0.90131	8.53732	1.51082	14.27935	0.00000	0.57952	16.8668
QDH	46	1.47557	-0.56290	9.07584	0.32780	0.94544	7.12263	1.31857	13.04271	0.00000	0.58974	17.3668
L6	47	2.26158	-1.00912	10.81886	0.32780	0.97390	5.90018	1.12632	11.87081	0.00000	0.60202	17.8668
L6	48	3.49381	-1.45534	13.16945		1.00968	3.70094	0.69632	9.40164	0.00000	0.64336	19.0668
В2	49	8.26067	-2.52431	19.97158	0.22578	1.01245	3.50107	0.63614	9.14425	0.00000	0.64999	19.2168
L5	50	9.03804	-2.65817	20.88158	0.22695	1.01498	3.31925	0.57596	8.90365	0.00000	0.65700	19.3668
L5	51	9.85557	-2.79204	21.79761	0.22811	1.01430	3.15549	0.51578	8.68123	0.00000	0.66438	19.5168
L5	52	10.71326	-2.92591	22.71893	0.22927	1.01738	3.14206	-0.42100	8.66274	0.00000	0.67169	19.6604
QFH	53	11.11832	0.14361	23.13789	0.22572	1.01938	3.40394	~1.42735	9.01651	0.00000	0.67872	19.8040
QFH	54	10.63299	3.19004	22.62104	0.21300	1.02732	4.51239	-1.73965	10.38128	0.00000	0.69296	20.1540
LA	55	8.52873	2.82215	20.24472	0.17117	1.02/32	6.47511	-2.18580	12.43573	0.00000	0.70770	20.6540
L6	56	5.96935	2.29660	16.91680	0.11141	1.03548	12.90626	-3.14408	17.55690	0.00000	0.72865	21.8540
B2	57	1.97563	1.03759	9.71855	0.03103	1.10827	13.86847	-3.27060	18.19960	0.00000	0.73044	22.0040
L5	58	1.68801	0.87992	8.98333	0.02883	1.12357	14.86862	-3.27000	18.84443	0.00000	0.73210	22.1540
L5	59	1.44768	0.72226	8.31928	0.02662		15.40268	-0.28488	19.17988	0.00000	0.73360	22.2976
QDH	60	1.30164	0.30485	7.88841	0.02490	1.14033		2.86103	18.94580	0.00000	0.73510	22.4412
QDH	61	1.26907	-0.07579	7.78892	0.02392	1.15824	15.02902 3.36350	1.02748	8.96280	0.00000	0.80442	25.4412
L2B	62	8.85639	-2.45331	20.56820	0.01104	1.33460						
QFH	63	9.20200	0.07931	20.96564	0.01020	1.33711	3.21207	0.04135	8.75871	0.00000	0.81143	25.5848
QFH	64	8.81206	2.59918	20.51657	0.00895	1.33963	3.33910	-0.93794	8.93022	0.00000	0.81845	25.7284
L2A	65	1.93585	0.83892		-0.01114	1.42009	9.34266	-2.06384	14.93767		0.87674	27.7284
QDH	66	1.76679	0.35007	9.18735	-0.01276	1.43252	9.65899	-0.11710	15.18845	0.00000	0.87913	27.8720
QDH	67	1.73075	-0.09657	9.09342	-0.01476	1.44567	9.40859	1.84347	14.99029	0.00000	0.88152	28.0156
L5	68	1.77284	-0.18404	9.20364	-0.01707	1.45931	8.86607	1.77335	14.55168	0.00000	0.88413	28.1656
L5	69	1.84117	-0.27152	9.37967	-0.01937	1.47254	8.34458	1.70323	14.11724	0.00000	0.88691	28.3156
B2	70	3.32833	-0.97005	12.61093	0.02498	1.55293	4.86111	1.18373	10.77495	0.00000	0.91707	29.5156
1.6	71	4.44417	-1.26163	14.58393	0.06970	1.57368	3.80086	0.93675	9.52771	0.00000	0.93563	30.0156
L6	72	5.85159	-1.55322	16.75143	0.11442	1.58931	2.98760	0.68977	8.44713	0.00000	0.95933	30.5156
DR	73	5.85159	-1.55322	16.75143	0.11442	1.58931	2.98760	0.68977	8.44713	0.00000	0.95933	30.5156
QFH	74	6.06223	0.10637	17.05524	0.12485	1.59312	2.91784	-0.19735	8.34792	0.00000	0.96713	30.6592
QFH	75	5.79214	1.74885	16.67617	0.13021	1.59695	3.10407	-1.11709	8.61020	0.00000	0.97478	30.8028
L5	76	5.28325	1.64374	15.93267	0.13307	1.60126	3.45549	~1.22572	9.08453	0.00000	0.98207	30.9528
<b>L</b> 5	7 <b>7</b>	4.80590	1.53864	15.20239	0.13593	1.60600	3.83950	-1.33435	9.57602	0.00000	0.98863	31.1028
В2	78	2.12520	0.69936	10.27777	0.22151	1.66715	8.02514	-2.13455	13.84439	0.00000	1.02331	32.3028
L6	79	1.60102	0.34901	9.12243	0.28344	1.71084	10.33278	-2.48072	15.70927	0.00000	1.03205	32.8028
L6	80	1.42718	-0.00133	8.84214	0.34536	1.76449	12.98659	-2.82690	17.61145	0.00000	1.03892	33.3028
QDH	81	1.48519	-0.40670	9.07388	0.36841	1.78029	13.41268	-0.11067	17.89803	0.00000	1.04064	33.4464
QDH	82	1.66546	-0.86113	9.65146	0.40248	1.79492	13.04890	2.61865	17.65365	0.00000	1.04236	33.5900
L5	83	1.94733	-1.01798	10.46785	0.44415	1.80819	12.27686	2.52833	17.12345	0.00000	1.04425	. 33.7400
L6	84	3.22673	-1.54082	13.51536	0.58305	1.84015	9.89907	2.22725	15.37605	0.00000	1.05147	34.2400
B1	85	8.40294	-2.79048	22.06479	1.00911	1.87700	5.24359	1.60435	11.19082	0.00000	1.07810	35.4400
LG	86	11.45484	-3.31332	25.95134	1.22671	1.88512	3.80963	1.26356	9.53870	0.00000	1.09595	35.9400
L5	87	12.47237	-3.47017	27.12706	1.29199	1.88712	3.44590	1.16132	9.07191	0.00000	1.10254	36.0900
QFH	88	12.96191	0.10756	27.69731	1.32782	1.88890	3.25985	0.15184	8.82361	0.00000	1.10940	36.2336
QFH	89	12.41225	3.66799	27.14547	1.30972	1.89069	3.35629	-0.83255	8.95318	0.00000	1.11636	36.3772
L5	90	11.33806	3.49331	25.98871	1.26270	1.89270	3.61740	-0.90822	9.29493	0.00000	1.12322	36.5272
SF	91	11.33806	3.49331	25.98871	1.26270	1.89270	3.61740	-0.90822	9.29493	0.00000	1.12322	36.5272
L6	92	8.13587	2.91106	22.16514	1.10596	1.90099	4.65174	-1.16045	10.54036	0.00000	1.14266	37.0272
B1	93	2.84117	1.51939	13.88884	0.82540	1.94097	8.01452	-1.60722	13.83523	0.00000	1.17415	38.2272
L6		1.61290	0.93714	11.13231	0.74737	1.97849	9.73351	-1.83076	15.24693	0.00000	1.18316	38.7272
L5	95	1.35796	0.76246	10.43357	0.72396	1.99465	10.29280	-1.89783	15.67886	0.00000	1.18555	38.8772
ODH	96	1.19980	0.34989	9.99477	0.71228	2.01269	10.53195		15.85996	0.00000	1.18773	39.0208
QUH	90	1.13300	0.34303	2.22311	0.71220							

1.15296 1.17163 1.21742 5.54843 6.57918 6.93870 6.74662 6.35026 6.35026 5.97067 2.19739 2.01916	-0.02047 -0.12894 -0.12894 -0.23740 -1.95304 -2.16996 -0.29958 1.61898 1.55189 1.55189 0.42356	9.94069 10.09359 10.09359 10.30979 20.15822 21.87462 22.41949 22.06021 21.35822 21.35822	0.72191 0.73960 0.73960 0.75730 1.29756 1.39878 1.42812 1.39945 1.34940	2.03226 2.04941 2.04941 2.06610 2.20369 2.21028 2.21364 2.21696 2.22000	10.15259 9.57113 9.57113 9.00999 2.48811 2.06333 1.94185 2.00259	2.36645 2.28518 2.28518 2.20392 0.94462 0.75449 0.10292	15.57170 15.11922 15.11922 14.66932 7.70872 7.01992 6.81014	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	1.18993 1.19195 1.19195 1.19409 1.26350 1.28110 1.29260	39.1644 39.2894 39.2894 39.4144 41.4144 41.6644 41.8080
1.17163 1.17163 1.21742 5.54843 6.57918 6.93870 6.74662 6.35026 6.35026 5.97067 2.19739	-0.12894 -0.12894 -0.23740 -1.95304 -2.16996 -0.29958 1.61898 1.55189 1.55189	10.09359 10.09359 10.30979 20.15822 21.87462 22.41949 22.06021 21.35822 21.35822	0.73960 0.73960 0.75730 1.29756 1.39878 1.42812 1.39945 1.34940	2.04941 2.04941 2.06610 2.20369 2.21028 2.21364 2.21696	9.57113 9.57113 9.00999 2.48811 2.06333 1.94185	2.28518 2.28518 2.20392 0.94462 0.75449 0.10292	15.11922 15.11922 14.66932 7.70872 7.01992	0.00000 0.00000 0.00000 0.00000	1.19195 1.19195 1.19409 1.26350 1.28110	39.2894 39.2894 39.4144 41.4144 41.6644
1.17163 1.21742 5.54843 6.57918 6.93870 6.74662 6.35026 5.97067 2.19739	-0.12894 -0.23740 -1.95304 -2.16996 -0.29958 1.61898 1.55189 1.55189	10.09359 10.30979 20.15822 21.87462 22.41949 22.06021 21.35822 21.35822	0.73960 0.75730 1.29756 1.39878 1.42812 1.39945 1.34940	2.04941 2.06610 2.20369 2.21028 2.21364 2.21696	9.57113 9.00999 2.48811 2.06333 1.94185	2.28518 2.20392 0.94462 0.75449 0.10292	15.11922 14.66932 7.70872 7.01992	0.00000 0.00000 0.00000 0.00000	1.19195 1.19409 1.26350 1.28110	39.2894 39.4144 41.4144 41.6644
1.21742 5.54843 6.57918 6.93870 6.74662 6.35026 6.35026 5.97067 2.19739	-0.23740 -1.95304 -2.16996 -0.29958 1.61898 1.55189 1.55189	10.30979 20.15822 21.87462 22.41949 22.06021 21.35822 21.35822	0.75730 1.29756 1.39878 1.42812 1.39945 1.34940	2.06610 2.20369 2.21028 2.21364 2.21696	9.00999 2.48811 2.06333 1.94185	2.20392 0.94462 0.75449 0.10292	14.66932 7.70872 7.01992	0.00000 0.00000 0.00000	1.19409 1.26350 1.28110	39.4144 41.4144 41.6644
5.54843 6.57918 6.93870 6.74662 6.35026 6.35026 5.97067 2.19739	-1.95304 -2.16996 -0.29958 1.61898 1.55189 1.55189	20.15822 21.87462 22.41949 22.06021 21.35822 21.35822	1.29756 1.39878 1.42812 1.39945 1.34940	2.20369 2.21028 2.21364 2.21696	2.48811 2.06333 1.94185	0.94462 0.75449 0.10292	7.70872 7.01992	0.00000	1.26350 1.28110	41.4144 41.6644
6.57918 6.93870 6.74662 6.35026 6.35026 5.97067 2.19739	-2.16996 -0.29958 1.61898 1.55189 1.55189 1.48480	21.87462 22.41949 22.06021 21.35822 21.35822	1.39878 1.42812 1.39945 1.34940	2.21028 2.21364 2.21696	2.06333 1.94185	0.75449 0.10292	7.01992	0.00000	1.28110	41.6644
6.93870 6.74662 6.35026 6.35026 5.97067 2.19739	-0.29958 1.61898 1.55189 1.55189 1.48480	22.41949 22.06021 21.35822 21.35822	1.42812 1.39945 1.34940	2.21364 2.21696	1.94185	0.10292				
6.74662 6.35026 6.35026 5.97067 2.19739	1.61898 1.55189 1.55189 1.48480	22.06021 21.35822 21.35822	1.39945 1.34940	2.21696			0.01014			
6.35026 6.35026 5.97067 2.19739	1.55189 1.55189 1.48480	21.35822 21.35822	1.34940			-0.53164	6.91583	0.00000	1.30428	41.9516
6.35026 5.97067 2.19739	1.55189 1.48480	21.35822		2 22000	2.14551	-0.61170	7.15835	0.00000	1.31388	41.9516
5.97067 2.19739	1.48480		1.34940	2.22000	2.14551	-0.61170	7.15835	0.00000	1.31388	42.0766
2.19739		20.66194	1.29936	2.22323	2.30844	-0.69176	7.42518	0.00000	1.32283	
		12.42922	0.76811	2.31513	7.38567	-1.75936	13.28136	0.00000	1.40330	42.2016
	0.28938	11.90180	0.73385	2.333406	8.30000	-1.75936	14.07948	0.00000	1.40330	44.2016
2.00645	-0.19998	11.83084	0.72506	2.34548	8.60029	-0.17235	14.07948	0.00000	1.41108	44.4516
2.13633	-0.71347	12.15557	0.73797	2.35659	8.39704	1.57366	14.33192	0.00000	1.41108	44.5952
2.32573	-0.80177	12.62582	0.75871	2.36552	8.01009			0.00000		44.7388
2.32573	-0.80177	12.62582	0.75871	2.36552			13.83141	0.00000	1.41618	44.8638
2.53721	-0.89006	13.12217	0.77946	2.36332	8.01009	1.52191	13.83141		1.41618	44.8638
8.81846	-2.28672		1.36790		7.63608	1.47016	13.50464	0.00000	1.41872	44.9888
10.00597	-2.26672	24.04769		2.44234	3.09684	0.72124	8.60017	0.00000	1.48618	46.9888
		25.70264	1.47522	2.44658	2.76691	0.59852	8.12914	0.00000	1.49979	47.2388
10.30641	0.39965	26.13045	1.50648	2.44882	2.71488	-0.23133	8.05236	0.00000	1.50819	47.3824
										47.5260
										47.6510
										47.6510
							-			47.7760
										49.7760
						-2.62659	17.32045		1.58376	50.0260
0.93035	0.00000 *****	9.57792	0.75065	2.62273 *******	12.94194	0.00000	17.58115	0.00000	1.58554	50.1696
TUNES		NUEX =	5.24546	NUEY =	3.17109		DP/P :	= 0.00	000E+00	
	9.78260 9.00095 9.00095 8.25517 1.22990 0.98078 0.93035	9.78260 3.19835 9.00095 3.05486 9.00095 3.05486 8.25517 2.91137 1.22990 0.64171 0.98078 0.35474 0.93035 0.00000	9.78260 3.19835 25.50068 9.00095 3.05486 24.49819 9.00095 3.05486 24.49819 8.25517 2.91137 23.49924 1.22990 0.64171 10.61204 0.98078 0.35474 9.77610 0.93035 0.00000 9.57792	9.78260     3.19835     25.50068     1.47655       9.00095     3.05486     24.49819     1.42403       9.00095     3.05486     24.49819     1.42403       8.25517     2.91137     23.49924     1.37151       1.22990     0.64171     10.61204     0.80109       0.98078     0.35474     9.77610     0.76188       0.93035     0.00000     9.57792     0.75065	9.78260     3.19835     25.50068     1.47655     2.45108       9.00095     3.05486     24.49819     1.42403     2.45320       9.00095     3.05486     24.49819     1.42403     2.45320       8.25517     2.91137     23.49924     1.37151     2.45551       1.22990     0.64171     10.61204     0.80109     2.56205       0.98078     0.35474     9.77610     0.76188     2.59859       0.93035     0.00000     9.57792     0.75065     2.62273	9.78260     3.19835     25.50068     1.47655     2.45108     2.90342       9.00095     3.05486     24.49819     1.42403     2.45320     3.19016       9.00095     3.05486     24.49819     1.42403     2.45320     3.19016       8.25517     2.91137     23.49924     1.37151     2.45551     3.50067       1.22990     0.64171     10.61204     0.80109     2.56205     11.28697       0.98078     0.35474     9.77610     0.76188     2.59859     12.56096       0.93035     0.00000     9.57792     0.75065     2.62273     12.94194	9.78260       3.19835       25.50068       1.47655       2.45108       2.90342       -1.09941         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450         8.25517       2.91137       23.49924       1.37151       2.45551       3.50067       -1.28959         1.22990       0.64171       10.61204       0.80109       2.56205       11.28697       -2.46938         0.98078       0.35474       9.77610       0.76188       2.59859       12.56096       -2.62659         0.93035       0.00000       9.57792       0.75065       2.62273       12.94194       0.00000	9.78260       3.19835       25.50068       1.47655       2.45108       2.90342       -1.09941       8.32727         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879         8.25517       2.91137       23.49924       1.37151       2.45551       3.50067       -1.28959       9.14373         1.22990       0.64171       10.61204       0.80109       2.56205       11.28697       -2.46938       16.41861         0.98078       0.35474       9.77610       0.76188       2.59859       12.56096       -2.62659       17.32045         0.93035       0.00000       9.57792       0.75065       2.62273       12.94194       0.00000       17.58115	9.78260       3.19835       25.50068       1.47655       2.45108       2.90342       -1.09941       8.32727       0.00000         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879       0.00000         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879       0.00000         8.25517       2.91137       23.49924       1.37151       2.45551       3.50067       -1.28959       9.14373       0.00000         1.22990       0.64171       10.61204       0.80109       2.56205       11.28697       -2.46938       16.41861       0.00000         0.98078       0.35474       9.77610       0.76188       2.59859       12.56096       -2.62659       17.32045       0.00000         0.93035       0.00000       9.57792       0.75065       2.62273       12.94194       0.00000       17.58115       0.00000	9.78260       3.19835       25.50068       1.47655       2.45108       2.90342       -1.09941       8.32727       0.00000       1.51639         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879       0.00000       1.52293         9.00095       3.05486       24.49819       1.42403       2.45320       3.19016       -1.19450       8.72879       0.00000       1.52293         8.25517       2.91137       23.49924       1.37151       2.45551       3.50067       -1.28959       9.14373       0.00000       1.52888         1.22990       0.64171       10.61204       0.80109       2.56205       11.28697       -2.46938       16.41861       0.00000       1.58042         0.98078       0.35474       9.77610       0.76188       2.59859       12.56096       -2.62659       17.32045       0.00000       1.58376         0.93035       0.00000       9.57792       0.75065       2.62273       12.94194       0.00000       17.58115       0.00000       1.58554

-REAL-TIME SO FAR :

## 3 GEV BOOSTER

## **** MULTIPOLE-STRUCTURE IN ONE HALF-SUPERPERIOD ****

		J	MULTIPOLE	<betx(m)></betx(m)>	<bety(m)></bety(m)>	<phix></phix>	<phiy></phiy>	<etax(m)></etax(m)>	SM(1/M**2)
1.	MULTIPOLE AT: J =	4	SD	1.792	6.590	0.026	0.006	0.823	1.43297
2.	MULTIPOLE AT: J =	11	SF	7.492	2.729	0.139	0.139	1.477	-0.74592
3.	MULTIPOLE AT: J =	18	SD	1.429	12.375	0.329	0.209	0.733	1.43297
4.	MULTIPOLE AT: J =	25	SF	8.690	3.665	0.448	0.287	1.261	-0.74592
5.	MULTIPOLE AT: J =	32	SD	1.639	9.433	0.601	0.356	0.715	1.43297
6.	MULTIPOLE AT: J ≃	40	SF	6.695	2.125	0.729	0.481	1,216	-0.74592
7.	MULTIPOLE AT: J =	91	SF	11.338	3.617	1.893	1.123	1.263	-0.74592
8.	MULTIPOLE AT: J =	99	SD	1.172	9.571	2.049	1.192	0.740	1.43297
9.	MULTIPOLE AT: J = ·	106	SF	6.350	2.146	2.220	1.314	1.349	-0.74592
10.	MULTIPOLE AT: J =	113	SD	2.326	8.010	2.366	1.416	0.759	1.43297
11.	MULTIPOLE AT: J =	120	S <b>F</b>	9.001	3.190	2.453	1.523	1.424	-0.74592

TOTAL NUMBER OF MULTIPOLES IN STORAGE RING: 22

CHROMATICITY IN X	=	WITHOUT SEXTUPOLES -6.376	٠	WITH SPEC.SEXTUPOLES -6.376	٠	WITH ALL SEXTUPOLES 0.000	*	CHROMATICITY WANTED 0.000	
CHROMATICITY IN Y	=	-5.086	*	-5.086	*.	0.000	*	0.000	

## TOTAL CORRECTED CHROMATICITY

POSITIVE SEXTUPOLES: DCHX = -1.44267 DCHY = 7.84462 NEGATIVE SEXTUPOLES: DCHX = 7.81890 DCHY = -2.75910

-REAL-TIME SO FAR =

A-HARM

TUNE SHIFT WITH BETATRON AMPLITUDE XO: DNUEX = 2.95851E+01 * XO**2/BETAXO

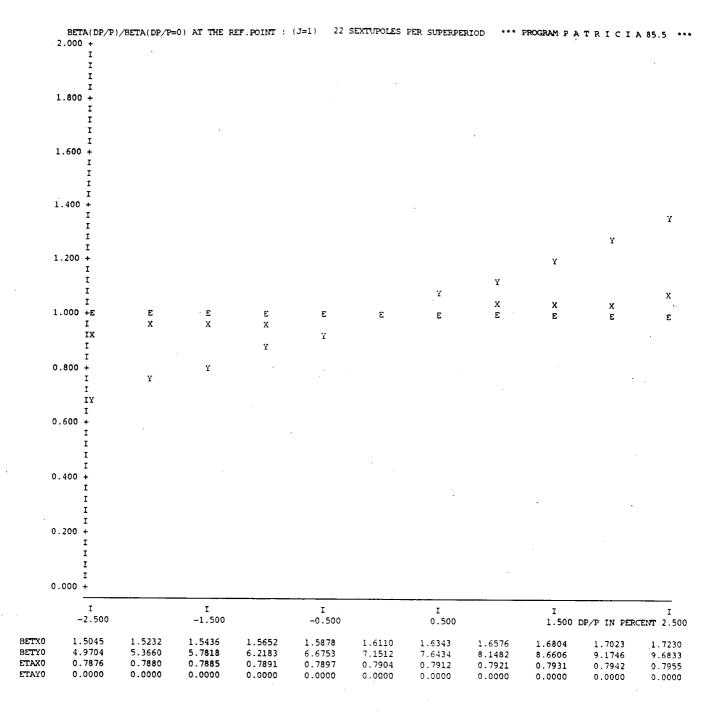
DAN(JSEX)

HARM

**JSEX** 

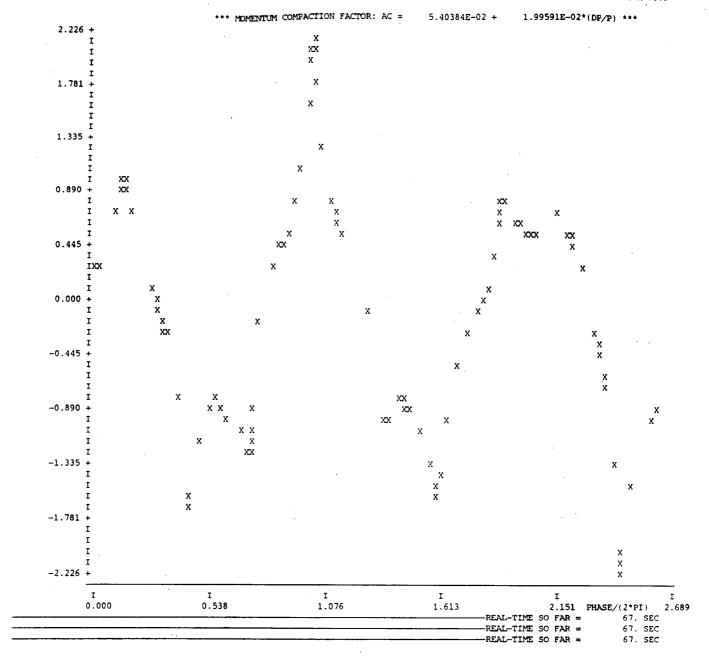
NUE-TERM 3NUE-TERM

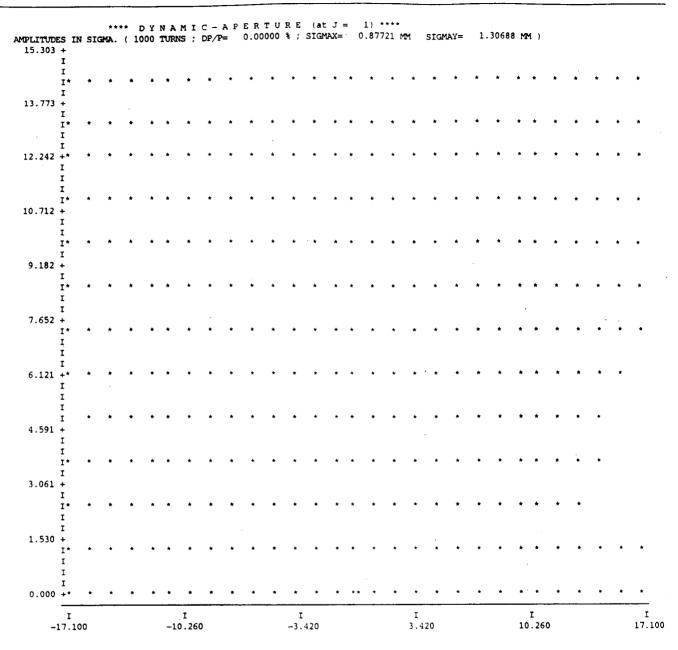
18. SEC

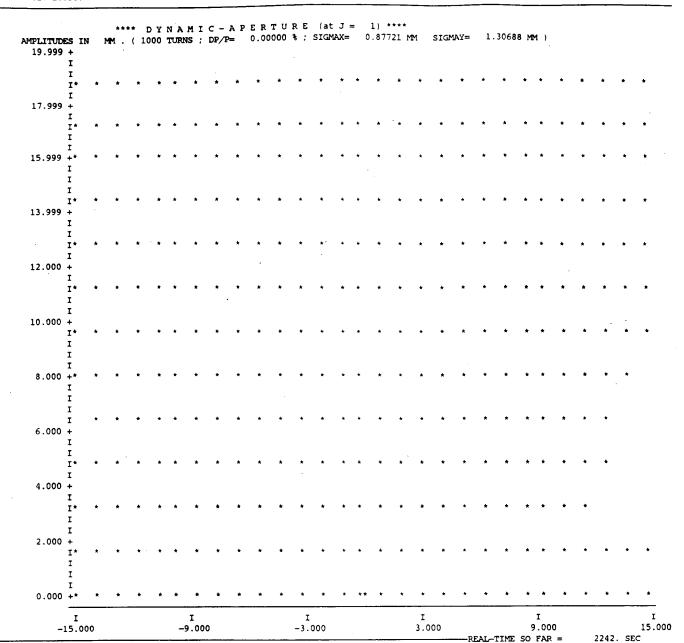

JSEX DAN(JSEX) A-HARM

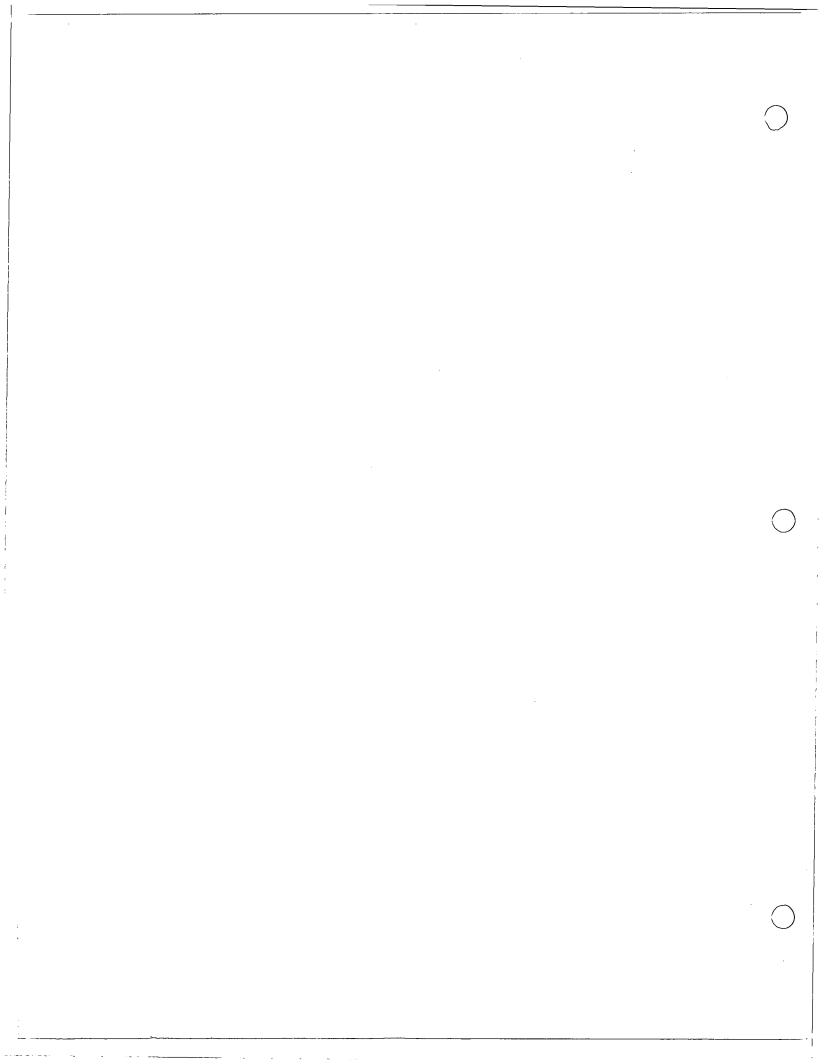
--- REAL-TIME SO FAR =

0 1 3 5 7	91 120 91 25 91	-57. 39. -49. 34.	-184. 21. -16.	-17. 0.	0.	**						
3 5	91 25 91	-49.			0.	**	•					
5	25 91		-16.					120	-37.	-63.	-4.	0.
	91	34.		0.	0.	**		91	53.	56.	-7.	0.
7			10.	-1.	0.	* *	. 6		38.	-15.	1.	0.
,		56.	42.	2.	0.	**	8	-	-43.	-33.	1.	0.
9	120	-10.	-13.	0.	0.	**	10	91	44.	59.	1.	-1.
11	91	-56.	-56.	1.	-1.	* *	1.7	25	-38.	17.	0.	0.
13	120	-35.	0	0.	0.	* *	14	91	-54.	-55.	0.	-1.
15	91	49.	45.	0.	-2.	**	16	120	40.	93.	1.	
17	120	-38.	7.	0.	0.	**	18	91	57.	229.	4.	
19	91	-35.	-16.	0.	0.	**	20	11	30.	87.	1.	
21	91	50.	0.	0.	0.	* *	22	91	-53.	-58.	0.	
23	25	-37.	-11.	0.	0.	* *	24	25	-36.	10.	0.	0.
25	91	-56.	-2.	0.	0.	* *	26	91	42.	29.	0.	
27	120	28.	81.	0.	0.	* *	28	91	-45.	-79.	0.	
29	91	56.	116.	0.	1.	**	. 30	120	-40.	-52.	0.	0.
31	120	40.	35.	0.	0.	* *	3 2	91	55.	42.	0.	o.
33	91	-48.	-30.	0.	0.	* *	34	120	-33.	-54.	0.	0.
35	91	39.	-13.	0.	0.	* *	3€		-57.	-158.	0.	1.
37	91	34.	-14.	0.	0.	* *	38	11	-31.	-35.	0.	0.
39	91	-51.	~35.	0.	0.	**	40	91	52.	70.	0.	o.
41	25	38.	-10.	0.	0.	* *	42	25	33.	-7.	0.	0.
43	91	57.	-10.	0.	0.	* *	44	91	-41.	-11.	0.	ō.
45	120	-39.	-97.	0.	0.	* *	46	91	46.	97.	0.	ŏ.
47	91	-55.	-125.	0.	0.	* *	48		38.	51.	o.	
49	120	-35.	-13.	0.	0.	**	50		-55.	-54.	0.	
							30	7.	20.	51.	٠.	٠.


NUE-TERM 3NUE-TERM HARM


(IT: # OF	ITERATIONS USED	TO GET A PERI	ODIC ETA-FUN	CTION WITH SEXTU	POLES)	KW(5)=1
BETAX*	BETAY*	ETAX*	ETAY*	DETA/ETAX	IT	
1.61095	7.15119	0.79040	0.00000	0.000E+00	0	
1.58780	6.67527	0.78970	0.00000	0.979E-09	2	
1.56522	6.21831	0.78908	0.00000	0.628E-08	2	
1.54358	、5.78176	0.78852	0.00000	0.170E-07	2	
1.52322	5.36601	0.78801	0.00000	0.320E-07	2	
1.50453	4.97043	0.78755	0.00000	0.494E-07	2	
1.63433	7.64344	0.79120	0.00000	-0.733E-09	1	
1.65759	8.14823	0.79209	0.00000	-0.208E-08	1	
1.68037	8.66063	0.79310	0.00000	-0.102E-07	1	
1.70231	9.17461	0.79423	0.00000	-0.357E-07	1	
1.72304	9.68328	0.79549	0.00000	0.496E-11	1	
	BETAX*  1.61095 1.58780 1.56522 1.54358 1.52322 1.50453 1.63433 1.65759 1.68037 1.70231	BETAX* BETAY*  1.61095 7.15119 1.58780 6.67527 1.56522 6.21831 1.54358 5.78176 1.52322 5.36601 1.50453 4.97043 1.63433 7.64344 1.65759 8.14823 1.68037 8.66063 1.70231 9.17461	BETAX* BETAY* ETAX*  1.61095 7.15119 0.79040 1.58780 6.67527 0.78970 1.56522 6.21831 0.78908 1.54358 5.78176 0.78852 1.52322 5.36601 0.78801 1.50453 4.97043 0.78755 1.63433 7.64344 0.79120 1.65759 8.14823 0.79209 1.68037 8.66063 0.79310 1.70231 9.17461 0.79423	BETAX* BETAY* ETAX* ETAX*  1.61095 7.15119 0.79040 0.00000  1.58780 6.67527 0.78970 0.00000  1.56522 6.21831 0.78908 0.00000  1.54358 5.78176 0.78852 0.00000  1.52322 5.36601 0.78801 0.00000  1.50453 4.97043 0.78755 0.00000  1.65433 7.64344 0.79120 0.00000  1.65759 8.14823 0.79209 0.00000  1.68037 8.66063 0.79310 0.00000  1.70231 9.17461 0.79423 0.00000	BETAX* BETAX* ETAX* ETAY* DETA/ETAX  1.61095 7.15119 0.79040 0.00000 0.000E+00 1.58780 6.67527 0.78970 0.00000 0.979E-09 1.56522 6.21831 0.78908 0.00000 0.628E-08 1.54358 5.78176 0.78852 0.00000 0.170E-07 1.52322 5.36601 0.78801 0.00000 0.320E-07 1.50453 4.97043 0.78755 0.00000 0.494E-07 1.63433 7.64344 0.79120 0.00000 -0.733E-09 1.65759 8.14823 0.79209 0.00000 -0.208E-08 1.68037 8.66063 0.79310 0.00000 -0.102E-07 1.70231 9.17461 0.79423 0.00000 -0.357E-07	BETAX*         BETAX*         ETAX*         ETAY*         DETA/ETAX         IT           1.61095         7.15119         0.79040         0.00000         0.0000E+00         0           1.58780         6.67527         0.78970         0.00000         0.979E-09         2           1.56522         6.21831         0.78908         0.00000         0.628E-08         2           1.54358         5.78176         0.78852         0.00000         0.170E-07         2           1.52322         5.36601         0.78801         0.00000         0.320E-07         2           1.50453         4.97043         0.78755         0.00000         0.494E-07         2           1.63433         7.64344         0.79120         0.00000         -0.733E-09         1           1.65759         8.14823         0.79209         0.00000         -0.208E-08         1           1.68037         8.66063         0.79310         0.00000         -0.102E-07         1           1.70231         9.17461         0.79423         0.00000         -0.357E-07         1





	PART OF TH	HE TUNE VS. !	MOMENTUM	22 PIO	LTIPOLES P	ER SUPERPERI	OD *** PR	DORAM P A	TRICIA	85.5
1.000 + I										٠
I I										+
I										
0.900 + I				•		•				
Ī				`						•
ī										•
I 0.800 +										
I I									•	
ĭ										
I 0.700 +										
I										
I I										
I										
0.600 + I										
Ī										
I							*			
0.500 +										
I ·										
I I.										
I										
0.400 + I										
I										
I I										
0.300 +										
I I										
ix	х	х	Х	Х	X	Х	х	x	х	х
I 0.200 +						•				
I			Y	¥	Y	Y	Y	Y	Y	Y
IY	. Y	Y				*				
I.										
0.100 +										
I I		'								
I							,			
0.000 +										
I -2.500		I -1.500		I -0.500 ·		. 0.500		I 1.500	DP/P IN PER	ICENT 2.
0.2456 0.1662	0.2456 0.1684	0.2456 0.1698	0.2456 0.1706	0.2456 0.1710	0.2455 0.1711	0.2453 0.1710	0.2450 0.1708	0.2446 0.1707	0.2441 0.1707	0.24

*** PROGRAM PATRICIA 85.5







