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Abstract

A good method for solving the nonlinear Vlasov equa-
tion is the semi-Lagrangian algorithm, in which the phase
space density is represented by its values on a fixed Carte-
sian grid with interpolation to off-grid points. At each
time step, orbits are followed backward from grid points.
Since this method is expensive with phase space dimension
D > 2, we seek a more efficient discretization of the den-
sity. Taking a cue from the theory of numerical quadrature
in high dimensions, we explore the idea of replacing the
grid by scattered data sites from a low-discrepancy (quasi-
random) sequence. We hope to see a reduction in the re-
quired number of sites, especially for D > 2. In our first
implementation we follow forward orbits rather than back-
ward, and work only with D = 2. We are able to reduce
the number of sites by a factor of 8, at least for a limited
time of integration. A much bigger reduction is expected
in higher dimensions.

INTRODUCTION

Direct solution of the nonlinear Vlasov equation is a
valuable alternative to macroparticle simulations of coher-
ent motion, offering lower numerical noise and a rational
control of errors. Until now it has been applied most of-
ten in problems with phase space dimension D = 2, be-
cause of heavy computational requirements with higherD.
The time consuming step is interpolation of the phase space
density to off-grid points. In seeking a more efficient repre-
sentation of the density we look for inspiration in the theory
and practice of numerical quadrature in high dimensions.
Conventional Monte-Carlo integration, based on pseudo-
random sequences, has a probabilistic error bound that is
O(n−1/2) for n samples, which is more favorable in its
n-dependence than error bounds for grid-based methods
in high dimensions (although the latter are genuine, deter-
ministic bounds)[1]. For instance, the trapezoidal rule in
s-dimensions with a total of n nodes has O(n−2/s) con-
vergence for a C2 integrand, thus poorer for s > 4. More-
over, the Quasi - Monte Carlo method, based on determin-
istic “quasi-random” sequences, can have a genuine error
bound that is O(N−1(lnN)s−1), thus better than the trape-
zoidal rule for s > 2 [1]. Of course, many grid-based rules
have faster convergence than the trapezoidal, but the dete-
rioration with s (the so-called “curse of dimensionality”)
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is similar. Note that the dependence on s is very weak
for Quasi - Monte Carlo, effectively killing the curse of
dimensionality. Quasi-random sequences are also called
low-discrepancy sequences (LDS) since they are designed
to have minimal deviation from an ideal uniform distribu-
tion.

Solution of the Vlasov equation is certainly different
from numerical quadrature, but it is reasonable to hope that
the efficiency in use of data on a LDS will carry over to the
Vlasov problem. This idea grew out of valuable conversa-
tions with G. Fasshauer. Such an approach would hardly be
possible without a method for smooth interpolation of data
at scattered sites, or possibly some kind of smooth fitting
without strict interpolation. Opportunely, interpolation and
fitting of scattered data has been an active area of numeri-
cal analysis in recent years [2, 3, 4, 5]. Intensively studied
methods make use of radial basis functions, moving least
squares, Shepard interpolation, and other techniques. In
contrast to situations contemplated in text books, we need
a huge number of interpolations and integrations, requiring
close attention to efficiency and ruling out some suggested
methods. Ambitions somewhat similar to ours can be found
in the LDS literature [6], but a wedding of LDS and mesh-
less interpolation is usually lacking.

FORMULATION

Although we expect a bigger advantage of LDS in higher
dimensions we first study a Vlasov equation in 2D, for the
case of longitudinal motion in a storage ring; namely,

∂f

∂t
+ p

∂f

∂q
+ [−q + Fc(q, f(·, t)]∂f

∂p
= 0 , (1)

where f(z, t) is the phase space density, z = (q, p). Here
q = ζ/σz , p = (E − Eo)/σE , where ζ is the arc distance
from the reference particle (positive in front), E − Eo the
deviation of energy from nominal, and σz , σE the r.m.s.
bunch length and energy spread at low current. The force
on a particle consists of the r.f. force −q plus the collective
force given by a wake potential W as follows:

Fc(q, f(·, t)) = −Ic
∫
W (q − q′)f(q′, p, t)dpdq′ . (2)

Here Ic = e2N/(2πνsσE) is the normalized current, in
terms of synchrotron tune νs and bunch populationN . The
independent variable t is referred to as time, but is actually
ωs(time) in our convention.

We seek to integrate (1) as an initial value prob-
lem, with initial density being the equilibrium density
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fo(q, p) = exp(−p2/2)ρo(q)/
√

2π, where ρo is the so-
lution of Haı̈ssinski’s equation [7].

Equation (1) expresses invariance of f(z(t), t), where
z(t) is any particle orbit. An effective and stable integration
algorithm, the semi-Lagrangian method, can be derived di-
rectly from the condition of invariance, which for a time
step Δt is

f(M(z), t+ Δt) = f(z, t) , (3)

where M(z) is the evolution map for the time interval
[t, t + Δt]. In fuller notation, M(z) = φ(t + Δt, t, z, f)
where φ(t′, t, z, f) is the solution of the single particle
equations of motion at time t′ with initial value z at time
t. Now M(z) depends on the collective force which varies
in time, but for a sufficiently small time step the variation
can be ignored. This means that M and its inverse L are
represented as

M(z) ≈ φ(t+ Δt, t, z, f(t)) ,
M−1(z) = L(z) ≈ φ(t− Δt, t, z, f(t)) . (4)

Thinking of (4) as exact, and replacing z by L(z) in (3),
we have a scheme for updating f :

f(z, t+ Δt) = f(L(z), t) . (5)

In practice we have implemented (5) by representing
f(z, t) by its values f(zi, t) on a Cartesian grid {zi}, using
local polynomial interpolation (bi-quadratic or bi-cubic) to
find values at the off-grid points L(zi) [7].

We could as well apply (5) with a fixed set of scat-
tered sites {zi} if we had a way of interpolating the values
f(L(zi), t) so as to obtain an approximation to f(L(z), t)
at all z.

Given a method to interpolate scattered data, we need
not base our method on the backward conservation equa-
tion (5), since we could as well use the forward equation
(3). Then f(z, t + Δt) would be represented as an inter-
polation of the data f(M(zi), t + Δt) = f(zi, t). Now
the interpolation sites evolve in time and merely follow the
particle orbits that begin at the initial sites zi(0), and the
density at an evolved site zi(t) is equal to its initial value
f(zi(0), 0). The hazard of this proposal is that clustering of
sites may occur, so that the suitability of the evolved sites
as a basis for interpolation may deteriorate. If that diffi-
culty could be overcome the forward method would have
a potential advantage in a certain class of problems; for
instance, single-pass problems with energy chirp in which
the support of the density is narrow and difficult to treat in
a mesh-based backward algorithm.

Note that this forward scheme is rather similar to
a weighted macroparticle simulation, in which the i-th
macroparticle is assigned weight f(zi(0), 0)[8]. The dif-
ferences between such a simulation and our scheme have
to do with (A) the method of computing the charge den-
sity; and (B) the possibility of monitoring and controlling
error.

For point (A) we propose to use the interpolant to find
f(q, p, t) on a grid {qg

i , p
g
i } and then use a grid-based

quadrature rule to integrate over p. By contrast, macropar-
ticle schemes usually find a histogram of charge, by collect-
ing the charge in bins of q-space, then use a more or less
arbitrary recipe to smooth the histogram. This is without
doubt a faster procedure than what we suggest, but should
be compared in accuracy as well as speed. A macroparti-
cle scheme usually does not bother to construct the phase
space density, but could do so, again with arbitrariness in
the matter of smoothing.

For point (B) we note that in our schemes based on dis-
cretization of either (3) or (5) we can monitor interpola-
tion error at each time step. Suppose that f(z, t) is known.
Then we also know f(z, t+Δt) exactly, through (3). (Here
we ignore error in the map M due to the freezing of the
collective force.) For a useful algorithm we must, however,
replace the exact f(z, t + Δt) by an approximation based
on interpolation. The error of the approximation can be
computed directly on some suitable finite set {yi}. Writing
f̃(z, t+Δt) for the approximation, we have the local errors
εi and ηi for backward and forward methods, respectively,
as follows:

εi = |f̃(yi, t+ Δt) − f(L(yi), t)| ,
ηi = |f̃(M(yi), t+ Δt) − f(yi, t)| . (6)

The yi should have a fairly dense distribution, but be differ-
ent from the sites zi of the main algorithm. Similar consid-
erations of error were introduced by Iske and collaborators
[5].

APPLYING THE FORWARD SCHEME

Perhaps the simplest way of interpolating scattered data
is Shepard’s method [4, 2]. It is based on a partition of unity
formed from singular weight functionsw i(z) = ‖z−zi‖−p

with Euclidean norm ‖ ‖ and positive p, which we take to
be an even integer. The generating functions ψ i(z) satisfy

∑
i

ψi(z) = 1 , ψi(z) =
wi(z)∑
j wj(z)

, ψi(zj) = δij .

(7)
The Shepard interpolant of data

[
zi, f(zi), Df(zi),

· · · , D(n)f(zi)
]
, where D denotes differentiation, has the

form

s(z) =
∑

i

Pf (n)(z − zi)ψi(z) , (8)

where Pf (n)(z − zi) is the n-th degree Taylor polynomial
of f about z = zi. With n = 0 the interpolant has flat spots
(zero gradient) at the sites, which gives too much noise in
our application. Fortunately we can go to higher n, since
we know derivatives at time 0 and can update them by for-
mulas derived by differentiating (5). The choice n = 2
is quite tractable. It should be mentioned that we actually
put a cut-off factor in the wi(z) to avoid summing over all
sites; this does not affect the matter of interpolation [4, 2].



NUMERICAL RESULTS

We take the wake function for the SLAC damping rings,
with a current Ic = 0.0838pC/V, N = 3.22 · 1010, large
enough to make the Haı̈ssinski equilibrium unstable [7],
and integrate with 1024 time steps per synchrotron period.
For the LDS {zi(0)} we choose a 2D Sobol sequence of
length about 20000. A plot of this sequence is shown
in Fig.2, the points being color coded according to their
weights f(zi(0), 0). The distribution of points looks more
uniform than that of a typical pseudo-random sequence
which will show noticeable clustering. We use Shepard in-
terpolation with n = 2, and find that over 40 synchrotron
periods the Sobol points evolve to the set shown in Fig.3,
which exhibits noticeable clustering. In Fig.1 we see that
over 5 periods the mean local interpolation error for the for-
ward LDS with 20000 points is comparable to that for the
backward grid-based method with 160000 points, in spite
of the 1 : 8 ratio in the number of sites. This comparison
is encouraging, especially since we think that comparisons
will be much more favorable in higher dimensions. The
collective force (Fig.4) and charge density agree closely
with the grid-based results.

We see the anticipated defect of the forward method,
however, in that the calculation goes unstable at about 43
periods. This seems to be due to clustering of sites, so that
the evolved data show high gradients and are increasingly
hard to interpolate. Other deficiencies of the code may be
implicated as well. We are studying schemes for successive
redefinitions of the data sites, which may help to maintain
low interpolation error. Investigation of a backward scheme
with LDS is also on the agenda.
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Figure 1: Mean local error for forward method with 20K
Sobol sites (red) and backward method with 160K grid
sites (blue), vs. time in periods.

Figure 2: Initial Sobol points with color coded weights.

Figure 3: Evolved Sobol points at period 40, with evident
clustering.

Figure 4: Collective force at start (red) and at 40 periods
(blue) as a function of q.


