
PARALLEL SIMULATION ALGORITHMS FOR THE
THREE-DIMENSIONAL STRONG-STRONG BEAM-BEAM

INTERACTION
Andreas C. Kabel∗, SLAC

Abstract

The strong-strong beam-beam effect is one of the most
important effects limiting the luminosity of ring colliders.
Little is known about it analytically, so most studies utilize
numeric simulations. The two-dimensional realm is readily
accessible to workstation-class computers (cf.,e.g.,[1, 2]),
while three dimensions, which add effects such as phase
averaging and the hourglass effect, require vastly higher
amounts of CPU time. Thus, parallelization of three-
dimensional simulation techniques is imperative; in the fol-
lowing we discuss parallelization strategies and describe
the algorithms used in our simulation code, which will
reach almost linear scaling of performance vs. number of
CPUs for typical setups.

TWO DIMENSIONS

For the simplest parallelization of the strong-strong
problem, both beams are represented by macro particles.
We have two parallelizable tasks: the application of fields
to the particles and the calculation of the fields due to the
particle distribution. The latter problem is addressed by
a particle-on-grid algorithm: A discretized charge density
ρ�i is used to calculate the electric potential φ�i by solving
the discretized Poisson equation. A particle is deposited
on ρ�i (�i, �k,. . . are two-dimensional integer vectors, corre-
sponding to positions x = x0 + hxi1, y = y0 + hyi2 on
the grid) by adding charge to the lattice sites nearest to
it with distance-depending weights. We use a third-order
momentum-conserving deposition scheme[3]. For the two-
dimensional sub-problem, we make use of algorithms in-
troduced and validated in [1, 2].

We divide the particles into pools local to processors.
For the two-dimensional problem, a single grid is placed in
the interaction point, perpendicular to the directions of mo-
tion. A parallelized solver step now is a sequence of: (1)
collecting ρ�i from test particles (2) add all ρ�i from particle
pools (3) distribute sum ρ�i to solver processors (4) calcu-
late �E�i from ρ�i (5) distribute �E�i to particle pools (6) apply
�E to test particles (7) transport particles around the com-
plete ring or to the next interaction point. The transport
operation involves all of the particle dynamics between IPs
(usually linear transport (hadron machines) or linear trans-
port + damping (e± machines)).

∗Work supported by Department of Energy contract DE–AC03–
76SF00515.

THREE DIMENSIONS

For the solution of the three-dimensional problem, we
divide the bunches into nz longitudinal slices of equal
lengths hz and slice numbers iz ∈ [0, nz), 0 representing
the leading slice. We now need to place (for both bunches)
2nz − 1 grids numbered 1 − nz . . . nz − 1 at positions
1−nz

2 , . . . , nz−1
2 around the IP.

For each encounter of bunches, 2nz − 1 steps need to be
executed. numbered s ∈ [0, 2nz − 2]. In step s, particles
in slice k ∈ [max(0, s − nz + 1),min(s, nz − 1)] are de-
posited on grid ±(k−s) (sign according to the direction of
flight). All updated grids are then used to calculate fields,
and the resulting fields are applied to the opposing bunch’s
particles longitudinally nearest to the respective grid. Each
bunch encounter thus consists of n2

z slice encounters com-
prising 1 two-dimensional deposit/solve/kick step each.

When the bunch length is comparable to the β function
in the IP, the hourglass effect becomes significant, meaning
that the grids far away from the IP have to accommodate
a larger bunch diameter than the grids close to it. To opti-
mize resolution, we scale the grid resolutions according to

hx,y ∝
√

1 + z2

β∗
x,y

2 .

Field Calculation

The field calculation is based on a convolution algo-
rithm. The discretized charge distribution ρ�i is con-
voluted with the discretized Green’s function G�i−�k ∝
log

∑
i

(ii−ki)
2

h2
i

for the two-dimensional Coulomb prob-
lem. The convolution can be done efficiently by Fast
Fourier transforming ρ, doing a point-wise multiplication
with the Fourier transform G̃ of G, and transforming back.
If we choose a lattice of dimensions L = [0, 2hxnx) ⊗
[2hyny), but restrict the support of ρ to L′ = [0, hxnx) ⊗
[0, hyny), the (2nx, 2ny) periodicity of G̃ will not modify
the potential in L′, i. e. the method will obtain the correct
potential for open boundary conditions. This is the famous
Hockney trick [3]. To avoid the singularity of the Green’s
function at the origin, we choose a natural smoothing pre-
scription: we shift the Green’s function by 1

2
�h, such that

G0 = 0, and evaluate the fields at a position shifted by
− 1

2
�h.

The Green’s function is pre-calculated at program start.
As G obeys no simple scaling law for the case of β∗

x �= β∗
y ,

this precalculation needs to be done for each encounter
point. The method is easily generalized to non-concentric
lattices, different resolutions for different beams, and dy-
namic rescaling of lattices, should the beam dimensions
change.

SLAC-PUB-13169

Contributed to Particle Accelerator Conference (PAC 03), 5/12/2003-5/16/2003, Portland, OR, USA



Parallelizing the convolution method amounts to paral-
lelizing the local multiplication with G̃, which is trivially
done, and parallelizing the Fast Fourier Transform. For the
latter, we use the high-performance, open-source parallel
FFT library ’FFTW’[4], Calculation of the electric field
is done by discretized differentiation with an appropriate
weight algorithm[2]. The fields can be applied to particles
by scattering particles to the appropriate slices or by gath-
ering the fields into the particle pools; we choose the latter
solution in our code.

We can make use of an additional symmetry property
of the system: as there are two rings involved, we split
the processors into two subgroups, each assigned to one of
the bunches. The only communication necessary between
these subgroups is then the exchange of the charge density
ρ�i, which can be done after collecting it to the root process
of the solver. Thus, only a single pair of communicators
between processes assigned to different bunches is neces-
sary.

The advantage of this procedure is due the hardware con-
figuration of the computer system available to us. On the
IBM SP at NERSC, 16 processors share a node and can
communicate via shared memory. Communications be-
tween nodes will be over a fast network, but still be sub-
stantially slower. Thus, it is advantageous to limit the dis-
tribution of the Poisson solver, which will involve a large
amount of all-to-all communications, to one node. By
the bisection of the problem the communications overhead
penalty will start to set in at 32 processors instead of 16
processors.

Communications overhead can be further reduced by us-
ing another possible parallelization. As soon as the longi-
tudinal slice number nz > 1, each encounter will involve
the independent encounters of several slices. Particle de-
position and solving the Poisson equation can then be done
in parallel, making it possible to keep both local to a sin-
gle node by setting the number of processors in a solver to
nsp < np/2 . However, not every encounter step involves
the encounter of an integer multiple of nsp, so some solvers
will have been idling during one encounter. The optimum
choice for nsp depends on the hardware setup and the ra-
tio of CPU time usage for solving the Poisson equation and
particle-grid-dynamics, resp., so it has to be found experi-
mentally for each given number of particles and grid size.

THE SLICE ALGORITHM

While the algorithm described above allows for a great
flexibility with respect to variable computer parameters
such as number of processors, number of processors in a
fast sub-cluster etc., its performance for a higher number
of processors is disappointing; test runs on the NERSC
facility show it to go into saturation at ≈ 32 . . . ..64 pro-
cessors. This is due to the choice of a common “pool” of
particles, shared among all processors, with no attempt at
localization in physical space. Thus, particle localization is
desirable, however, the dynamics between interaction will

move a particle from one processor’s responsibility into an-
other’s. Care must be taken not to lose in particle man-
agement communication what was gained by saving field
communication.

Consequently, particles should be assigned to processors
according to their longitudinal coordinate: The longitudi-
nal dynamics in a storage ring usually is much slower than
the transverse one, meaning that a relatively small number
of particles will change processors during a single turn.

A simple equidistant slicing will lead to a very uneven
distribution of particles, leaving most of the tracking work
to the processors responsible for the center slices. This
can be cured by a Hirata-type slicing [5], choosing bor-
ders ζi, ζ0 = ∞, ζzn

= −∞ such that the number of par-
ticles in [ζi, ζi+1) = Np/nz; the encounter points between

slices i and k are chosen at a distance zi−z′
k

2 from the IP,
where zi, z

′
k are the centers of gravity of the slices in the

respective bunch. Again, the grids’ resolutions are scaled
according to zi and β.

The Wraparound Algorithm with Idle Cycles

The processors assigned to the head of the bunch will be
idle after the centers of the bunches have passed each other,
as there are no collision partners left.

One can, however, apply the transfer map of the lattice
up to the next IP (or to the beginning of the same IP) in
the first of these idle steps, and do the next collision in the
next step. Pparticles from trailing slices may still move
into a leading slice when they are transported through the
ring after they have encountered their last collision partner.
This can be partially cured by inserting a ’cool-down cy-
cle’, i. e., a slice, after having been transported, waits for
one or several additional idle steps, leaving CPUs unused,
for particles from its trailing slices to catch up.

Assuming a matched distribution (i. e., ρ(p, q) =
ρ̃(H(p, q))) and a quadratic Hamiltonian, and scaling the
canonical variables to σp,q = 1, the number of particles
moving from a slice q1 < q ≤ q2 to a slice q3 < q ≤ q4

in two-dimensional phasespace during a phase advance
∆φ = 2π∆ν (or vice versa, as the distribution is invari-
ant under rotations) is given by the integral over the paral-
lelogram obtained by overlapping one slice with the other,
rotated slice:

∆N = NP

∫ q4

q3

dq

∫ q2/ sin ∆φ+q cot ∆φ

q1/ sin ∆φ+q cot ∆φ

dpρ(H(p, q)) .

(1)
For a gaussian distribution, this integral has to be evaluated
numerically.

The acausal leakage rate can now be calculated by use
of (1), a plot of the maximum acausal leakage rate per turn
vs. the number of inserted idle cycles is given in Fig. 1.
The synchrotron tunes are 0.04, 0.02, and 0.00072 (PEP
II HER, PEP II LER, and Tevatron, resp.), the number of
slices is 11. For the Tevatron, the leakage rate is com-
pletely benign even for just 1 idle cycle, resulting in near-
optimal CPU utilization. For the sake of clarity, we give



 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  1  2  3  4  5  6  7  8

A
ca

us
al

 p
ar

tic
le

s 
[1

/N
P
]

Hiatus [slices]

ν=0.04
ν=0.02

ν=0.00072

Figure 1: Acausal leakage rate for typical machines and a
longitudinal decomposition into 11 slices

the wraparound algorithm in some detail for a configura-
tion of 5 slices and a hiatus of 2. We get the following
table of operations: Here, Ki stands for a kick due to slice

Table 1: Sequence of parallel operations for 5 slices and
a hiatus period of 2; column number=slice number, row
number=step number

0 1 2 3 4 5 6

K4L F1
0 F2

0 B2
0 K′

0F3
0 K′

1F4
0 K′

2 K′
3

K3 K4LF2
0 F2

0 B3
0 F3

0 B3
1 K′

0F4
0 K′

1 K′
2

K2 K3 K4LF2
0 B2

0 F3
0 B3

1 F4
0 B4

2 K′
0 K′

1
K1 K2 K3 K4LF3

0 B3
1 F4

0 B4
2 B4

3 K′
0

K0 K1 K2 K3 K4LF4
0 B4

2 B4
3 1

i of the opposing bunch, K′
i for a kick due to slice i of

the opposing bunch in the next IP, L for the transport to
the next IP, F (B)k

i for a forward (backward) re-shuffling
operation involving slices [i, k] (k(i) being the originating
slice. Each K operator involves the transport to the ap-
propriate encounter point and the (un)projection on/off the
slice before/after the actual kicks step. Each L operator in-
volves the transport into the IP. The sequence expects and
releases the particles in completely overlapping bunches,
transported into the IP. The sequence is synchronized by
collective operations and leaves no collective operation
open after the encounter. The Bs’ scope is different from
the F s’: while one has to accept the occasional causality-
violating particle being transported forward, causality vi-
olations for B can be avoided by transporting no further
backwards than to the youngest slice in hiatus. Particles
not belonging there will move out when it is that slice’s
turn to be originator of a backwards re-shuffling operation.

We have test-run the code on the NERSC facility; this
time, we observe an almost linear behavior of the CPU time
vs. CPU number (Fig. 2). Due to the much more favorable
localization of particles on CPUs as opposed to the pool al-
gorithm, a breakdown of this behavior will not set in before
the most communication-intensive process, field solving, is
distributed among more than 16 CPUs. Thus, for a typical
slice number of 32, we expect this point to be reached for
1024 CPUs.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 32  48  64  80  96  112  128  144  160  176  192  208  224

tu
rn

s/
s/

pr
oc

es
so

r

Numbter of Processors

Figure 2: Scaling of a simulation run on NERSC; nx =
ny = 64, nz = 16, νs = 7.2 · 10−4

Bunch Setup and Random Number Generation

The simulation code makes use of pseudo-random num-
bers during the initial setup of the particles and, in the case
of electrons, for the simulation of noise induced by syn-
chrotron radiation. The code’s result have to be transparent
with respect to the number of processors used; this means
that initial conditions and the history of noise should be
the same for a given particle, no matter what processor it
is assigned to. As that assignment may change in our al-
gorithm, a simple solution is to have each particle carry its
own unique RNG. We use a 64-bit linear congruential gen-
erator. with Xk+1 = aXk +p mod m, where a is an inte-
ger constant, m = 264. The generator can be made unique
by chosing p the ith prime for the ith generator; this pre-
scription will work for all particle numbers we can expect
to be practically feasible.

Conclusion and Outlook

We have developed a three-dimensional strong-strong
beam-beam simulation code which makes use of a novel
parallelization scheme. For machines with small syn-
chrotron tune, CPU utilization is almost optimal. The par-
allelization is completely transparent. We have verified the
code’s correctness for analytically approachable cases. We
plan to use it to run precision simulation studies for PEP-II
and the Tevatron.

REFERENCES

[1] S. Tzenov T. Tajima Y. Cai, A. Chao. Simulation of the beam-
beam effect in e+e− storage rings with a method of reduced
region of mesh. PRSTA, 4:011001, 2001.

[2] Y. Cai. Simulation of beam-beam effects in e+e− storage
rings. SLAC-PUB-8811, 2001.

[3] R. W. Hockney and J. W. Eastwood. Computer Simulation
Using Particles. Institute of Physics Publishing, 1988.

[4] M. Frigo and S. G. Johnson. Fftw: An adaptive software
architecture for the fft. In 1998 ICASSP conference proceed-
ings, page 1381. http://www.fftw.org.

[5] H.Moshammer K.Hirata and F.Ruggiero. Particle Accelera-
tors, 40:205, 1993.


