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Abstract

Several new physics scenarios can lead to monojet signatures at the LHC. If such events are

observed above the Standard Model background it will be important to identify their origin. In

this paper we compare and contrast these signatures as produced in two very different pictures:

vector or scalar unparticle production in the scale-invariant/conformal regime and graviton

emission in the Arkani-Hamed, Dimopoulos and Dvali extra-dimensional model. We demon-

strate that these two scenarios can be distinguished at the LHC for a reasonable range of model

parameters through the shape of their respective monojet and/or missing ET distributions.
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1 Introduction and Background

The LHC will turn on during 2008 and it is generally expected that new physics beyond the Standard

Model(SM) will be discovered at some point thereafter once significant luminosity is accumulated

and the the two detectors are sufficiently well-understood. What new physics signatures will be

observed and how will they be grounded within a specific theoretical framework? Clearly once the

new physics is found, our primary goal will be to uncover its origin and to identify the underlying

model which generates it. This can sometimes be confusing as in many cases several kinds of new

physics can lead to quite similar signatures at colliders. Supersymmetry[1] and Universal Extra

Dimensions[2] provide us with one well-known example of this possible model confusion which has

been much discussed in the recent literature[3]. The ability of the LHC to differentiate models with

similar signatures may become the the most important issue once new physics is discovered.

In this paper we will consider another example of this kind of potential confusion which may

arise at the LHC between two very different scenarios: graviton emission in the extra-dimensional

model of Arkani-Hamed, Dimopoulos and Dvali(ADD)[4] and the production of scalar/vector un-

particles in the model of Georgi[5] in the scale-invariant/conformal regime[6] where the unparticle

can be treated as both ‘massless’ and stable. Here, by a ‘massless’ unparticle we will mean one that

has a null threshold mass parameter, i.e., μ2 = 0, which determines the minimum allowed value

of its possible squared 4-momentum[6], i.e., μ2 ≤ P 2. (Recall that for unparticles the value of P 2

actually takes on a continuous range which is integrated over to obtain observable cross sections.)

Both of these new physics models can lead to a monojet signal, i.e., a single jet plus missing ET

(MET) with balancing transverse momenta, at the LHC. In the ADD case, this scenario has been

studied in some detail in the classic work by Vacavant and Hinchliffe[7] within the ATLAS[8] set-

ting, which we will use as a guide for the present analysis.‡ Assuming that monojet signals above

the SM backgrounds are indeed observed at the LHC we will demonstrate that the shapes of the
‡CMS[9] has also performed a more recent but comparable analysis in the single photon channel.
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corresponding excess jet and/or missing ET distributions are qualitatively quite distinctive in these

two cases. This will allow these two classes of models to be distinguished at the LHC for a range

of parameters provided that sufficient integrated luminosity is available.

As emphasized by Vacavant and Hinchliffe[7], observing an excess in the monojet channel

relies on our thorough understanding of the SM background. At low ET , this background can be

dominated by QCD/jet energy mis-measurements. However, at high ET it is largely dominated by

Z + j production followed by the decay Z → νν̄. Fortunately, in practice, it appears that neither

ATLAS nor CMS[10] will need to rely solely on Monte Carlo estimates to fully understand this

MET plus jet(s) background. At high ET one can instead employ the ‘standard candle’ approach

where one makes use of the same production channel but now with the Z decaying leptonically,

i.e., Z → e+e−/μ+μ−. These easily measured rates can then be corrected for differences in the

branching fractions as well as for acceptances and efficiencies to obtain the Z-induced SM monojet

background[11] directly from data. In the analysis presented below we will assume that this proce-

dure works so that this background will eventually be well understood in the very high ET region

above 500 GeV, corresponding to an Meff = ETj +MET ≥ 1 TeV upon which we will concentrate.

We will not include in the present analysis possible additional information that may be obtainable

from the lower ET region where the jet energy mis-measurements can be a potentially large source

of SM backgrounds. The resulting SM background estimates that we obtain and will employ below

are found to be essentially the same as, though perhaps 10 − 20% larger than, those found by

Vacavant and Hinchliffe[7].

Our procedure is rather straightforward: First, we will demonstrate that the overall shape

of the normalized monojet ET distribution predicted by the ADD model is essentially independent

of the number of extra dimensions in the relevant parameter range. Next we will show that the

predictions for the corresponding normalized monojet ET spectra produced by either scalar and

vector unparticles lie in a rather narrow band. By comparing these two sets of distributions it

will then become clear that for sufficiently high integrated luminosities, ∼ 100fb−1, these two

2



predictions will be easily isolated from one another in ET space so that we can distinguish these

two classes of models at the LHC by using the data collected above ET = 500 GeV.

2 Analysis

Let us begin by considering the monojet signal[12] in the ADD model which arises from graviton

Kaluza-Klein tower (G) emission in the following processes: qq̄ → gG, gg → gG and q(q̄)g → q(q̄)G.

The expressions for these parton-level cross sections are given in full detail in Ref.[12]. In the original

ADD scenario, the resulting cross section expressions depend upon only 2 parameters: the number

of extra dimensions, 2 ≤ δ ≤ 7, and the value of the D = 4 + δ-dimensional Planck scale, MD;

these subprocess level cross sections are observed to scale as ∼ M
−(2+δ)
D . Since the ADD model

is only an effective theory below the mass scale MD, in performing the integrations necessary to

obtain the relevant LHC cross sections it is unclear how to treat the kinematic region where the

partonic center of mass energy, ŝ, is in excess of MD. There are two common ways that one can

address this issue discussed in the literature[7, 12]. First, we could simply ignore this problem

and perform the necessary integration; a second possibility is to make a hard truncation in the

integration at ŝ = M2
D. The former choice will, of course, lead to a larger event rate but one

finds that these two approaches yield qualitatively similar but quantitatively different numerical

results. In performing our analysis, we will instead follow an intermediate approach and employ a

gravitational form factor[13] which naturally controls the large ŝ part of the cross section, extending

the range of validity of the partonic cross section above ŝ = M2
D and maintains unitarity at high

energies. For numerical purposes we will use a fixed form factor scale of ΛFF = 8 TeV in this

analysis. One finds, however,that varying this particular choice makes little numerical difference in

the results presented below, as an explicit examination reveals, since the form factor only leads to

modifications in the extreme high end of the various ET distributions where there are very limited

statistics.
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Figure 1: Event rate for the monojet signal induced by graviton emission in the ADD model
assuming 2 ≤ δ ≤ 7, from bottom to top, as a function of the jet ET in the top panel or above a
minimum jet ET cut in the lower panel. Note that a cut on the jet rapidity of |ηj | ≤ 3 has been
applied in all cases. As discussed in the text the values of MD have been adjusted in each case so
as to give the same prediction as that for MD = 4 TeV with δ = 2 at an ET value of 500 GeV. Note
that for comparison purposes these ADD predictions are for pure signal only. The SM background
is represented in either panel by the lowest black histogram.
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Since our goal is to differentiate monojet signals arising in different models by the shapes

of their jet ET distributions, it is instructive to first compare the ADD model ‘with itself’, i.e., to

compare the ADD predictions for different values of δ while simultaneously varying the value of

MD (as a function of δ) so that the models all predict the same cross section at some fixed value of

the jet ET . This allows us to directly compare the predicted shape for the signal monojet spectrum

for each value of δ without having to worry about the overall normalization of the spectrum. Note

that in all cases the subprocess cross sections for graviton emission are seen to grow rapidly with

ŝ and so can naturally lead to large event excesses at high ET . As an example, let us assume a

reference value for the monojet cross section corresponding to the choice of δ = 2 with MD = 4

TeV. For all larger values of δ we will then adjust the associated value of MD such that identical

cross sections are obtained when evaluated at a jet energy of ET = 500 GeV. Note that there

is nothing particularly special about this choice of ET value other than it allows us to have a

reasonable signal-to-background ratio for all values of δ for the integrated luminosities that we

will assume in our analysis. Other choices for this cross-over point in the ADD case would yield

qualitatively similar results since we are only probing the various shapes of the ET distributions

here. We next determine the resulting LHC monojet event rates for each case as a function of jet ET

while simultaneously demanding that the monojet be more or less central in rapidity, i.e., |ηj | ≤ 3,

as assumed by Vacavant and Hinchliffe[7]; to be specific, we employ the CTEQ6.6M PDFs[14]

throughout and will assume a fixed integrated luminosity of 100 fb−1. In a similar manner, we can

also ask for the cumulative number of events above a minimum cut on the jet ET which probes a

somewhat different aspect of the jet ET spectrum. As we will see, the additional statistics in this

distribution will allow for an improved separation of models.

The results of this analysis together with an estimate of the SM Z + j induced backgrounds

are shown in Fig. 1 for 2 ≤ δ ≤ 7 assuming jet ET ’s larger than 500 GeV. Here we see that while

the ADD model for the chosen set of parameter ranges clearly produces a significant signal above

the SM background it is very difficult to determine the value of δ itself since all of the predicted
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Figure 2: Same as Fig.1, but now for vector unparticles with, from bottom to top, d = 1.1 to
d = 1.9 in steps of 0.1(0.2) in the lower(upper) panel.
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distributions lie rather close to one another§. This is seen to be an even stronger conclusion for

the case of the Ecut
T distributions. This reproduces the well-known result[7] that at the LHC it

is essentially impossible, or at least extremely difficult, to determine both the values of MD and

δ simultaneously from the observation of a monojet excess at a fixed value of
√

s. However, for

our purposes, this is a positive result since our goal is to distinguish the set of all ADD predictions

from those of other models, specifically, those arising from unparticles. The ADD prediction for the

shape of these ET and Ecut
T distributions are thus found not to be very sensitive to the specific value

of δ, especially when 3 ≤ δ. Note that if the value of ET = 500 GeV, chosen as the cross-over point

where the various ADD predictions yield the same cross section, was taken to be somewhat larger

then any determination of the value of δ would be only be made more difficult since the divergences

in the observed spectra would be reduced. Lowering the cross-over point would increase the lever

arm somewhat but, as we can easily see from this figure, would at most only be useful in separating

the δ = 2 case from the other choices for δ.

When considering the predictions of the unparticle model, with which we wish to compare

the ADD scenario, the parameter space is somewhat more varied and there are many possibilities.

Here, to be specific, we will consider the case of ‘massless’ unparticles, as described above, which are

assumed to be either scalar (spin-0), US , or vector (spin-1), UV , and in either case are sufficiently

stable so that they can lead to a collider missing ET signature. However, we have checked that by

adding a small unparticle threshold mass, μ <∼ 100 GeV, so that P 2 ≥ μ2, we will not significantly

alter the numerical results presented below as long as the relative stability of the unparticle on

collider scales is also maintained. This is clear since for these 2 → 2 processes small threshold

masses for the unparticles will only result in a small reduction in the size of the relevant phase

space which is of order ∼ μ2/ŝ. Having made these particular choices, several other parameter

options still can remain. If we take the simplest possibility and assume that the unparticle couples

as a SM gauge singlet to only one operator constructed of only single type of SM field, then the
§The results for δ = 2 are seen to lie slightly below the others so that this case may be confidently distinguished

from the others at somewhat higher integrated luminosities. It is important to note, however, that the predictions
for larger values of δ lead to slightly harder distributions.
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Figure 3: Same as Fig.1, but now for r = 0 scalar unparticles with, from bottom to top, d = 1.1 to
d = 1.9 in steps of 0.1(0.2) in the lower(upper) panel.
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resulting interaction will depend upon only an overall scale, Λ, as well as the value of the effective

unparticle anomalous dimension, d, which is restricted to lie in the range 1 < d < 2. If, however,

the unparticle is allowed to couple to several different SM operators, then the relative strengths of

these interactions, ri, can also become quite relevant. Here, to be specific, we will assume that the

spin-0 unparticles couple to the relevant SM fields via

1
Λd−1

∑
q

q̄qUS + r
1
Λd

Ga
μνGμν

a US , (1)

for all quark fields q and where Ga
μν is the gluon field strength tensor; we will consider the two

cases r = 0, 1 below as representative examples. We will further assume that the spin-1 unparticles

couple only to the SM quarks via

1
Λd−1

∑
q

q̄γμqUμ
V , (2)

also in a universal manner. The parton-level cross sections for the relevant processes qq̄ → gUV ,

q(q̄)g → q(q̄)UV and gg → gUS can be found in Ref.[15]. Correspondingly, we find that the

(reduced) spin and color-averaged squared matrix elements for the remaining processes of interest

are given, in a slightly modified version of the notation of Ref.[15], by

|M̄ |2(qq̄ → gUS) =
16παs

9ût̂Λ2
(ŝ2 − (P 2)2) (3)

|M̄ |2(qg → qUS) =
2παs

−3ûŝΛ2
(t̂2 − (P 2)2) ,

where P 2 is the unparticle invariant mass, as defined above, which is integrated over to obtain a

final cross section result. A similar expression is found to hold in the case of the q̄g initial state.

The corresponding differential cross sections are then given by

d2σ

dt̂dP 2
=

1
16πŝ2

Ad

2π
|M̄ |2

(P 2

Λ2

)d−2
, (4)
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where t̂ is the usual subprocess-level Mandelstam variable and Ad is the familiar unparticle numer-

ical phase space factor as given by Georgi[5]. It is interesting to note that the scaling behavior of

the unparticle cross sections for both the unparticle vectors and r = 0, 1 scalars is such that they

will lead to essentially the same ET dependence as the SM background in the limit when d → 1.

This is not surprising since in that limit the unparticles behave in a manner similar to the more

conventional SM boson fields. In keeping with the ADD distribution shape analysis above, we will

in all cases adjust the value of the scale Λ so that the unparticle monojet cross section at ET = 500

GeV is the same as that for the ADD model with MD = 4 TeV with δ = 2 at the same ET . In

order to do this it is obvious that different values of Λ will need to be chosen as both d and r are

varied for both the scalar and vector unparticle cases independently.

Figs. 2, 3 and 4 show the results analogous to Fig. 1 for the vector unparticle as well as

the scalar unparticle cases with r = 0, 1, respectively. Several things are immediately obvious from

these figures. First, as expected, the overall shape of the unparticle ET and Ecut
T spectra becomes

stiffer as the value of d is increased. This is not too surprising as the leading subprocess cross

sections are observed to scale as ∼ (ŝ/Λ2)d−1 relative to the Z + jet SM background. Secondly,

the distributions we obtain for both the scalar and vector particles are, for the same value of d,

essentially of the same shape. Again, this is not surprising as these two case differ only in the

tensor structure of the unparticle interaction. The r = 0 and r = 1 scalar interactions are slightly

different due to the additional unparticle coupling to the gluon. While this operator is suppressed

by an additional power of ŝ/Λ2, the initial state gg luminosity at relatively low ET is very large

and somewhat offsets this suppression. All in all, the predictions for the monojet spectra of these

representative unparticle models are found to lie in a somewhat narrow band which is observed to

be harder at high ET and Ecut
T than is the SM background.

Up to now we have found that both the ADD predictions for the monojet ET and Ecut
T

spectra and those from unparticles separately lie in rather restricted ranges. How do these ranges

compare? Since the hardest ET spectrum in the unparticle model is obtained for large d and the
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Figure 4: Same as Fig.1, but now for r = 1 scalar unparticles with, from bottom to top, d = 1.1 to
d = 1.9 in steps of 0.1(0.2) in the lower(upper) panel.
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Figure 5: Sample comparison of the predictions for the monojet ET and Ecut
T distributions in the

ADD model with MD = 4 TeV and δ = 2 (upper red histogram) with the case of vector and scalar
unparticles (with either r = 0, 1) assuming d = 1.8. Also shown is the SM background (black
histogram).

12



softest spectrum for ADD occurs when δ = 2 it is most instructive to compare these specific two

cases. Any other pair of spectra will clearly lie further apart in ET space and so will be more

easily distinguished. Fig. 5 shows a representative set of comparisons of these two cases taking the

above observations into account. Here we see that the three sample unparticle model predictions are

relatively clustered together and lie in between those for the ADD scenario and the SM background.

While the unparticle predictions themselves are difficult to distinguish it is clear that they are all

easily differentiable from those of the ADD model. It is clear that a very large amount of jet energy

smearing would be necessary to make these two predicted ET regions appear to overlap to any

extent. These results demonstrate that with enough statistics the shapes of the excess monojet ET

distributions arising from these two classes of models can be distinguished at the LHC provided

that they are visible above the SM background. We would, however, hope that a more detailed

study by ATLAS/CMS using a full detector simulation will be performed to verify these results.

3 Discussion and Conclusions

In this paper we have explored the capability of the high luminosity LHC to differentiate two sets of

new physics models that can lead to visible missing ET /monojet signatures. The relevant tools for

model discrimination are the shapes of the resulting monojet ET and Ecut
T distributions themselves.

First, we demonstrated that (i) the predictions of the ADD for the monojet ET /Ecut
T distributions

form a very narrow band for 2 ≤ δ ≤ 7 and, (ii) Similarly, the corresponding predictions in the case

of vector or scalar unparticles also so lie in a different but not so narrow band. Second, we showed

that these two bands are seen not to overlap when integrated luminosities of order ∼ 100fb−1

are available implying that these two classes of models which induce the monojet signal can be

distinguished at the LHC.
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