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Abstract

Gravitational theories do not admit gauge invariant local operators. We study the limits under

which there exists a quasi-local description for a class of non-local gravitational observables where

a sum over worldlines plays the role of the Wilson line for gauge theory observables. We study

non-local corrections to the local description and circumstances where these corrections become

large. We find that these operators are quasi-local in flat space and AdS, but fail to be quasi-local

in de Sitter space.
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I. INTRODUCTION

One of the striking features of gravitational physics is that the effective field theory

description seems to fail in circumstances where, naively, it should be valid. The best

studied example is the black hole information paradox [1]. The loss of information can be

derived entirely in a regime where the curvature is small [2]. Thus, if the evolution is unitary,

it would seem to require a failure of effective field theory [3, 4]. Recently, studies of de Sitter

space have suggested that eternal de Sitter may be another example where effective field

theory fails to give sensible predictions [5, 6, 7, 8].

However, in theories of gravity, it is unclear what one should be calculating [9, 10, 11].

Local operators are not gauge invariant and there is no obvious non-local observable to

replace them. Therefore, one has no definitive measure of when the local operator description

is a reliable approximation. As a result, one could ask whether the apparent failure of

effective field theory is simply a result of using poorly defined quantities.

These issues do not arise in the absence of gravitational fluctuations. On a fixed mani-

fold, one can construct exactly local, diffeomorphism invariant operators. For example, one

can introduce Stueckelberg fields that make local observables manifestly diffeomorphism

invariant [7]. We also suspect that, when gravity can be described perturbatively, local

operators give the leading behavior of some non-local diffeomorphism invariant observable.

In principal, if these observables were known, one could compute the non-local corrections.

One can ask the same question in more conventional gauge theories. For example, a

charged field Ψ(x) in a U(1) gauge theory transforms non-trivially under local gauge trans-

formations. The requirement that observables are invariant under the gauge symmetry

should not make the electron unphysical. This intuition is correct and quasi-local gauge in-

variant observables are well known. In particular, by attaching a Wilson line to the operator

we get a gauge invariant observable, O(x) = Ψ(x) exp(ie
∫∞
x
Aµdx

µ).

This example provides two important lessons. First of all, when perturbation theory is

valid, Ψ(x) is a good approximation to the observable (O(x) ' Ψ(x) + O(e)), with the

Wilson line giving rise to corrections that are perturbative in e. Furthermore, if we turned

off the dynamics of the gauge field (sending e→ 0), the exact observable is Ψ(x). Secondly,

the Wilson line now gives us a precise measure of when Ψ(x) is a good observable. In

particular, an IR divergent contribution from the Wilson line is the signal of confinement
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(area law for the Wilson loop).

In this paper, we will study the origin and form of the corrections to local correlation

functions in gravitational theories. We begin by discussing several variants of ‘worldline

observables.’ These will be manifestly gauge invariant operators where a sum over worldlines

plays a similar role to the Wilson line in gauge theory. These operators are local to leading

order (when perturbation theory is valid) but have corrections that are perturbative in

the gravitational coupling. We then discuss the implications to the black hole information

paradox and to de Sitter space. We find that the local description fails in eternal de Sitter.

Finally, we discuss the consequences for more general backgrounds.

II. OBSERVABLES

In a certain sense, the only difference between observables in general relativity and gauge

theory is simply that in gauge theory the appropriate observables are known. While it

has been well established that there are no gauge invariant local operators in theories of

gravity, there has been little agreement on what should replace them. There have been

many proposals for gauge invariant operators (e.g. [9, 10, 11, 12, 13, 14, 15, 16]) but it

remains unclear which, if any, are the “correct” observables. For this reason, it may be

helpful to use gauge theory as a guide when possible.

In gauge theory, for a field Ψa(x) transforming in the fundamental representation, there

are simple quasi-local observables constructed from Wilson lines. In particular, in flat space

the operator P exp(−
∫∞
xC
Aµdx

µ)abΨa(x) is gauge invariant 1. The gauge invariance arises

from two features we will try to emulate in the gravitational context. First, the trace over

the index a cancels the transformations of the Wilson line against the transformation of the

operator. The second feature is that we are only dividing out by the gauge transformations

such that g(y) → 1 as y → ∞. Transformations without this property represent global

symmetries.

If we were to make the analogy between gravity and gauge theory, the integral
∫
ddx
√
−g

acting on a local scalar operator, O(x), behaves like the trace over the gauge index. Unfor-

tunately, integrated operators alone completely wash away local information. Therefore, we

1 On a compact space, the Wilson line must end on a field in the anti-fundamental representation. This is
the familiar fact that the net charge must vanish on a compact space.
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will need another ingredient if we are to get quasi-local behavior in some limit.

One approach is to add additional fields to the theory with spatially varying vacuum

expectation values (Zµ ' xµ + δZµ) [9, 11, 17]. We could then localize the integral over the

manifold onto points where these fields take specific values (
∫
ddx
√
−gO(x)δd(Zµ − λµ)).

This approach seems problematic for several reasons. Primarily, it is surprising that one

would need to change the field content to define observables. For example, our experience

with gauge theory suggests that adding new forms of matter changes the phase structure

[18, 19]; thus, it is not clear that one would even be describing the same dynamics. More

pragmatically, we make measurements all the time without reference to a spatially varying

scalar field.

Another approach is to use single particle states to localize operators [9, 10, 13]. We will

follow this approach as it seems more consistent with our intuition. Our experience with

measurement is based entirely on single and many particle states. Furthermore, this is the

type of approach that is successful in gauge theory. In particular, one can think of the vev

of the Wilson loop as the response of the system to an extremely massive quark-antiquark

pair. Nevertheless, these quarks are not really present in the dynamics of the theory and do

not change the vacuum structure.

Before introducing the operators of interest, we should establish what we are looking for

in an observable. (1) It should be manifestly gauge invariant. (2) It should be exactly local

when dynamical gravity is absent without adding new matter content to the theory. (3)

In the presence of perturbative gravity, the operator should be quasi-local with computable

gravitational corrections. Here quasi-local means that, given a particular observable and a

choice of gauge, the observable is well approximated by a local operator at a point or small

region in coordinate space. The operators discussed in the next subsection will have all these

properties.

A. Worldline Operators

We will study observables in gravitational theories with specific asymptotia. In particular,

we will assume that we are modding out by diffeomorphisms that are trivial asymptotically.

Defining local observables in such backgrounds is sufficiently confusing that understanding

this simpler problem may be helpful in understanding more general backgrounds.
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For spaces with asymptotia, we can specify a point on the interior using information at

the boundary. The general idea is to use operators of the form

OΨi=1..N
=

∫
ddx
√
−gO(x)W (x,Ψ1, ..,ΨN), (1)

where O(x) is a local scalar operator and W (x,Ψi) is some operator whose value at x

depends on boundary data Ψi. In order to get local data from (1), W (x,Ψi) should be a

sharpely peaked function of x. If W (x,Ψi) transforms under small diffeomorphisms as a

scalar operator of x then (1) is invariant. For operators of this type, one wants to define

W (x,Ψi) such that OΨi=1..N
is invariant under small diffeomorphisms and

OΨi=1..N
' O(x̃), (2)

where the point x̃ is defined by the boundary data.

A location in spacetime can be defined by the point where the wordlines of multiple

particles intersect. Classically, this point is specified exactly given boundary conditions on

the paths of the particles. Quantum mechanically, these trajectories are no longer exact

and the resolution of points is smeared. Nevertheless, the classical limit can be recovered

by taking infinitely massive particles. When we include gravity, this limit causes infinite

backreaction. For such a model, this is the origin of the breakdown of locality.

The basic observables we will study are built from path integrals over worldlines. These

single particle probes can be used to localize the operators onto the intersection of geodesics.

Specifically, we will consider observables where W (x,Ψi) is a product of several worldline

path integrals. Much like the gauge theory example, these need not be single particle states

of some field added to the theory.

We will work with observables such that, in the classical limit, the operator is localized

at the intersection of geodesics. This can be achieved with operators of the form

OΨi=1..N
= N

∫
ddx
√
−gO(x)

N∏
i=1

∫
De(τ)

∫ Y µi (1)=xµ

Y µi (0)=Ψµi

DY µ
i (τ)e−

R
dτ((α′e)−1Ẏ νi Ẏ

µ
i Gµν+α′em2

i ),(3)

where e is the worldline metric and α′ is a constant with units of space-time length squared.

Here O(x) is some scalar operator, m can be interpreted as the mass of a particle whose

worldline is Y µ(τ) and N is a normalization constant. These operators include N worldlines

starting in some asymptotic states Ψi but ending at the same point on the interior, xµ. This

end point is where the scalar operator O is located. This observable is diffeormorphism
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FIG. 1: The operator Φ(z) is localized at the intersection of several null geodesics using (3). The

choice of asymptotic states |Ψ〉i or |Ψ〉j determines whether Φ is localized around the point y or x

respectively.

invariant for two reasons. First, we integrate xµ over the entire manifold. Second, the dif-

feomorphisms being modded out are assumed to leave the asymptotic states Ψµ
i unchanged.

The final integral over x will localize the operator onto the overlaps of the different

worldlines. The product of different worldlines will suppress contributions to the final x

integral away from the overlap of the wavefunctions. Thus, operators localized at different

points arise only from different choices of the asymptotic states (see figure 1). Observables

of this type are similar to the ψ2φ model considered in [9]. The limits α′ → 0 or m → ∞

play the roll of the classical limit for relativistic and non-relativistic particles respectively.

Therefore, for appropriate choices of the initial states, these limits applied to (3) will give

exactly local operators (O(x)) localized at the intersection of geodesics.

In the absence of dynamical gravity, there is no obstacle to taking the α′ → 0 or the

m → ∞ limits. The worldlines do not influence the dynamics of the other fields and

thus we can take such limits without any trouble. This is consistent with our expectation:

observables should reduce to local operators in the absence of a fluctuating metric.
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When we turn on gravitational fluctuations, localization fails as expected. These world-

lines couple to the metric as can be seen directly in (3). The coupling of gravity to these

worldlines is either α′−2M−2
pl or m2M−2

Pl depending on the limit. As a result, the gravitational

corrections to our observables would be uncontrollably large in the classical limit. Thus, m

and α′ must be finite in a gravitational theory.

Corrections to local operators in gravitational theories will appear in two ways. The first

type of correction arises from basic quantum mechanical effects at finite m and α′. The non-

locality here arises because of the spread of the wavefunction for the particles of interest.

The second type of correction comes from gravitational couplings to the worldlines and are

perturbative in G ≡ M−2
Pl . This is consistent with gauge theory, where the Wilson line also

produces perturbative, non-local corrections. However, just as in gauge theory, this is not a

signal of a fundamental breakdown in the locality of the theory. For example, the S-matrix

may be consistent with locality to all orders in perturbation theory [20, 21, 22, 23].

The techniques for calculating the gravitational corrections for non-relativistic particles

are well known [24, 25, 26]. If we work with energies that are small compared to MPl, we

can break the metric into a background and fluctuations, Gµν = G̃µν + M−1
Pl hµν . For a

non-relativistic particle worldline, the couplings of the worldline (Xµ) to the graviton (hµν)

in a flat background are of the form

Scoupling =
m

2MPl

∫
dτ̃hµνX

′µX ′
ν

+
m

8M2
Pl

∫
dτ̃(hµνX

′µX ′
ν
)2 + . . . (4)

where τ̃ is the proper time along the geodesic and X ′ ≡ ∂X
∂τ̃

. Along with the usual Feynman

rules for the perturbative treatment of gravity, one can use these couplings to compute

the gravitational effects on the worldlines. When the background includes two worldlines,

graviton exchange between the particles must be included. The ladder diagrams for this

process can be resummed to get an effective potential for Xµ(τ) [24, 25, 26]. Unfortunately,

we will find that non-relativistic worldlines do not give good local observables. Specifically,

the dispersion of the wavefunction causes the geodesic approximation to break down in finite

time. Therefore, we will look at the corrections in a relativistic example.
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B. Flat Space Example

We will consider the massless limit of (3) for perturbative fluctuations around a flat

metric. The definition of each worldline path integral (on a fixed metric) is well known

[27, 28], and after gauge fixing can be written as∫
DeDY µe−S =

∫ ∞

0

dcc−
d
2 e−

(∆x)2

2α′c , (5)

where ∆xµ = xµi − xµ is the difference between the fixed initial and final points. We can

now apply this to (3) with d = 4,

OΨi=1..N
= N

∫
d4xO(x)

N∏
i=1

∫ ∞

δ

dcic
−2
i e
− (∆xi)

2

2α′ci +O(M−2
Pl ) (6)

where O(M−2
Pl ) are perturbative gravitational corrections. We will determine the form of

these corrections after determining the leading behavior. We added δ to regulate the integral

near c→ 0 as this corresponds to large energies and momenta which will couple strongly to

gravity. By a change of variables ai = c−1
i , these integrals take a more familiar form

OΨi=1..N
= N

∫
d4xO(x)

N∏
i=1

∫ 1
δ

0

daie
−ai

(∆xi)
2

2α′ +O(M−2
Pl ). (7)

This integral is poorly defined if we work in Lorentzian signature. We could resolve this by

working with a Euclidean metric or Wick rotating the worldline time τ to get an imaginary

action 2. For either choice, it is clear that performing the ai integral gives a sharply peaked

function α′(∆x)−2(1 − e−
(∆x)2

2α′δ ). The width of these peaks is controlled by α′δ ≡ Λ2. Note

that in Lorentzian signature this is peaked on a null surface defined by (∆x)2 = 0 as opposed

to a point in Euclidean signature. The leading behavior is given by

OΨi=1..N
'

∫
d4xOΛ(x)

N∏
i=1

δ(∆x2
i ) +O(Λ2M−2

Pl ,Λ
−1), (8)

where OΛ(x) the operator integrated over a region of size Λ−1 centered at x and we have

chosen N to remove normalization constants from (8). Thus, for each worldline, we get

2 We will ignore possible subtleties with this procedure. Null geodesics are special to Lorentzian manifolds.
Thus, it is unclear how one should rigorously define the path integral while maintaining these special
features.
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an approximate delta function which is smeared on scales smaller than Λ−1. With four

worldlines, we get approximate localization in four dimensional flat space.

Now, let us compute the gravitational corrections to leading order in G = M−2
Pl . The

metric fluctuations couple to the worldline through the interaction

Scoupling =
1

MPl

∫
dτ(

1

α′e
hµνẊ

µẊν). (9)

The leading correction comes from a single graviton exchange between any two worldlines,

a and b. Expanding in M−1
Pl , the leading gravitational contribution is

O(M−2
Pl ) ' 1

M2
Pl

∫
d4x〈O(x)〉

N∑
a,b=1

∫
dτa

∫
dτb〈

1

cacbα′2
Ẋµ
a Ẋ

ν
aPµµλρ(Xa, Xb)Ẋ

λ
b Ẋ

ρ
b 〉x, (10)

where

Pµνλρ(Xa, Xb) =

∫
ddk

1

2
(ηµληνρ + ηµρηνλ −

2

d− 2
ηµνηλρ)

i

k2 + iε
(11)

is the Feynman propagator for the graviton in De Donger gauge and 〈〉x is the expectation

value, including the worldline path integrals with endpoints at x. The Feynman rules for

gravity are well known [29, 30] and can be used to calculate the contributions at any order.

For the leading contribution, we will evaluate Ẋ on the classical solution and take ci ' δi.

Because the classical solutions are null (ẊµẊµ = 0), these terms vanish when a = b. In a

full calculation, one would include scattering of the worldlines due to the graviton exchange.

By requiring that the gravitational corrections are small for the classical solutions, we will

also ensure that this is a subleading effect.

In order to understand our corrections, we should rewrite them in terms of physical

quantities in spacetime. The first thing to note is that Λ2Ẋµ ≡ pµ has units of spacetime

momentum. Thus, we can rewrite (10) as

O(M−2
Pl ) ' 〈O(x̃)〉

∑
a6=b

(pµapbµ)2

Λ4M2
Pl

∫
dτa

∫
dτb

∫
d4k

(2π)4

eikν(Xν
a (τa)−Xν

b (τb))

k2
. (12)

where x̃ is a point defined by the intersection of null geodesics. Because our operators are

local to the scale δX ∼ Λ−1, we should work with energies of the order (pµapbµ) ∼ k2 ∼ Λ2.

Therefore, we get a contribution of the form

O(M−2
Pl ) ' 〈O(x̃)〉N(N − 1)

2

Λ2

M2
Pl

. (13)

Therefore, for Λ� MPl (for small N) we get an quasi-local operator to leading order with

small gravitational corrections. This is precisely what one would expect from the uncertainty

principal. We will see that unexpected complications can arise in different backgrounds.
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C. UV Completion

General Relativity is a well defined, effective field theory below the scale MPl. The

problem of defining observables in this effective theory would seem to be a separate problem

from the ultra-violet (UV) behavior of the theory. Nevertheless, it is a natural question as

to how any such proposal would fit into a UV completion.

Although the observables described above were motivated by effective field theory and

gauge theory considerations, they seem to fit nicely with observables in AdS-CFT (for a

review, see [31]). Many observables in the CFT appear in the bulk as propagators or

minimal area surfaces that are fixed on the boundary. The leading behavior is determined

by the classical solutions, with higher order effects arising in the same way as above. There

have also been many attempts to define local observables in terms of the CFT [32, 33, 34],

some of which are similar to our proposal [35, 36].

The probes in AdS-CFT are part of the fundamental particle content of the theory 3.

The masses of these particles can be quite large, arising from KK modes or solitonic objects

(D-branes). As a result, these probes can have masses above the cutoff scale of our low

energy effective field theory. From the low energy point of view, these massive probes will

not be involved in the dynamics of the theory. Thus, our observables seem consistent with

the observables in a UV completion.

AdS-CFT suggests a broader class of observables that may be useful in gravitational

theories. Many operators in the CFT are described by minimal area surfaces of various

dimensions. We will focus on the worldline in this paper, but it may useful to consider

integrals over other submanifolds as a tool for studying effective field theories with gravity.

III. LIMITS OF LOCALITY

A. Black Hole Information

The black hole information paradox is perhaps the best example of the failure of the

effective field theory of gravity. We will not review the details of the argument, as a nice

3 Entanglement entropy is an exception, as it is also related to a minimal area surface [37] but not one that
arises from some more fundamental degree of freedom.
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overview can be found in [7]. The most convincing form of the paradox is the nice slice

argument [2]. One can pick a class of ‘nice’ spatial slices along which the curvature is small

and compute the entanglement entropy between the inside and outside of the black hole along

these slices. Before the curvature of the slices becomes large, one finds the entanglement

has grown beyond that which is consistent with unitary evolution.

It has been suggested by many authors that a breakdown in locality could resolve the

problem, although the origin of this non-locality is varied [2, 3, 7]. In [7], it was suggested

that the imprecision of local operators could be the source of this non-locality. We will

review their argument using the limits of locality from the worldline operators constructed

above.

The nice slices that are used to construct this paradox have the feature that, inside the

black hole, the proper time between the slices becomes very small. However, when these

time intervals become too small, it is not possible to distinguish the different slices with

gauge invariant observables. If one uses particles of mass m to probe the slices, then the

best one can resolve each slice is δt > m−1 > M−1
Pl . Because there is a finite amount of

proper time τin inside the black hole, we can only resolve a finite number of slices, namely

Nmax = τin
δt

= RSMPl where RS is the Schwarzschild radius. In order to resolve the Hawking

radiation, the time steps outside the black hole can be as large as the wavelength δtout < RS.

Thus the total proper time outside that can be described is τ < Nmaxδtout < R2
SMPl.

While this does not resolve the problem, it suggests that a complete, unitary description

may still be compatible with effective field theory 4. In particular, the maximum timescale

we can describe with our observables is shorter than the time necessary to demonstrate

information loss ∼ M2
PlR

3
S. Note that our timescale is shorter than that of [7] because our

resolution was set by MPl rather than the mass of the black hole. This is consistent with a

perturbative failure of locality rather than a failure arising from e−S effects. Let us remind

the reader that this does not imply a fundamental breakdown in locality. Specifically, the

S-matrix may still be local to all orders in perturbation theory. Nevertheless, it should be

stressed that one cannot rule out the existence of operators whose non-local corrections are

non-perturbative. We do not expect this is the case given that corrections to local operators

4 This is compatible with [38] because it is required that the entanglement is measured from the time of
black hole formation.
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in gauge theories arise perturbatively.

B. Locality in de Sitter

Classically, de Sitter space is one of the simplest solutions to Einstein’s equations. Yet,

when it comes to formulating a quantum theory, de Sitter is notoriously confusing [39]. This

has suggested to some that de Sitter will break down in some finite time [6, 40, 41, 42], likely

shorter than the Poincare recurrence time [5, 43]. The fact that string compactifications

seem only to give meta-stable de Sitter solutions [44, 45] has been taken as further evidence

in favor of this view.

While it is widely believed that a quantum theory of de Sitter should breakdown, the

timescale on which this occurs has been the subject of some debate. In [7], it was suggested

that non-locality could somehow clarify the issues in the same way it did for the black

hole. With this in mind, let us examine our proposed operators in de Sitter backgrounds.

Of course, any large non-local corrections will signal a breakdown of the locality of our

observables but not necessarily an instability of de Sitter.

We begin by discussing observables localized on timelike worldlines. These observables

are interesting for two reasons. Firstly, timelike worldlines have often been used to define

measures and classically measurable quantities in de Sitter space or eternal inflation (e.g.

[46, 47]). Secondly, these observables are more amenable to direct computation.

We will work on the static patch where the metric is given by

ds2 = −(1− r2

l2
)dt2 + (1− r2

l2
)−1dr2 + r2dΩ2, (14)

with l =
√

3
Λ

= H−1. We will be interested in observables that would be localized in the

m→∞ limit on the timelike geodesic that sits at r = 0. At finite m, we would like to know

over what time scale the geodesic approximation is valid. Let us expand around the solution

X̄0 = t and X̄1 ≡ R̄ = 0, focusing on the fluctuations in R. In order to have gauge invariant

observables we should extend the worldlines to the asymptotic past and future, but we will

start by working on some finite time interval.
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We will expand the action for a massive particle 5 around R = 0,

S = m

∫ 1

0

dτ

√
−(1− R2

l2
)(
∂t

∂τ
)2 + (1− R2

l2
)−1(

∂R

∂τ
)2 + . . .. (15)

When ∂t
∂τ
� ∂R

∂τ
, and R� l we get

S ' im

2

∫ T

0

dt(
∂R

∂t
)2 +

R2

l2
(1 + (

∂R

∂t
)2) + . . . . (16)

where T = X̄0(1). This is an inverse harmonic oscillator with ω2 ∼ −H2. This unstable

potential will likely make our geodesic approximation break down in finite time. In order

to estimate the time scale, we will work with a Wick rotated (X0 → iX0), positive definite

metric. Then, our action is

− SEuclid ' −
m

2

∫ T

0

dt(
∂R

∂t
)2 − R2

l2
(1− (

∂R

∂t
)2) + . . . (17)

We would like to estimate the period over which the integral will be controlled by the

geodesic. This model can be solved exactly (see [48] for a solution using squeezed states).

However, we will offer a more intuitive (but non-rigorous) argument that will be useful when

discussing more general backgrounds. Regardless, the exact solution yields the same answer

in this case.

We are interested in paths that contribute significantly to the path integral. From the

kinetic piece, we can estimate that paths with maximum deviation |R|max = L contribute

significantly to the path integral when 1 > Skinetic(L) ≥ mL2

2T
.

The kinetic term already seems problematic as T →∞ for finite m, but we will return to

that concern later. We would like to know over what timescale the path integral is controlled

by the kinetic terms and not by the instability due to the inverted potential. This can be

estimated by

|Spotential(L)| ≤ mH2L2T <
mL2

T
≤ Skinetic(L) (18)

Thus, we expect our local description (for the timelike worldline operators) to become non-

local for times t > Tcrit = H−1. This is an extremely short timescale. We will find better

behaved observables, but it is nonetheless surprising that non-relativistic massive particles

are not helpful for localization.

5 We have integrated out e to get the Nambo-Goto form of the action for a massive particle

13



Although the worldline path integral is not easily computable in de Sitter space, the

Green’s functions for scalar fields are known [40, 49]. In soluble backgrounds like flat space,

the worldline path integral computes the propagator for a scalar field [27, 50]. Similarly,

one expects that the Green’s function in de Sitter space is the result of the path integral

for a single particle in the background. For our purposes, we only need to assume that the

Green’s functions give the same qualitative features as the worldline path integral. Under

this assumption, (3) takes the form

OΨi=1..N
= N

∫
ddx
√
−gO(x)

N∏
i=1

G(x, yi) +O(M−2
Pl ) (19)

where G(x, y) is the Feynman propagator for a massless (or massive) scalar field. We will

now use this to estimate the behaviour of our observables for relativistic particles (both

massless and massive). These observables would be exactly local in the α′ → 0 limit of (3).

For a miminally coupled massless scalar, the Green’s function takes the form [51]

G(x, x′) =
H2

4π2
((1− P )−1 + ln(1− P ) + ln(2)− 1

2
), (20)

where P is related to the geodesic distance `(x, x′) by P = cos ` (imaginary ` is timelike).

The pole at P = 1 is on the lightcone, and is what we used to get localization in flat space.

However, this propagator has two types of infrared (IR) problems. First of all, the constant

term means that the propagator does not vanish at large spatial separations. Because we

will have to integrate over one of the endpoints, this will always give a contribution to (19)

of the form

OΨi=1..N
∼

∫
dx
√
−gO(x) + . . . . (21)

The second problem is that the ln(1 − P ) is actually divergent in the IR (|P | → ∞). We

could have come to the same conclusion from knowledge of inflationary pertubations. There

one is calculating a constant time correlation function 〈φ(x, t)φ(y, t)〉, which is the same as

our propagator for space-like separation. The IR divergence can be seen by integrating the

k independent power spectrum to get

〈φ(x, t)φ(y, t)〉 ' −H
2

4π2
ln
|x− y|
L

. (22)

Both of these features are special to de Sitter or quasi-de Sitter backgrounds, and are the

primary obstacle to the quasi-locality of these operators.
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The Green’s function in d dimensions for a massive scalar in the Bunch-Davies vacuum

is given by [52, 53, 54]

G(x, x′) =
Γ(h+)Γ(h−)

(4π)
d
2 Γ(d

2
)
F (h+, h−;

d

2
;
1 + P (x, x′)

2
), (23)

where F is a hypergeometric function and h± ≡ d−1
2
±

√
(d−1

2
)2 − l2m2. The first important

fact about the propagator is that it has a pole at P = 1. This offers hope that localization

may be possible for some observables 6.

In an attempt to localize operators, we will use (3) with massive particles. These observ-

ables may localize on the intersection of lightcones if we can avoid the IR problems of the

massless observables. For large P , the propagator behaves as

G(x, x′)→ C1P
−h+ + C2P

−h− . (24)

From the form of h±, if m2 � H2 these contributions will be suppressed on large distances.

Therefore, in order to have localized observables, we need a sufficient hierarchy between MPl

and H such that

MPl � m� H. (25)

Under these circumstances, the non-gravitational contribution yields operators localized at

the intersection of null geodesics originating at I±. If we only have asymptotic de Sitter in

the past or future, the amount of local information is limited. Even classically, if we only

have null geodesics originating at I− (I+), one cannot arrange for the geodesics to intersect

arbitrarily far in the future (past). At best one could have local information ‘near’ I− (I+).

However, until we understand the gravitational fluctuations in de Sitter, we cannot guar-

antee local behavior. At the very least, one would like to calculate the perturbative correc-

tions analogous to (12). However, the form of the graviton propagator in de Sitter will cause

these corrections will be large. The graviton propagator for a locally 7 de Sitter background

can be built from the massless scalar propagators [55, 56, 57]. In order to get small grav-

itational corrections, one needs the propagator to fall off at large distances. In particular,

6 The Green’s function for the α vacua has an additional pole on the antipodal point. This would seem to
cause localization to fail immediately for eα 6= 0.

7 Fully de Sitter invariant propagators have many unphysical properties [55] in addition to the same IR
divergent behavior as the massless scalar.
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based on (10) and (19), we expect corrections of the form

O(M−2
Pl ) ∼ 〈O(x̃)〉

M2
Pl

∑
a,b

∫
dτa

∫
dτbp

µ
a(τa)p

ν
a(τa)Pµνλρ(Xa, Xb)p

λ
b (τb)p

λ
b (τb), (26)

where pµa is the four-momentum of a worldline and Pµνλρ is the graviton propagator in de

Sitter. Thus, the IR divergent terms in (20) will produce large gravitational corrections to

our operators. These corrections prevent us from getting quasi-local behaviour for any of our

observables. The meaning of the IR divergences in de Sitter is the subject of much debate

[53, 58, 59]. It remains an open question if one can formulate gravitational perturbation

theory in de Sitter in a sensible way [57, 60, 61].

In gauge theory, similar divergent contributions from the Wilson line are the signal of

confinement. This suggests a possibly interesting (but very speculative) interpretation of de

Sitter as a ‘confining’ phase for local observables.

C. General Backgrounds

For a general background with given asymptotic behavior, the different observables can

be categorized based on the type of geodesics one expects to approximate the path integral

(timelike, null or spacelike). For timelike observables, the spreading of the wavefunction

is potentially a serious problem. From (18), we see that if we extend the worldline to the

infinite future (T → ∞), then the worldlines that contribute significantly to the integrals

have arbitrarily large deviations (L → ∞) from the geodesic. There is a fairly intuitive

explanation for this effect for non-relativistic particles in flat space. Given some initial

point in space-time, any point that is time-like separated can be connected by a classical

solution. For short time intervals, a geodesic connecting points far removed in space has a

large action. However, as time tends to infinity, the action of a geodesic tends to zero for

any finite separation in space.

For null observables, one is aided by the reduced dimension of the points with null sep-

aration. Given some initial point, there are classical solutions only when the endpoints are

on the light-cone. As a result, one expects that a point defined by the multiple intersections

of light-cones should be less sensitive to quantum effects than the timelike observables. De

Sitter seems to be an exceptional example where this fails due to the large fluctuations

outside the horizon.
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For spacelike observables, the primary difference from the timelike case is that spacelike

infinity is typically connected. In some backgrounds this gives a well controlled geodesic

approximation for spacelike geodesics. A canonical example is Anti-de Sitter (AdS) which

has been studied extensively in the context of AdS-CFT. There, spacelike observables play

an important role as they can be related to correlation functions in the CFT. The geodesic

approximation can be shown to give the leading behavior [62], and subleading corrections

can be computed [63]. Attempts have also been made to give a precise definition of local

bulk operators in terms of the CFT correlators [36].

Finally, there is one concern that may apply to all types of observables. We have as-

sumed in all cases that the stationary phase approximation holds in the context of interest.

There may be circumstances where corrections to it become important and obstruct the

construction of quasi-local operators. For more discussion of these points, see [50]

IV. CONCLUSIONS

Motivated by the analogy with gauge theory, we studied the non-local gravitational cor-

rections to local operators in backgrounds with asymptotic behavior. We proposed a class

of manifestly gauge invariant operators in (3). These operators are exactly local in the

absence of dynamical gravity, but receive perturbative, non-local corrections when gravity

is included. This type of behavior is consistent with our expectations from gauge theory.

Using these observables, we studied apparent breakdowns in locality in both black hole and

de Sitter space backgrounds. In the case of de Sitter space, our observables failed to give

quasi-local behavior.

For a general background, we found that observables built from the worldlines of non-

relativistic particles, fail to give quasi-local behavior in many backgrounds. Those built

from null worldlines were seemingly better behaved and could potentially be useful in many

settings.

One goal of this work was to understand the timescales over which de Sitter space can be

consistently defined. There are many reasons to believe that de Sitter is unstable [6, 40, 41,

42, 43, 44, 45], but the timescale on which this must occur is unclear. It was suggested in [7]

that the non-locality of gravity may play a role in a proper understanding of de Sitter. The

observables we studied failed to be quasi-local in de Sitter space due to the IR divergences
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in the propagators of massless fields. By analogy with confinement, this may suggest an

interpretation of the IR divergences as a failure of locality.
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