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This script presents a field-based analysis of laser acceleration of 
relativistic electrons in a free space that is bounded by a thin scattering or 
by a thin absorbing surface. The laser acceleration process is analyzed in 
terms of the inverse-radiation formalism and compared to the more 
familiar field path-integral analysis method.  When the scattering 
boundary is modeled as a linear-index medium the predictions for laser-
electron interactions from both field methods are found to agree. For the 
absorbing boundary both interaction pictures are also found to agree 
provided that the inverse radiation method is generalized to include 
absorption of energy from the boundary that is modeled as a linear ohmic-
loss object.   

 
I. INTRODUCTION 
Laser-driven particle acceleration in vacuum is typically understood in terms of the 
accumulated mechanical work on a relativistic free particle as it samples the external 
electric field from the laser along its path. In this laser-electron interaction picture the 
mechanical work of the laser on a free particle of charge q is given by the path integral 
 

( )∫
Γ

⋅=Δ rdrEqU PLLP
rrr

,,         (1) 

 
LPU ,Δ  is the mechanical work on the particle P caused by the external laser beam L, 

( )rE PL
rr

,  is the electric field of the laser field on the particle at the location rr , and Γ is the 
particle’s trajectory. This first interaction picture described by equation 1 is the simplest 
and most common model and will be referred to as the field path-integral interaction 
picture. Here we consider highly relativistic particles with a uniform rectilinear motion.  
In this limit the integral of equation 1 takes the form 
 

( )( )∫
∞

∞−

=Δ dzttzqEU zLP ,,         (2) 

 
where the position  has the form ( )tz ( ) ctztz β+= 0 . It is well known that in the 
discussed limit a free-space electromagnetic field configuration does not exchange energy 
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with the free particle in a linear fashion, and in the regime of relatively low laser field 
intensities considered here the integral in equation 2 becomes vanishingly small.  This is 
the Lawson-Woodward Theorem [1]. The theorem is very specific and does not apply for 
non-uniform particle motion of the free particle such as in an IFEL. Another important 
failure mechanism for the Lawson Woodward theorem is the introduction of a mediating 
object between the particle and the free-space field. In such a scenario the mediating 
object alters the electromagnetic field components along the particle trajectory in such a 
way as to produce a nonzero contribution to the mechanical work in equation 2.  
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FIG 1.  (a) General configuration for thin-boundary terminated vacuum 
laser-driven particle acceleration. The boundary introduces an alteration to 
the free-space laser field that breaks the Lawson-Woodward Theorem. (b) 
A scattering boundary that breaks the incident laser beam into may plane 
wave components. (c) An absorbing boundary, which heats up as it 
absorbs energy from the laser beam. 

 
  
We consider the general geometry where a laser beam is nearly co-propagating with a 
relativistic electron beam at a very shallow angle α in the upstream space of a boundary. 
The purpose of the boundary is to alter or to completely stop the laser field in the 
downstream region. For the thin boundaries as shown in figure 1 the path integral can be 
decomposed as a sum of an upstream and a downstream interaction 
 

( )( ) ( )( ) downstreamupstreamzzLP UUdzttzqEdzttzqEU Δ+Δ≡+=Δ ∫∫
∞

∞− 0

0

, ,,    (3) 
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A monochromatic plane wave of amplitude  and wavelength 0E λ  co-propagating with 
the relativistic particle at a shallow angle γα 1~  can be shown to provide an energy 
gain in the upstream region of a reflective flat boundary [2] 
 

ϕρ
γα

α
π
λ sincos

1 22
0

, +
=Δ=Δ

qEUU upstreamLP      (4) 

 
where ρ  is the polarization angle of the laser beam with respect to the laser-electron 
beam plane, and ϕ  is the optical phase of the laser beam.  The plane wave component 
that is reflected from the boundary has an angle that is significantly different from 

γα 1~  and therefore has a negligible contribution to the field path integral when 
compared to the contribution from the incident plane wave. For this boundary the 
downstream region has no laser field ( )0=Δ downstreamU , and from the field path integral 
approach one can expect a similar situation for the scattering and the absorbing 
boundaries, whose downstream region is effectively in the shadow of the incident laser 
beam. A transparent boundary is the only instance where the downstream region provides 
a significant interaction to the energy gain. In the limit of no reflection from the surface 
(such as from a Brewster angle configuration) upstreamUΔ  and downstreamUΔ  are equal in 
magnitude and differ only by an optical phase retardation factor retϕ  introduced by the 
boundary, and the particle’s energy gain takes the form [3] 
 

({ ϕϕϕ
γα

)}α
π
λ

+−
+

Δ ret
qEU sinsin

1
~ 22

0
LP,      (5) 

 
An alternate interaction model that has been employed to analyze laser-acceleration from 
the reflective and transparent boundaries is the inverse-radiation interaction picture.  It is 
also field-based and derives from conservation of energy. It is required that the  
electromagnetic field energy absorbed in the volume of interest, denoted here by , 
be equal to the mechanical work on the free particle plus the mechanical work on any 
other interacting objects in that volume of interest 

radUΔ−

 
Mrad UUU P Δ+Δ=Δ−         (6) 

 
For example,  can represent the change of stored electromagnetic energy in a 
resonant accelerator cavity, the heating of an ohmic material, or the electronic excitation 
or chemical transformation of a medium. 

MUΔ

PUΔ  represents the change of kinetic energy of 
the free particle. Equation 6 is based on energy balance and describes the inverse-
radiation picture of particle acceleration, where commonly the term  is neglected 
and all the external electromagnetic energy is assumed to couple to the free particle. 
Laser-driven particle acceleration in most semi-open vacuum configurations is one such 
instance where this approximation is valid, and the interaction is  

MUΔ
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PUU Δ=Δ− rad          (7) 
 
The minus sign in equation 7 indicates that laser energy has to flow into the volume of 
interest (be absorbed) when the free particle gains energy. This inverse radiation 
formulation of particle acceleration can be viewed as a consequence of Poynting’s 
Theorem, and explicit evaluation of the electromagnetic field components reveals that 

 can be expressed as an overlap integral of the particle and driving 
electromagnetic field plus another overlap integral of the particle’s own radiated fields 
such that the free particle’s energy change is described by 

radUΔ−

 

( ) ( )( ) ( ) ( )( ) ωωω
π

ωωω
π

ddsEE
Z

ddsEE
Z

U
S

WW
S

WLP ∫ ∫∫ ∫
∞

∞−

∞

∞−

⋅−⋅−=Δ *

0

*

0

11 rrrr
    (8) 

 
where LE

r
 is the electromagnetic field caused by the laser in the presence of the structure 

and is the wake field from the particle in the presence of the structure. The first 
overlap integral describes the coupling between the external electromagnetic field and the 
partice’s retarded field, and the second integral describes the energy lost by the particle as 
a result of interacting with the accelerator structure or medium. In the presence of 
mediating object such as a boundary equation 8 may become nonzero, allowing for a 
linear interaction between the external field and the particle. Thus the first overlap 
integral describes the laser-acceleration process in question and will be denoted by 

WE
r

LPU ,Δ  
in equation 9. The second overlap integral of equation 8 describes the particle wakefield 
radiation process that already occurs independently of the laser, denoted by  in 
equation 9. The total energy change of the particle beam is therefore 

WPU ,Δ

 
WPLPP UUU ,, Δ+Δ=Δ           (9) 

 
For semi-open vacuum laser-driven particle acceleration problems the applied laser field 
is expected to be large, such that WPLP UU ,, Δ>>Δ . Therefore the wake field energy loss 

term is usually neglected and LPP UU ,~ ΔΔ . With this assumption equation 8 reduces to 
the common description for particle acceleration as an inverse-radiation process where 
the interaction strength scales linearly with the overlap integral between the external laser 
field and the particle’s radiation wakefield pattern [4,5] 
 

 ( ) ( )( ) ωωω
π

ddsEE
Z

U
S

WLP ∫ ∫
∞

∞−

⋅−Δ *

0

1~
rr

      (10) 

 
As stated before this picture is based on a simple energy conservation argument. The 
absorbed electromagnetic energy causes an energy gain on the accelerator medium or 
structure and on the free particle. For the reflective, transparent and scattering surfaces 
the boundary does not absorb energy, and therefore all the absorbed electromagnetic 
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energy is channeled into gain of kinetic energy of the free particle. For these boundaries 
we expect equations (7-10) to hold. For the reflective and the transparent boundaries the 
transition radiation components have been evaluated analytically and the overlap 
integrals for these cases have been found to match the respective path-integral energy 
gain formulas of equations 4 and 5 [2,3]. The following section will analyze the inverse-
radiation picture of laser-electron interaction in the presence of a scattering-surface 
boundary. 
 
 
II. THE ROUGH-SURFACE SCATTERING BOUNDARY 

An explicit evaluation of the individual scattered laser or particle fields is not possible to 
perform for the scattering rough-surface boundary of Figure 1b because the details of the 
individual random scatterer boundaries are unknown. However, assuming the slippage 
distance between the laser and the electron is much longer than the boundary thickness 
one can still make an explicit evaluation of the overlap integral of equation 10, and the 
procedure for this is described in this section. Here we model the scattering layer as 
having a local linear susceptibility matrix ( )⊥r

rχ~  that when subjected to an external field 
produces a local polarization  
 

( ) ( ) ( )⊥⊥⊥ = rErrP inc
rrrrr χ~          (11) 

 
where  is the local incident field. Hence the boundary can be regarded as a 
collection of local dipoles that radiate a new field with a distinctive far-field distribution 
that depends on both the specific properties of the boundary and on the polarization and 
angular distrubution of the incident field. Figure 2 is an illustration of the model of the 
boundary. 

( )⊥rEinc
rr
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FIG 2. the boundary modeled as a thin scatterer of  an incident plane wave 
into a spectrum of far-field plane waves. 

 
As indicated in equation 11 a linear response is assumed. The incident and the scattered 
far field distributions can be described in terms of plane wave components with a specific 
direction of propagation k

r
and a polarization . Denoting the amplitude of an incident 

plane wave as 
p̂

( )iii pk ˆ,
r

ψ  and the amplitude of the scattered plane wave as ( )sss pk ˆ,
r

ψ  

these waves can be related by a scattering matrix ( ) ( )iiss pkpkS ˆ,;ˆ,~ rr
ωχ , such that  

 
( ) ( ) ( ) ( )∑ ∫

⊥

=
i k

iiiiiisssss

i

kdpkpkpkSpk
,

ˆ,ˆ,;ˆ,~ˆ,
r

rrrrr
ψψ ωχ      (12) 

 
where the integral extends over all ik

r
 and the discrete sum includes the two possible 

polarizations . In this notation a particular incident free-space plane wave with 
direction  and polarization  is described by  

2,1=i

ik
r

ipr

 
( ) ( ) ( )

i
zkrki

iiiinc pepkzzrrE izi ˆˆ,ˆ ,, +⋅
⊥

⊥⊥=+=
rrrrrr

ψ       (13) 
 
A similar expression holds for a scattered plane wave. The total scattered electromagnetic 
field is the sum of all plane wave components of equation 12, namely 
 

( ) ( ) ( )

( ) ( ) ( ) ( )
s

k j k
is

zkrki
ssijiiss

k
ss

zkrki
sssscatt

kdkdpepkpkpkS

kdpepkrE

s i

szs

s

szs

rrrrr

rrrr

r r

rr

r

rr

∫ ∑ ∫

∫

⊥ ⊥

⊥⊥

⊥

⊥⊥

+⋅

⊥
+⋅

=

=

, ,

,,

,

,,

ˆˆ,ˆ,;ˆ,~            

ˆˆ,

,

,

ψ

ψ

ωχ

   (14) 

 
To simplify these expressions it will be more convenient to describe the collection of the 
incident and scattered wave amplitudes as state vectors, such that  
 

( ) ( ) ( ) ( )iiiiisssss pkpkpkSpk ˆ,ˆ,;ˆ,~ˆ,
rrrr

ψψ ωχ=       (15) 

 
Thus, for example, the scattering matrix for free space is simply the identity matrix, 

( ) IS ~~ =ωχ , such that the scattered and the incident plane wave spectra are the same; 

( ) ( ) ( )iiiisissss pkppkkpk ˆ,ˆ,ˆ;,ˆ,
rrrr

ψδψ = . Next, assume a dielectric layer. Neglecting the 

relatively small reflection coefficients and assuming the plane wave spectrum has a small 
angular spread the scattering matrix of such a layer is a simple retardation factor of the 
form , where ( )

retieIS ϕ
ωχ

~~ = retϕ  is an optical phase retardation. For a high-reflector 
flat boundary the z-component of the plane wave reverses direction; , and izsz kk ,, −=
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there is also a polarization dependent phase change ( )ipR r  for the reflected wave, such 

that the scattering matrix has a form ( ) ( ) ( ) ( ) ( isizszisi ppkkkkpRS ˆ,ˆ,,ˆ )~
,,,, δδδωχ −= ⊥⊥

rr
. For 

more complex-shaped boundaries ( )ωχS~  will not have such a simple structure. However, 
since we are limiting our discussion to linear-response media time-reversal symmetry is 
expected to apply and thus ( )ωχS~  should reproduce the original incident field spectrum 
from the scattered fields if they are propagating backwards into the scattering layer; 
 

 ( ) ( )
( )

†~ˆ,ˆ,
ωχ

ψψ Spkpk sssiii

rr
=        (16) 

 
Equations 15 and 16 imply that ( )ωχS~  is unitary, that is,

( ) ( ) ISS ~~~† =ωχωχ
.  For free-space 

waves there is a redundancy in specifying all the components of k
r

 for the scattering 

matrix since ( ) 22
⊥−±= kckz

r
ω . Therefore for a given wavelength the scattering matrix 

can be described without specifying , such that it takes the form zk
 

( ) ( ) ( )iiisss pdkpdkSS ˆ,,;ˆ,,~~
,, ⊥⊥≡

rr
ωχωχ        (17) 

 
The terms  and indicate the direction of the plane wave, which can have only two 
values; either upstream or downstream direction, e.g. 

sd id
1±=d . Note that for an absorbing 

boundary ( )ωχS~  is no longer unitary. Radiation from such a boundary is a broadband 
blackbody spectrum where the phase and amplitude of the outgoing blackbody radiation 
waves are not linear functions of the input wave. Hence an absorbing boundary is poorly 
described by this formalism.  
 
To proceed with the analysis for the laser-electron interaction from a linear boundary the 
scattering process of the particle’s fields from the boundary needs to be described. A key 
assumption in the analysis presented here is that the local susceptibility ( )⊥r

rχ~  of the 
scattering plane does not distinguish between the electric field from a free-space wave or 
from a particle retarded field. Figure 3 illustrates the scattering model for the particle 
field components. The retarded electron field also produces a scattered plane wave 
spectrum where the only difference is that the incident plane wave spectrum from the 
particle field is not free-space, but the scattered wave spectrum still is. Since ( )⊥r

rχ~  is 
assumed not to differentiate between these fields a plane wave from the electron field 
with a given ik ,⊥

r
 and ipr  will experience the same scattering matrix coefficient as the 

equivalent free-space wave. This incident field differs from the free-space counterpart by 
a phase-slippage factor  because the electron field moves with the electron that 
creates it at a subluminal velocity (  is smaller). Since the boundary is assumed to be 
much thinner than the slippage distance all the locations of the boundary observe nearly 
the same phase offset. Thus is only an overall common phase factor for the entire 
plane wave spectrum of the particle field, and in figure 3 

bz zkie Δ

zk

bz zkie Δ

0=bz . The other difference to 
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free space waves is a nonzero longitudinal component to the particle’s field, but as shown 
later this component becomes negligibly small compared to the transverse component for 
relativistic particles. 
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FIG 3: scattering of the “bound” particle fields into a spectrum of free-
space plane waves by the dielectric scattering boundary. 

 
 
With these assumptions in mind the particle’s retarded field plane wave spectrum 

( )ip
i k ,⊥

r
ψ  is scattered by the same boundary matrix ( )ωχS~  into a free-space plane wave 

spectrum, that is,  
 

( ) ( ) ( ) ( ) bz zki
i

p
iiiisssss ekpdkpdkSk Δ

⊥⊥⊥⊥ = ,,,, ˆ,,;ˆ,,~ rrrr
ψψ ωχ     (18) 

 
The superscript “p” in ( )ip

i k ,⊥

r
ψ  indicates that this free-space field spectrum was 

generated by the electron field. The factor  takes into account the phase shift at the 
boundary due to the slower phase velocity of the particle’s waves. Besides this phase 
factor there is one additional key difference to the scattering of purely free-space waves; 
since 

bz zkie Δ

( )ωχS~  was defined for scattering of free-space waves equation 18 effectively creates 
an artificial free-space plane wave that co-propagates with the incident particle field and 
that has to be subtracted out. Therefore the scattering matrix of the boundary on the 
electron field has the form 
 

( ) ( ) ( ) ( )( ) ( ) bz zki
i

p
iiiisssiiisssss ekpdkpdkpdkpdkSk Δ

⊥⊥⊥⊥⊥⊥ −= ,,,,,, ˆ,,;ˆ,,ˆ,,;ˆ,,~ rrrrrr
ψδψ ωχ  (19) 

 
The second term becomes more obvious when we consider the scattering of the electron 
field from free space. As described before the free-space scattering matrix is the identity 
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matrix ( ) IS ~~ =ωχ , which should not produce any additional free-space wave. With this 
scattering matrix equation 19 yields a scattered free-space spectrum of the form 

( ) ( ) ( )( ) ( ) 0,,;,,,,;,, ,,,,,, =−= Δ
⊥⊥⊥⊥⊥⊥

bz zki
i

p
iiiisssiiisssss ekpdkpdkpdkpdkk
rrrrrrrrrr

ψδδψ , which 

is consistent with a free, uniformly moving particle not producing any free-space 
radiation. To understand the effect of the second term further consider a flat perfect 
reflector as a scatterer. For a high reflector the matrix ( )ωχS~  in equation 19 reflects the 
electron fields into the upstream space producing the backward transition radiation 
pattern that is radiated into the upstream space, while the delta function in equation 19 
produces the forward transition free-space radiation pattern that has the same polarization 
and angular distribution characteristics as the electron plane wave spectrum.  
 
To quantify the electron-laser interaction with this scattering boundary formalism we 
need to evaluate the electron’s retarded field in terms of a plane wave spectrum, which is 
described by [6] 
 

( ) ( kzc
ck
kczciqZkEp

r
r

rr
⋅−

−
−

= ˆˆ
2, 2220 βωδ

ω
βωπω )      (20) 

 
As stated before since this field is originated by the particle it also includes longitudinal 
components, whereas in the model presented here the scattering matrix acts only on 
transverse field components from free-space waves. For a relativistic particle β  is very 
close to unity, and with this assumption ( )ω,kEp

rr
 can readily be decomposed into a 

longitudinal component expressed in terms of the transverse k-vector component ⊥k
r

. 
Notice that the delta function in equation 20 establishes that for the particle fields the z-
component of the k-vector is  ckz βω= . The electromagnetic field in equation 20 can be 
decomposed into a longitudinal and a transverse component. The longitudinal component 
is given by 
 

( )
( ) 22

0
2

0

0
,|| 1

ˆ2~,
γγ

πω
+

−

⊥
⊥ kk

n
k

ciqZkE p

rr
       

 (21) 
 
and a transverse component is 
 

( ) ( )
( )

r
kk

kk
k

ciqZkE p ˆ
1

2~,
22

0

0

0

0
, γ

π
ω

+
−

⊥

⊥
⊥⊥

rr
      (22) 

 
where  and n̂ r̂  describe the longitudinal and radial polarizations. These are given by 
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( )
2

ˆˆ
z

z

kkk

zkqkkn
+⋅

+
=

⊥⊥

⊥
⊥ rr

)r
 , ( )

2

ˆˆˆ
z

z

kkk

qkzkkr
+⋅

+−
=

⊥⊥

⊥
⊥ rr
r

     (23) 

 
We can appreciate that for both longitudinal and transverse field components the 
amplitudes become very small for γ10 >>⊥ kk .  This means that for relativistic 
particles ( 1>> )γ  the bulk of the plane wave spectrum of the particle’s field is 
concentrated at very shallow angles to the particle’s direction of propagation. 
Furthermore notice that at the γ1 -angle the magnitudes of the components scale as  

γ⊥= ,||, pp EE
rr

 and therefore the longitudinal component ||,pE
r

 can be neglected. One can 

conclude that for a relativistic particle its plane-wave spectrum is described fairly 
accurately by the transverse field components alone and has an amplitude described by 
 

( ) ( )
( ) ( rp

kk

kkkciqZ
pk i

i

i
ii

p
i ˆ,ˆ

1

2
,

22

0,

0,00
, δ

γ

π
)ψ

+

−
=

⊥

⊥

⊥ r

r
rr

     (24) 

 
Now an explicit evaluation of the overlap integral of inverse-radiation energy gain picture 
of equation 10 can be performed. In terms of the scattered field amplitudes the field 
overlap integral of equation 10 takes the form 
 

particle
s

laser
sLP Z

U ψψ
π 0

,
1~ −Δ        (25) 

 
The key is to rewrite this overlap integral of scattered fields in terms of the incident fields 
by use of the scattering matrix. Thus equation 25 can be transformed by rewriting the 
overlap integral in the following way; 
 

( ) particle
i

Tlaser
i

particle
i

laser
i

particle
i

Tlaser
i

particle
s

laser
s SISS ψψψψψψψψ ** −=−=  (26) 

 
The matrix results from the transformation of the free-space laser field while the 
matrix   is a consequence of the transformation of the particle field, which as 
discussed earlier in not free-space. Notice that the first overlap integral, 

TS*

( IS − )
particle

i
laser
i ψψ , 

is completely independent of the properties of scattering layer. Only the second overlap 
integral shows a dependence on the scattering layer. Here we look at the following cases: 
 
First: there is no scattering layer, such that  IS ~~

= . In this case the total interaction 
described in equation 26 simplifies to 
 

( 0~1

0
, =−

−
=Δ particle

i
laser
i

particle
i

laser
iLP I

Z
U ψψψψ

π
)      (27) 
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This could be regarded as a confirmation of the Lawson-Woodward theorem. There is no 
overlap between the scattered laser and scattered particle fields in equation 25 and hence 
the interaction has to be zero. 
 
Second: the interaction surface is a strong “random” scatterer that couples into a large 
spectrum of k-vectors.  For the second term in equation 26, particle

i
Tlaser

i S ψψ *~ , this 

means that Tlaser
i S *~ψ will have a wide angular spectrum compared to particle

iψ , and 

therefore in the limit of strong random scattering .0~~* particle
i

Tlaser
i S ψψ Therefore 

equation 26 simplifies to  
 

particle
i

laser
iLP Z

U ψψ
π 0

,
1~ −

Δ         (28) 

 
Note that equation 28 is a function of the input field components alone. If the laser beam 
is a plane wave at angle α with respect to the electron propagation axis and has a 
polarization vector P̂  it is described by ( )ϕωα −−= trkPEE 00 cosˆ rrr

, where 00 ck=ω . This 
corresponds to an angular plane wave spectrum of the form 
 

( ) ( ) ( ) ( ) ( ) ( ){ }ϕϕ ωδωδ
θ

φδαθδφθψ ii
ii

laser
i eckeckPpEp −++−

−
⋅= 000 2

1
sin

ˆˆˆ,,   (29) 

 
Because of the delta functions of the far field angle in equation 29 the only particle plane 
wave ( )ii

p
i pk rr

,,⊥ψ  from equation 24 that overlaps with the laser satisfies the conditions 
αsin0 =⊥ kk  and 0ωω = .  Thus the radiation field overlap integral of equation 10 takes 

the form  
 

( ) ( ) ( )( )

( ) ( ){ }∫

∫
∞+

∞−

−

Ω

++−×

⋅
−

+
−=Δ

ωωδωδ

φθθφθ
θ

φδαθδ
γθ

θπ
π

ϕϕ deckeck

ddPr
k

ciqZE
Z

U

ii

LP

00

22
0

00

0
,

                 

sinˆ,ˆ
sin12

21

  (30) 

 
The delta functions simplify equation 30 to 
 

( )( ){ ϕϕα
γα

απ
π

ii
LP cecePr

k
ciqZE

Z
U −−⋅

+
−=Δ ˆ0,ˆ

12
21

22
0

00

0
, }   (31) 

 
The product ( )( )Pr ˆ0,ˆ ⋅α  denotes the polarization overlap of the laser with respect to the 
particle’s field, which is radially polarized. If we introduce the polarization angle  

 equation 31 simplifies further to ( ) Pr ˆ0,ˆcos ⋅= αρ
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ϕρ
γα

α
π
λ

sincos
1 22

0
, +
=Δ

EqU LP        (32) 

 
With equation 32 having the identical form to equation 10 we confirm that when applied 
to the scattering boundary the inverse radiation picture yields the same expected 
interaction as the field path integral approach. 
 
Third: the scattering surface is a simple phase retarder such as a transparent boundary. 
Suppose that for the given input laser field spectrum the scattered has the transmission 
matrix φieIS ~~

= . Then the total interaction becomes 
 

( ) ( φφ ψψ
π

ψψψψ
π

iparticle
i

laser
i

particle
i

ilaser
i

particle
i

laser
iLP e

Z
eI

Z
U − )−

=−
−

=Δ 11~1

00
,  (33) 

 
So depending on the amount of optical delay particle

i
laser
iU ψψ2max =Δ  when 

,...3, ππφ = and  when 0min =ΔU ,...2,0 πφ =  
 
Fourth: Finally, for the high reflector S~  maps  laser

iψ  into a reflected spectrum laser
rψ  

that travels in another direction, such that 0~laser
r

laser
i ψψ . Hence equation 26 can be 

rewritten as  
  

( particle
i

laser
r

particle
i

laser
iLP Z

U ψψψψ
π

−−=Δ
0

,
1 )     (34) 

 
If the laser is interacting with the particle in the upstream region of the reflector boundary 

laser
iψ  and particle

iψ  are propagating in the same direction and have a large overlap 

integral particle
i

laser
i ψψ ,  while particle

i
laser
r ψψ  is zero, and we thus obtain 

 
particle

i
laser
iLP Z

U ψψ
π 0

,
1

−=Δ        (35) 

 
On the other hand consider a situation where the input laser is counter-propagating to the 
particle beam in the downstream space. If the boundary is a high-reflector the scattered 
laser field co-propagates with the particle field. Thus in equation 34  particle

i
laser
i ψψ  is 

zero while the second term is nonzero. In this situation the laser-electron interaction is 
described by the overlap integral of the reflected laser beam with the particle field. In 
such a downstream arrangement the laser-electron interaction becomes sensitive to the 
properties of the boundary. 
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particle
i

laser
rLP Z

U ψψ
π 0

,
1

+=Δ        (36) 

 
To summarize, all the non-absorbing thin boundary cases can be understood in terms of 
the scattering matrix formalism presented here. As mentioned earlier, the absorbing 
boundary requires a different treatment that takes into account the absorption of 
electromagnetic energy from the boundary itself.  
 
 
III. THE ABSORBING BOUNDARY 

For the absorbing boundary equations 7-10 are no longer applicable, and equation 6 has 
to be employed to account for the energy absorbed by the medium. Assume the boundary 
fully absorbs the electromagnetic energy incident on it, such that radUΔ corresponds to the 
energy of the laser flowing into the volume of interest. Next, the energy absorbed by the 
medium, denoted by , has to be expressed in terms of the electromagnetic fields 
acting on it. Assume a medium with a local linear conductivity 

MUΔ
( )rrρ , such that the 

absorbed energy is 
 

( ) ( ) ( ) ( )∫ ∫∫ ∫ =⋅=Δ
ττ

ρ rdtdrErdtrdrJrEU
MM

M
323 rrrrrrr      (37) 

 
The total electric field in the medium is the sum of the laser and the particle field 
components, hence equation 37 becomes 
 

( )( ) ( )( )∫ ∫∫ ∫ +⋅+=+=Δ
ττ

ρρ rdtdEEEErrdtdEErU
M

WWLL
M

WLM
32232

2
rrrrrrrr   (38) 

 
The absorbed energy gain in the medium has three contributions; heat deposition caused 
by the laser alone; , heat deposition caused by the particle wakefields; , 
and finally heat deposition in the presence of both the laser and the particle that appears 
as a field overlap term; . To identify these contributions in equation 38 consider 
the situation where only the laser and the boundary are present. In such an instance we 
can identify  in equation 38 with the laser power absorbed in the medium, such that 

LMU ,Δ WMU ,Δ

OMU ,Δ

radUΔ
 

( ) dtrdErUU
M

LLM ∫ ∫−=Δ−=Δ
τ

ρ 32
,rad

rr       (39) 

 
Next, consider the opposite case where the free particle interacts with the boundary in the 
absence of the laser. Applying the same reasoning we find that the particle’s kinetic 
energy lost from heat deposited by its own wakefields in the medium corresponds to the 
third term in the sum in equation 38. Since radUΔ is zero in this instance the energy 
balance reads 
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( )∫ ∫=Δ−=Δ
τ

ρ rdtdErUU
M

WWMWP
32

,,

rr       (40) 

 
Therefore remaining field overlap term in equation 38 has to correspond to the particle’s 
energy change in the presence of the laser and in the presence of the boundary; 
 

( )∫ ∫ ⋅−=Δ
τ

ρ rdtdEErU
M

WLLP
3

, 2
rrr        (41) 

 
Substituting the fields by currents with ( ) ( ) ( )rErrJ vrvrr ρ= , and replacing the conductivity 
by a resistivity coefficient ( ) ( )rr vv ρσ 1=  equation 38 becomes 
 

( )∫ ∫ ⋅−=Δ
τ

σ rdtdJJrU
M

WLLP
3

, 2
rrr        (42) 

 
Thus in the presence of an absorbing boundary the particle energy gain is equivalent to 
the current overlap integral of the laser induced current and the particle wakefield 
induced current in the medium multiplied by the local impedance value. Assuming that 
the external laser and particle wakefields are absorbed within a very thin distance 

zΔ without producing a reflection (impedance matching) the local conductivity has to 
be ( ) 01 Zzr =Δ

rρ . A derivation for this is given in appendix 1. This simplifies equation 
41 to 
  

∫ ∫ ∫
∞

∞−

∞

∞−

⋅−=Δ
τ

dxdydtEE
Z

U WLLP

rr

0
,

2        (43) 

 
When rewriting the time dependent fields to the frequency domain equation 43 
transforms to the now familiar inverse-radiation field overlap expression of equation 10. 

LE
r

 and  refer to the incident laser and particle wakefields and are therefore 
completely independent of the properties of the absorbing boundary.  

WE
r

 
 
VI. CONCLUSIONS AND OUTLOOK 

The models for the scattering and absorbing boundaries employed here show agreement 
between the inverse-radiation and the field path integral calculation method for laser 
particle acceleration in a semi-free space geometry. The laser-electron interaction 
strength for both boundaries is expected to be similar to that from a flat high-reflector 
boundary because the interaction of the relativistic electron with the laser field is mostly 
determined by the incident laser beam. This laser beam component is co-propagating 
with the electron and thus possesses a slippage distance that extends over many 
wavelengths. Furthermore the incident laser beam does not depend on the properties of 
the boundary.  The reflected and scattered laser beam components on the other hand do 
strongly depend on the properties of the boundary. However since most of these waves 
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do not co-propagate with the electron beam and thus only possess very short slippage 
distances. Furthermore for a strong scatterer these wave components add their 
acceleration contribution incoherently, and hence their collective interaction becomes 
negligible when compared to the contribution from the incident laser beam.  
 
The absorbing boundary was modeled as a linear ohmic-loss medium, and under these 
circumstances an extended inverse-radiation picture could be written down to describe 
the laser-electron interaction in the presence of such a boundary. Notice that this model 
for an absorbing boundary is specific to an electromagnetic wave at normal incidence to 
the surface. The boundary conditions that yield an impedance matching for the normal 
incidence wave described in appendix 1 change with the incidence angle of the laser 
wave on the medium, and thus the linear ohmic loss model does not present a fully 
generalized representation for a “perfect” electromagnetic absorber.  This immediately 
motivates the quest for an alternate description of the laser-electron interaction in the 
presence of an ideal blackbody object, which will be the subject of an upcoming analysis 
for linear laser-electron interactions in a semi-open geometry.  
 
 
APPENDIX 1 

The impedance from an absorbing boundary for a free-space wave incident on it is 
derived. The boundary is assumed to cover an infinite area and to absorb all the radiation 
within a very thin layer of width zΔ . Further, the boundary is assumed to have a uniform 
conductivityρ . Assume that in the free space next to the boundary there is an 
electromagnetic field with an incident and a reflected wave component; 
 

reflincext

reflincext

BBB

EEE
rrr

rrr

+=

+=
         A1 

 
Assume these are plane wave components at normal incidence with respect to the 
boundary. The average current along a stripe of width w along the surface layer zΔ  has to 
be   
 

( ) MM EwzI
rr

⋅Δ⋅= ρ          A2 
 
where ME

r
is the driving electric field that has to be equal to the incident field;  

 
incM EE
rr

=           A3 
 
By Ampere’s law the magnetic field in the free-space region that is produced from that 
current is 
 

( ) ( )( )MMM EnwzInBw
rrr

×⋅Δ⋅⋅=×= ˆˆ 00 ρμμ       A4 
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where as shown in figure 10 it was assumed that if the absorber is perfect inside the 
medium 0=MB

r
. If there is to be no reflection ME

r
 and MB

r
 have to match the incident 

fields, and hence cEB MM 1=
rr

.  With this condition and with A3 and A4 one finds 

 

 
c

z
E

B

M

M 1
0 =Δ⋅= ρμr

r

         A5 

 
Therefore 000 μεμρ =Δ⋅ z , which simplifies to 01 Zz =Δ⋅ρ . 
 

MM EJ
rr

⋅= ρ

zΔ
w

0=ME
r

0=MB
r

n̂

incE
r

incB
r

reflE
r

reflB
r

MM EJ
rr

⋅= ρ

zΔ
w

0=ME
r

0=MB
r

n̂

incE
r

incB
r

reflE
r

reflB
r

 
 

FIG 4. Diagram of a perfect absorber surface 
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