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Abstract

Recent results of tau lepton decay studies based on luminosities between 350 fb−1 and 469 fb−1

collected with the BABAR detector at the PEP-II e+e− collider at the SLAC National Accelerator
Laboratory are presented. The analyses reported here are Charged Current Lepton Universality
and measurements of |Vus| using τ− → e−νeντ , μ−νμντ , π−ντ , and K−ντ decays, as well as
searches for Second Class Currents in τ− → ωπ−ντ decays, studies of Lepton Flavor Violations,
and a tau mass measurement and CPT-Test. If not explicitly mentioned, charge conjugate decay
modes are also implied.
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1. Lepton Universality

Tau decays into a single charged particle and one or two neutrinos can be used to test
the assumption that all three leptons have equal coupling strength (g�) to the charged
gauge bosons of the electro-weak interaction, known as charged current lepton universal-
ity. While a precise measurement of the ratio B(τ−→μ−νμντ )

B(τ−→e−νeντ ) tests μ−e charged current

lepton universality, the ratio B(τ−→(π,K)−ντ )
B((π,K)−→μ−νμ) tests τ − μ charged current lepton univer-

sality with the light mesons π or K.

Tests of μ − e universality can be expressed as:
(

gμ

ge

)2

= B(τ−→μ−νμντ )
B(τ−→e−νeντ )

f(m2
e/m2

τ )
f(m2

μ/m2
τ ) ,

where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x, assuming that the neutrino masses are
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negligible. Similar equations can be derived for the tau-muon universality:(
gτ

gμ

)2

= B(τ−→(π,K)−ντ )
B((π,K)−→μ−νμ)

2m(π,K)m
2
μτ(π,K)

δτ−→(π,K)−ν/(π,K)−→μ−νm3
τ ττ

(
1−m2

μ/m2
(π,K)

1−m2
(π,K)/m2

τ

)2

relating ratios of

coupling constants to ratios of branching fractions, using radiative corrections from [1]
and world averaged mass and lifetime values from [2]. Our preliminary results for the
branching ratio measurements are [3] B(τ− → μ−νμντ ) = (17.46 ± 0.06 ± 0.06) · 10−2,
B(τ− → π−ντ ) = (10.59 ± 0.04 ± 0.11) · 10−2, and B(τ− → K−ντ ) = (6.92 ± 0.04 ±
0.10) · 10−3. The first errors are statistical and the second ones systematical in nature.
Together with the world average of B(τ− → e−νeντ ) = (17.82 ± 0.05) · 10−2 [2] we
calculate the following ratios of leptonic coupling constants: | gμ

ge
| = 1.0036± 0.0020, and

| gτ

gμ
| = 0.9859 ± 0.0057 (0.9836 ± 0.0087) using pions (kaons), which are all consistent

with the expectation of equal coupling of the leptons.

2. Measurement of |Vus| from τ− → K−ντ and τ− → π−ντ Decays

The largest off-diagonal element, |Vus|, of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix can be measured from the ratio of strange to non-strange inclusive
branching fractions of the τ lepton, interpreted in the framework of the Operator Product
Expansion (OPE) and finite energy sum rules (FESR) [4].

Encapsulating all non-perturbative effects in the precisely known ratio fK/fπ = 1.189±
0.007 [5] and following the discussion in [6] about long-distance electroweak contributions

of δ = 1.0003±0.0044 , we measure B(τ−→K−ντ )
B(τ−→π−ντ ) = f2

K |Vus|2
f2

π|Vud|2
(1−m2

K/m2
τ )2

(1−m2
π/m2

τ )2
·δ to be (0.06531±

0.00056(stat)± 0.00093(syst)). From that we obtain |Vus| = 0.2254± 0.0023 [3], which is
consistent with the value calculated from unitarity.

3. Search for Second Class Currents in the Decay τ− → ωπ−ντ

The conservation of isospin symmetry implies that the hadronic currents corresponding
to JPG = 0++, 0−−, 1+−, 1−+ are favored and JPG = 0+−, 0−+, 1++, 1−− are strongly
suppressed. These are known as First and Second Class Currents (FCC, SCC) [7]. The
decay τ− → ωπ−ντ proceeds dominantly through FCC (JPG = 1−+) mediated by the
ρ resonance occurring through a P-wave. However, it may also proceed through SCC
(JPG = 0−+, 1++) mediated by the b1(1235) resonance occurring through S- and D-
waves [8]. These contributions can be studied using the distribution of the angle θωπ

between the normal to the ω decay plane and the direction of the remaining π− in
a τ− → ωπ−ντ decay measured in the ω rest frame. While the FCC contribution is
proportional to (1 − cos2θωπ), the SCC contributions are proportional to a constant,
cos2θωπ or (1 + 3 cos2θωπ). We perform a combined fit of these angular distributions to
the background subtracted and efficiency corrected data and find no evidence for SCC. A
90% confidence level Bayesian upper limit for the ratio of SCC to FCC in τ− → ωπ−ντ

decays is set at 0.69%, which is an order of magnitude improvement over the previous
best upper limit [9].
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4. Search for Lepton Flavor Violating Decays τ− → l−K0
s and

τ− → l−(ρ0, K∗0, φ)

Lepton Flavor Violation (LFV) is forbidden in the Standard Model (SM) if neutrinos
are mass-less. Any occurrences of LFV decays would be a clear sign of new physics. Since
no neutrinos appear in theses decays the reconstructed particles’ mass and energy corre-
spond to that of the decaying τ , which makes for a clean signature of the reconstructed
events. These analyses are performed in a blinded fashion, disguising the signal area until
the estimated background in the signal region and all systematic effects have been stud-
ied. For the different decay modes we expect between 0.68 and 5.34 background events in
the signal area, while we observe between 0 and 6. The resulting upper limits are between
1.8 · 10−7 and 8 · 10−9, improving previous or providing first time measurements [10].

5. Measurement of the Tau Mass and CPT Invariance

Analyzing tau decays to three charged particles we employ a so called pseudo-mass
endpoint method to measure the tau lepton mass [11]. Disregarding the energy taken
away by the τ neutrino in the τ rest frame one can determine an upper limit for the
tau mass purely from the kinematics of the reconstructed particles and the a-priori
knowledge of the center-of-mass (CM) energies from this formula in the CM system:
mτ−psudo ≥ √

M2
h + (ECM − 2Eh)(Eh − Ph). Mh, Eh, and Ph are the mass, energy and

momentum of the reconstructed three charged particle system from the τ decay. This
analysis is basically free from backgrounds and the largest systematic uncertainties stem
from the intrinsic mass scale errors when reconstructing particle momenta in the detec-
tor. We determine the τ mass to be (1776.68 ± 0.12 ± 0.41) MeV where the first error
is statistic and the second systematic. We also measure the mass difference between
the positively and negatively charged τ lepton and calculate the CPT-invariant quantity
(Mτ+ −Mτ−)/Maverage to be (−3.5±1.3) ·10−4. These preliminary results are compatible
with current measurements while the CPT measurements being slightly more precise.

References

[1] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993); R. Decker and M. Finkemeier, Nucl.
Phys. B 438, 17 (1995); R. Decker and M. Finkemeier, Phys. Lett. B 334 (1994) 199.

[2] C. Amsler et al., Physics Letters B667, 1 (2008).
[3] I. Nugent for the BABAR Collaboration, Proceedings of “Tau 2008”, Novosibirsk, Russia, Sept. 2008.
[4] E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, JHEP 0301, 060 (2003) and Phys. Rev.

Lett. 94, 011803 (2005); K. Maltman and C. E. Wolfe, Phys. Lett. B 639, 283 (2006); K. Maltman
and C. E. Wolfe, Phys. Lett. B 650, 27 (2007).

[5] E. Follana, C. T. H. Davies, G. P. Lepage and J. Shigemitsu [HPQCD Collaboration and UKQCD

Collaboration], Phys. Rev. Lett. 100, 062002 (2008).
[6] S. Banerjee for the BABAR Collaboration, arXiv:0811.1429v3.
[7] S. Weinberg, Phys. Rev. 112 (1958) 1375.
[8] C. Leroy and J. Pestieau, Phys. Lett. B 72 (1978) 398.
[9] K. W. Edwards et al. [CLEO Collaboration], Phys. Rev. D 61 072003 (2000).
[10] B. Aubert et al. [BaBar Collaboration], arXiv:0812.3804v1, sub. to PRD; R. Cenci, and J.M. Roney

for the BABAR Collaboration, published in Proceedings of “Tau 2008”, Novosibirsk, Russia, 2008.
[11] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. B 292 221 (1992).

3


