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Because quarks and gluons are confined within hadrons, they have a maximum wavelength of
order the confinement scale. Propagators, normally calculated for free quarks and gluons using
Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation
of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic
coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral
symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the
operator q̄q evaluated in the background of the fields of the other hadronic constituents, in contrast
to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The
effects of instantons are also modified. We discuss the implications of the maximum quark and gluon
wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy
quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications
for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number
Nf of massless fermions.

PACS numbers: 11.15.-q, 11.30.Rd, 12.38.-t

I. INTRODUCTION

Bethe’s remarkable calculation of the Lamb shift in hy-
drogen in 1947 [1] laid the foundation for the renormal-
ization procedure in quantum field theory and the subse-
quent development of quantum electrodynamics (QED).
The Lamb shift is the change in the bound-state elec-
tron energy, in particular, the 2S1/2 and 2P1/2 levels of
hydrogen, as a result of the effect of fluctuations in the
quantized electromagnetic field on the electron. An es-
sential aspect of the Lamb shift calculation in QED is
the fact that while the wavefunction renormalization con-
stant of a free electron Z2 is infrared (IR) divergent, it
becomes infrared-finite when the electron is bound in an
atom. In the case of a free electron, the IR divergences
are cancelled when one properly considers electron prop-
agation together with the emission of soft real photons.
In the case of the electron in an atomic bound state, the
k integration over photon momenta is cut off in the in-
frared by the fact that the relevant photon wavelengths
have a maximum value set by the size of the atom, i.e.,
k ≥ kmin,atom,

kmin,atom ≃
1

naB
≃

αemme

n
, (1)

where aB is the Bohr radius and n is the radial quantum
number characterizing the bound state of the electron
in the Coulomb field of the proton. After mass renor-
malization photon momenta larger than k ≃ m do not
appreciably affect the electron motion. Combining these
cutoffs then yields the Bethe logarithm, ln(1/αem) in the
energy shift [1].

The complete calculation of energy levels of Coulombic
bound states in QED, such as hydrogen, positronium, or
muonium (µ+e−), begins with the Bethe-Salpeter equa-

tion for the two bound-state particles. In the case where
one of these particles can be taken as very heavy, such as
in hydrogen or muonium, the bound-state electron prop-
agator is replaced by the resolvent

1

Π · γ − me + iǫ
, (2)

where Πµ = pµ − eAµ and Aµ is the background elec-
tromagnetic field of the heavy particle. An analysis of
the bound-state electron self-energy in terms of a gauge-
invariant expansion in the electromagnetic field strength
of the background field is given in ref. [2].

Quantum chromodynamics (QCD) has provided a re-
markably successful theory of hadrons and strong inter-
actions. At short distance; i.e., large Euclidean mo-
mentum scales µ, the squared QCD gauge coupling,
αs(µ) = g2

s(µ)/(4π) becomes small, as a consequence of
asymptotic freedom. As the momentum scale decreases
through Λem ≃ 200 MeV, the theory exhibits sponta-
neous chiral symmetry breaking, and quarks and glu-
ons are confined within color-singlet physical states, the
hadrons. Thus, because of confinement, quarks and glu-
ons have maximum wavelengths

λmax ≃ Λ−1
QCD ≃ 1 fm . (3)

Equivalently, the quantum mechanical wavefunctions for
quarks and gluons within hadrons have minimum bound-
state momenta,

kmin = |k|min ≃ ΛQCD . (4)

For example, in the hard-wall model of AdS/QCD,
color confinement of quarks in the AdS fifth dimension
gives the frame-independent condition at equal light-
front time [3]:

ζ =
√

b2
⊥

x(1 − x) < λmax (5)

SLAC-PUB-13246
July 2008

Published in the Physics Letters B

http://arXiv.org/abs/0806.1535v1


2

where ~b⊥ is the quark-antiquark impact separation and x
is the quark light-cone momentum fraction x = k+/P+ =
(k0+k3)/(P 0+P 3). Thus in principle all perturbative and
nonperturbative QCD analyses should be performed with
the infrared regularization imposed by color confinement.

Here we point out and discuss several important conse-
quences of color confinement and the resultant maximum
wavelength of quarks and gluons that do not seem to have
received attention in the literature. These include impli-
cations for an infrared fixed point of the QCD β func-
tion and new insights into spontaneous chiral symmetry
breaking which are apparent when one uses bound-state
rather than free Dyson-Schwinger equations (DSE’s) in
close analogy to QED bound state computations. An
important consequence is that quark and gluon conden-
sates are confined within hadrons, rather than existing
throughout space-time. We also discuss hadron mass cal-
culations using Bethe-Salpeter equations (BSE’s), ana-
lyze the modifications of instanton physics, and comment
on insights that one gains concerning short-distance-
dominated processes and dimensional counting for hard
exclusive processes.

Parenthetically, we note that if QCD contains Nf ≥ 2
exactly massless quarks and if one turned off electroweak
interactions, then the theory would have a resultant set of
N2

f − 1 exactly massless Nambu-Goldstone bosons (e.g.,

the pions, for the case Nf = 2). Because the size of a nu-
cleon, rN , is determined by the emission and reabsorption
of virtual pions and the resultant pion cloud, and hence is
rN ∼ m−1

π , this nucleon size would be much larger than
Λ−1

QCD. Since in the real world, mπ is not << ΛQCD, we
do not pursue the analysis of this gedanken world here.

II. IMPLICATIONS OF λmax FOR THE

INFRARED BEHAVIOR OF QCD

The fact that quarks and gluons have maximum wave-
lengths λmax has important consequences for the infrared
behavior of QCD. For µ2 >> Λ2

QCD, QCD is weakly
coupled, and the evolution of αs is described by the β
function

β(t) =
dαs

dt
= −

α2
s

2π

(

b1 +
b2αs

4π
+ O(α3

s)

)

, (6)

where t = ln µ and the one- and two-loop coefficients
bℓ, ℓ = 1, 2 are scheme-independent, while higher-order
coefficients are scheme-dependent.

In the standard perturbative calculations of these co-
efficients, one performs integrations over Euclidean loop
momenta ranging from k = 0 to k = ∞. Although
this is a correct procedure for describing the evolution
of αs(µ) in the ultraviolet region µ >> ΛQCD where the
coupling is weak and effects of confinement are unimpor-
tant, it does not incorporate the property of confinement
at low scales µ <

∼ ΛQCD. Confinement implies that both
the gluons and quarks have restricted values of momenta
k ≥ kmin. Since loop corrections to the gluon propagator

vanish as q2/k2
min when this ratio is small, it follows that

(to the extent that one can continue to use the quark and
gluon fields and the associated coupling αs to describe
the physics in this region of momenta), as q2 decreases
in magnitude below Λ2

QCD, the QCD β function measur-

ing the evolution of α at the scale µ2 ≃ q2 must also
vanish in the infrared. This implies a physical cutoff on
the growth of αs(µ) at small µ2; i.e., infrared fixed-point
behavior of the QCD coupling. In effect, QCD exhibits
a well-defined limiting behavior in the infrared, and the
infrared growth of αs is suppressed, not because the per-
turbative β function exhibits a zero away from the ori-
gin, but because confinement provides an infrared cutoff.
In fact, as summarized in reference [14], effective QCD
couplings measured in experiments, such as the effective
charge αs,g1

(Q2) defined from the Bjorken sum rule, dis-
play a lack of Q2-dependence in the low Q2 domain.

III. IMPLICATIONS FOR QCD

PHENOMENOLOGY

The Bjorken scaling of the deep inelastic lepton-
nucleon scattering (DIS) ℓN → ℓ′X cross section is ex-
plained in perturbative QCD by arguing that the emis-
sion of gluons from the scattered quark is governed by a
coupling αs which is small because of asymptotic free-
dom. Thus in the leading-twist DIS regime, the DIS
structure functions Fi(x, Q2) are mainly functions of x,
with only small, logarithmic dependence on Q2. A sim-
ilar argument underlies the application of perturbative
QCD and the parton model to deep inelastic annihilation,
e+e− → hadrons with center-of-mass energy squared
s >> Λ2

QCD, away from thresholds, leading to the for-

mula σ(e+e− → hadrons)/σ(e+e− → µ+µ−) = R with
R(s) = Nc

∑

j q2
j , where the sum is over quarks with

4m2
q < s. Asymptotic freedom in QCD has also been

used to explain the narrow widths of 3S1, JPC = 1−−

QQ̄ states of heavy (i.e., mQ >> ΛQCD) quarks with
masses below threshold for emission of the associated
heavy-flavor mesons. The explanation is, in essence, that
hadronic decays proceed by emission of three gluons, and
because the corresponding couplings gs(µ) are small for
µ ∼ mQ/3 due to asymptotic freedom, the resultant de-
cays are suppressed [4]. A fourth property of QCD which
makes use of its property of asymptotic freedom is the
phenomenon of jets [5].

In each of these examples, the theoretical analyses pro-
vide successful descriptions of the physical processes in
terms of the asymptotic freedom of QCD. The analy-
ses involve a factorization between the short-distance,
perturbatively calculable, part of the process and the
long-distance part involving hadronization. However, it
is important to ask whether such calculations are stable
against multiple gluon emission. For example, if the out-
going struck quark in DIS or the qq̄ pair in DIA were to
radiate a sufficiently large number of gluons, then, since
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on average each of these would carry only a small momen-
tum, the associated coupling αs would not be small, and
this could significantly change the prediction for the cross
section. A related concern regards the narrow width of
orthoquarkonium: if the heavy Q and Q̄ annihilate not
into three gluons, but into a considerably larger number,
ℓ, of gluons, then each would carry a much smaller mo-
mentum, k ∼ 2mQ/ℓ, and thus the associated running
coupling gs(k) would not be small. Similarly, in a hard
scattering process that leads to the production of a qq̄
pair with invariant mass ŝ = (pq + pq̄)

2 >> Λ2
QCD and

ŝ >> 4m2
q, the q and q̄ might radiate a large number of

gluons, each carrying a small relative momentum; again
the resulting running coupling is consequently not small,
and this could dilute the jet-like structure of the event.
A similar concern applies to jets involving gluons.

Here we provide a simple physical explanation of why
gluon emission is stabilized: because of confinement, the
gluons have minimum momenta of order ΛQCD, so the
apparently dangerous scenario involving emission of a
large number of gluons with momenta of order ΛQCD

or smaller is kinematically impossible.
An infrared cutoff on the growth of the QCD coupling

also helps to explain the remarkable success of dimen-
sional counting rules in describing data on the differen-
tial cross sections of exclusive reactions at high-energy
and fixed-angle in QCD [6]. Recall that for a reaction
a+ b → c1 + ...+ ck with s >> Λ2

QCD, t = Q2 >> Λ2
QCD,

and fixed s/t (i.e., fixed CM scattering angle), dimen-
sional counting gives [6]

dσ

dt
∝ s−(n−2) , (7)

where the twist n denotes the total number of elemen-
tary valence fields entering the hard scattering ampli-
tude. This implies, for example, that, under these con-
ditions, dσ(pp → pp)/dt ∝ s−10, dσ(πp → πp) ∝ s−8,
etc. One might worry that since all of the external parti-
cles in these reactions are on-shell, eq. (7) might receive
large long-distance corrections. An appealing explana-
tion for the absence of such corrections is that they are
suppressed by the cutoff in the growth of the running
QCD coupling αs due to the kmin of the gluons. This is
also consistent with fits to data [7, 8, 9].

IV. IMPLICATIONS FOR SPONTANEOUS

CHIRAL SYMMETRY BREAKING

A limit on the maximum of gluon and quark wave-
lengths also has implications for spontaneous chiral sym-
metry breaking (SχSB) in QCD. It is clear that because
of confinement, analyses based on free quark and gluon
propagators, such as the Dyson-Schwinger equation, need
to be replaced in principle by analyses which incorporate
bound-state dynamics, such as the QCD Bethe-Salpeter
equation. Recall that since the u and d current-quark
masses are << ΛQCD, the QCD Lagrangian theory has

a global SU(Nf )L × SU(Nf )R chiral symmetry, broken
spontaneously to the diagonal, vector isospin subgroup
SU(Nf )diag, where Nf = 2, by the 〈q̄q〉 condensates with
q = u, d. (The analogous statement applies to the cor-
responding symmetry with Nf = 3, with larger explicit
breaking via ms.) Some studies of spontaneous chiral
symmetry breaking in QCD are listed in ref. [10].

The inverse quark propagator has the form Sf (p)−1 =
A(p2)p/ − B(p2). In the one-gluon exchange approxima-
tion, the DSE for S−1

f is

Sf (p)−1 − p/ = −iCF g2

∫

d4k

(2π)4
Dµν(p − k) γµ Sf (k) γν

(8)
where CF is the quadratic Casimir invariant and Dµν(k)
is the gluon propagator. Chiral symmetry breaking is a
gauge-invariant phenomenon, so one may use any gauge
in solving this equation. It is convenient to use the Lan-
dau gauge since then there is no fermion wavefunction
renormalization; i.e., A(p2) = 1. Equation (8) has a
nonzero solution for the dynamically generated fermion
mass Σ (which can be taken to be Σ(p2) = B(p2) for Eu-
clidean p2 << Λ2) if αs ≥ αcr, where 3αcrCF /π = 1.
Since Σ is formally a source in the path integral for
the operator q̄q, one associates Σ 6= 0 with a nonzero
quark condensate. Clearly, this only provides a rough
estimate of αcr, in view of the strong-coupling nature of
the physics and the consequent large higher-order per-
turbative, and also nonperturbative, contributions.

If one now takes quark and gluon confinement into
account, then just as for the Lamb shift, the integral
over loop momenta in eq. (8) can extend in the infrared
only to kmin ∼ ΛQCD. Although the DSE analysis for
the free quark propagator may incorporate some of the
physics relevant to spontaneous chiral symmetry break-
ing, it does not incorporate the property of confinement.
This is an important omission since a plausible physical
explanation for spontaneous chiral symmetry breaking
in QCD involves confinement in a crucial manner; this
breaking results from the reversal in helicity (chirality)
of a massless quark as it heads outward from the center
of a hadron and is reflected back at the outer boundary
of the hadron [11].

The Dyson-Schwinger equation has been used in con-
junction with the Bethe-Salpeter equation for approxi-
mate calculations of hadron masses and other quantities
in QCD [12]. Our observation implies that here again,
the integration over virtual loop momenta in the BSE
can only extend down to kmin ∼ ΛQCD, not to k = 0.
This obviates the need for artificial cutoffs on the growth
of the QCD coupling occurring in the integrand that have
been employed in past studies. Analyses using the DSE
and BSE have been used to calculate hadron masses in
the confining phase of an abstract asymptotically free,
vectorial SU(N) gauge theories with a variable number,
Nf , of light fermions [13]. It would be worthwhile to in-
corporate the effect of kmin in these studies, as well as in
analyses for actual QCD.
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Thus let us consider the propagator of a light quark
bound in a light-heavy qQ̄ meson, such as B+ = (ub̄) or
B0

d = (db̄). At sufficiently strong coupling αs, the DSE
(in this case, effectively a bound-state Dyson-Schwinger
equation) yields a nonzero, dynamically generated mass,
Σ for the light quark. One can associate this with a bilin-
ear quark condensate 〈q̄q〉, as noted above. However, this
condensate is the expectation value of the operator q̄q in
the background (approximately Coulombic) field of the
heavy b̄ antiquark, in contrast to a true vacuum expec-
tation value [15]. This is in accord with our argument in
[15] that the quark condensate 〈q̄q〉 and gluon condensate
〈Tr(GµνGµν)〉 have spatial support only in the interior of
hadrons, since that is where the quarks and gluons which
give rise to it are confined. In [15] we noted that this con-
clusion is the analogue for quantum field theory of the ex-
perimental fact that the spontaneous magnetization be-
low the Curie temperature in a piece of iron has spatial
support only within the iron rather than extending to
spatial infinity. Our observation in Ref. [15] that QCD
condensates have spatial support restricted to the interi-
ors of hadrons has the important consequence that these
condensates contribute to the mean baryon mass density
in the universe, but not to the cosmological constant or
dark energy [16]. As in the case of QED, the bound-
state problem of a light quark in a background field can
be formulated as a resolvent problem or in terms of an
effective theory [17]. Of course, in the hypothetical situa-
tion in which the current-quark masses mu = md = 0 and
one turned off electroweak interactions, so that mπ → 0,
the size of hadrons, as determined by their meson clouds,
would become infinitely large, and the condensates would
have infinite spatial extent.

In general, the breaking of a continuous global symme-
try gives rise to Nambu-Goldstone modes. It was noted in
Ref. [15] that in a sample of a ferromagnetic material be-
low its Curie temperature, these Nambu-Goldstone spin
wave modes (magnons) are experimentally measured to
reside within the sample. Moreover, via the correspon-
dence between the partition function defining a statisti-
cal mechanical system and the path integral defining a
quantum field theory, there is an analogy between the
spin waves in a Heisenberg ferromagnet and the almost
Nambu-Goldstone modes in QCD - the pions. As re-
quired for the self-consistency of our analysis of conden-
sates, the wavefunctions for the pions have spatial sup-
port where the chiral condensates exist, namely within
the pions themselves and, via virtual emission and reab-
sorption, within other hadrons, in particular nucleons.

We relate these statements to some current algebra re-
sults. Consider the vacuum-to-vacuum correlator of the
axial-vector current, 〈0|Jµ

5 (xa)Jµ
5 (xb)|0〉. The Fourier

transform of the cut of this propagator can, in prin-
ciple, be measured in e+e− → Z∗

0 axial-vector current
events. The pion appears as a pole in this propagator at
q2 = m2

π, corresponding to e+e− → Z∗

0 → π0. Here the
axial-vector current Jµ

5 = q̄γµγ5q creates a quark pair at
xa which propagates to xb, and as the q and q̄ propagate,

they interact and bind to create the pion. For example,
at fixed light-front time x+

a = x+
b , the pion pole contribu-

tion appears when −(xa−xb)
2 = (x⊥

a −x⊥

b )2 ≃ R2
π,where

Rπ is the transverse pion size, of order 1/mπ. The axial
current that couples to the pion thus involves q̄q creation
within a domain of the size of the pion. Furthermore,
any qq̄ condensate that appears in the quark or anti-
quark propagator in this process is created in a finite
domain of the pion size, since that is where the quark
and antiquark propagate, subject to the confining color
interaction. Again, we see that one needs to use a mod-
ified form of the DSE for the quark propagator which
takes into account the field of the antiquark. And again,
the loop momenta have a maximum wavelength corre-
sponding to the finite size of the domain where color can
exist.

Since the property that quarks and gluons have a maxi-
mum wavelength is a general consequence of confinement,
it necessarily appears in specific phenomenological mod-
els of confined hadrons, such as bag models [18] (see also
[19]) and recent approaches using AdS/CFT methods [9].
It is also evident in lattice gauge simulations of QCD [20].
Sometimes the results of these simulations are phrased as
the dynamical generation of an effective “gluon mass”;
here we prefer to describe the physics in terms of a max-
imum gluon wavelength, since this emphasizes the gauge
invariance of the phenomenon.

V. IMPLICATIONS FOR INSTANTON

EFFECTS IN QCD

The maximum wavelength of gluons also has implica-
tions for the role of instantons in QCD. In the semiclassi-
cal picture, after a Euclidean rotation, one identifies the
gluon field configurations which give the dominant contri-
bution to the path integral as those which minimize the
Euclidean action. This requires that the field strength
tensor Fµν ≡

∑

a TaF a
µν vanish as |x| → ∞, which implies

that Aµ = −(i/gs)(∂µU)U−1, where Aµ ≡
∑

a TaAa
µ and

U(x) ∈ SU(Nc). Since the outer boundary of the com-
pactified R

4 in this |x| → ∞ limit is S3, the gauge fields
thus fall into topologically distinct classes, as described
by the class of continuous mappings from S3 to SU(Nc),
i.e., the homotopy group π3(SU(Nc)) = Z. Instantons
appear to play an important role in QCD, explaining, for
example, the breaking of the global U(1)A symmetry and
the resultant fact that the η′ meson is not light [21, 22];
however, one should recognize that, because of confine-
ment, the gauge fields actually have no support beyond
length scales of order 1/ΛQCD ∼ 1 fm. The semiclassical
analysis with its |x| → ∞ limit used to derive the result
Aµ = −(i/gs)(∂µU)U−1 is thus subject to significant cor-
rections due to confinement. This is evident in the BPST
instanton solution for Nc = 2, namely [23]

igsAµ =

(

x2

x2 + ρ2

)

(∂µU)U−1 , (9)
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where U(x) = (x0 + iτ · x)/|x|. This form only becomes
a pure gauge in the limit |x| → ∞. It has long been rec-
ognized that in calculating effects of instantons in QCD,
which involve integrations over instanton scale size ρ, un-
certainties arise due to the fact that there are big con-
tributions from instantons with large scale sizes, where
the semiclassical approximation is not accurate [22]. Our
point is different, although related; namely that the ac-
curacy of the semiclassical instanton analysis is also re-
stricted by the property that λmax ∼ 1 fm for the gluon
field and hence one cannot really take the |x| → ∞ limit
in the manner discussed above.

VI. IMPLICATIONS FOR GENERAL

NON-ABELIAN GAUGE THEORIES

Our observations are also relevant to the problem of de-
termining the phase structure (at zero temperature and
chemical potential) of a vectorial SU(N) gauge theory
with a gauge coupling g and a given content of massless
fermions, such as Nf fermions transforming according to
the fundamental representation of SU(N). We assume
Nf < (11/2)N , so that the theory is asymptotically free.
Since fermions screen the gauge field, one expects that
for sufficiently large Nf , the gauge interaction would
be too weak to confine or produce spontaneous chiral
breaking (e.g., [24]). An estimate of the critical value,
Nf,cr, beyond which there would be a phase transition
from a phase with confinement and SχSB to one with-
out such symmetry breaking (and presumably without
confinement) has been obtained combining the pertur-
bative β function and the DSE. We denote this as the
βDS method. For sufficiently large Nf , the perturbative
β function exhibits a zero away from the origin, at αIR,
where α = g2/(4π). The value of αIR is a decreasing
function of Nf . The value of Nf,cr is determined by the
condition that αIR decreases below the minimal value αcr

for which the approximate solution to the DS equation
yields a nonzero solution for the dynamically generated
fermion mass. The βDS analysis, to two-loop accuracy,
yields the estimate [25]

Nf,cr = (Nf,cr)2ℓβDS =
2N(50N2 − 33)

5(5N2 − 3)
, (10)

where 2ℓ refers to the two-loop accuracy to which the
beta function is calculated. This gives Nf,cr ≃ 8 for
N = 2 and Nf,cr ≃ 12 for N = 3. The value of Nf,cr is
important because if the approximate IR fixed point αIR

is larger than, but near to, αcr, the resultant gauge cou-
pling runs slowly over an extended interval of energies.
This “walking” behavior is useful for models of dynam-
ical electroweak symmetry breaking [25, 26]. (In such
models there are motivations for choosing N = 2, includ-
ing a mechanism to explain light neutrino masses [27].)
The effect of the three-loop terms in the β function and
the next higher-loop terms in the DSE have been studied
in Ref. [28].

Neither the β function nor the DSE used in this βDS
method includes the effect of instantons. Studies in QCD
have shown that instantons enhance spontaneous chiral
symmetry breaking [29]. Analyses of instanton effects
on fermion propagation were carried out for general Nf ,
and these were shown to contribute substantially to SχSB
[30]. One would thus expect that if one augmented the
βDS approach to include effects of instantons, the resul-
tant improved estimate of Nf,cr would be greater than
the value obtained from the βDS method without in-
stantons.

In principle, lattice gauge theory can provide a fully
nonperturbative approach for calculating Nf,cr [31]-[32].
One lattice group has obtained values of Nf,cr con-
siderably smaller than the respective βDS values (for
N = 2, 3) [31]; however, the most recent study of the
N = 3 case finds evidence that the infrared behavior of
the theory is conformal for Nf ≥ 12 but exhibits confine-
ment and chiral symmetry breaking for Nf ≤ 8, consis-
tent with the βDS analysis [32]. Since the βDS method
does not include instanton effects, there is thus a ques-
tion why it appears to produce a rather accurate value
of Nf,cr.

Our observation provides a plausible answer to this
question. Approaching the chiral boundary from within
the phase with confinement and spontaneous chiral sym-
metry breaking, we note that the confinement-induced
kmin of the gluons reduces their contribution to the in-
crease of the gauge coupling in the infrared and also to
the virtual gluon exchange effects on the fermion propa-
gator. This reduction of gluonic effects acts in the oppo-
site direction relative to the enhancement of chiral sym-
metry breaking due to instantons, and thus has the po-
tential to explain why the βDS estimate for Nf,cr, which
does not incorporate either confinement or instanton ef-
fects, could nevertheless yield a reasonably accurate value
for Nf,cr. Moreover, as noted above, the role of instan-
tons in SχSB is affected by the confinement of gluons and
the resultant corrections to the semiclassical approach to
QCD.

VII. CONCLUSIONS

Because quarks and gluons are confined within
hadrons, there is maximum limit on their wavelengths.
Propagators, normally calculated for free quark and glu-
ons using Dyson-Schwinger equations, are modified in the
infrared by bound state effects in close analogy to the cal-
culation of the Lamb shift in atomic physics. Thus be-
cause of confinement, the effective QCD coupling stays
finite and flat at low momenta. The quark condensate
which arises from spontaneous chiral symmetry breaking
in the bound-state Dyson-Schwinger equation is the ex-
pectation value of the operator q̄q evaluated in the back-
ground of the fields of the other hadronic constituents,
in contrast to a true vacuum expectation value. Thus
quark and gluon condensates have support only within
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hadrons.
We have shown that the limit on the maximum wave-

length of gluons and quarks from confinement leads to
new insights into a number of phenomena in QCD, in-
cluding deep inelastic scattering and annihilation, the
narrow widths of heavy orthoquarkonium states, jets, in-
stantons, dimensional counting rules for hard exclusive
processes, and other phenomena related to the infrared
behavior of the theory. We have also given a plausible
explanation of how estimates of the value Nf,cr in a gen-
eral asymptotically free, vectorial SU(N) theory based
on a method using the perturbative β function and the
Dyson-Schwinger equation could be reasonably accurate
even though this method does not incorporate the effects

of confinement or instantons. Our observations suggest a
program of future research devoted to incorporating the
effect of the maximum wavelength of quarks and gluons
in analytic studies of QCD properties.
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