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Gluon scattering inN = 4 super-Yang-Mills
theory from weak to strong coupling1
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Abstract. I describe some recent developments in the understanding of gluon scattering amplitudes
in N = 4 super-Yang-Mills theory in the large-Nc limit. These amplitudes can be computed to
high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT
correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with
the help of techniques based on integrability. They are intimately related to expectation values for
polygonal Wilson loops composed of light-like segments.
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INTRODUCTION

In this talk I would like to describe some remarkable progress that has been made in the
past few years in understanding the structure of gauge boson scattering amplitudes in
a particular gauge theory,N = 4 super-Yang-Mills theory. While this theory differs in
many details from the electroweak and QCD theories whose radiative corrections were
the subject of this symposium, there are many common issues, particularly associated
with infrared structure. Indeed, the understanding of infrared divergences in QCD ac-
quired over the last few decades has proved extremely useful in unraveling some of the
structure ofN = 4 super-Yang-Mills theory.N = 4 super-Yang-Mills theory is the most supersymmetric theory possible without
gravity. In the free theory, starting from the helicity+1 massless gauge boson (“gluon”)
state, the four supercharges can be used to lower the helicity by 4× 1

2 = 2 units, until
the helicity−1 gluon state is reached. If one had more supercharges, one would need
spin > 1 states, and it is not known how to quantize such theories in a unitary way
without including at least spin 2 gravitons. Along the way from the helicity+1 to the
helicity−1 gluon state, one passes through the 4 massless (Majorana) spin 1/2 gluinos,
and 6 real (or 3 complex) massless spin 0 scalars. In this maximally supersymmetric
Yang-Mills theory (MSYM), all the massless states are in the adjoint representation of
the gauge group, which we will take to beSU(Nc). The interactions are all uniquely
specified by the choice of gauge group, and one dimensionless gauge couplingg. The
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FIGURE 1. Cartoon of the AdS/CFT duality.

theory is an exactly scale-invariant, conformal field theory; that is, the beta function
vanishes identically for all values of the coupling [1].

Here we will consider the ’t Hooft limit of MSYM, in which the number of colors
Nc → ∞, with the ’t Hooft parameterλ ≡ g2Nc held fixed [2]. In this limit, only planar
Feynman diagrams contribute. Also, the anti-de Sitter space / conformal field theory
(AdS/CFT) duality [3] suggests that forNc → ∞ the weak-coupling perturbation series
in λ might have some very special properties. The reason is that, according to AdS/CFT,
the strongly-coupled (largeλ ) limit of the four-dimensional conformal gauge theory has
an equivalent description in terms of a weakly-coupled string theory. The intuition is
that the perturbative series should know about this simple strong-coupling limit, and
organize itself accordingly [4].

Figure 1 sketches how events such as gluon scattering look in the AdS/CFT dual-
ity [3, 5]. Five-dimensional anti-de Sitter space, AdS5, contains, besides the usual four-
dimensional space-timeR1,3, an additional radial variabler, which corresponds to a
resolution scale in the four-dimensional theory. Large values ofr correspond to the ul-
traviolet (UV) region; small values to the infrared (IR). The figure shows a “big” glueball
state in the IR, and a “small” glueball state in the UV. The arrows represent the motion
of plane-wave single gluon states inR1,3 for gg→ gg scattering at 90◦. We’ll discuss
the motion inr later. The radius of curvature of AdS5 is proportional toλ 1/4. Largeλ
means that the space-time is only weakly curved, which makes it much simpler to study
the string theory; higher excitations of the string can usually be neglected.

The AdS/CFT duality is a weak/strong duality. Quantities that can be computed at
weak coupling in one picture have a strong-coupling description in the other picture.
This property makes AdS/CFT both powerful and difficult to check explicitly — al-
though there is certainly convincing evidence in its favor. There are a few quantities that
are known (modulo a few assumptions) to all orders inλ ; that is, for which one can
interpolate all the way from weak to strong coupling. Notable among these is the cusp
(or soft) anomalous dimensionγK(λ ). The QCD version of this quantity crops up a lot
in soft-gluon resummation. Beisert, Eden and Staudacher [6] have given an all-orders
proposal forγK(λ ), based on integrability, plus a number of other properties. Their pro-



posal is consistent with the first four loops in the weak-coupling expansion [7, 8], and
also agrees [9, 10] with the first three terms in the strong-coupling expansion [11, 12, 13].

In this talk I would like to discuss the evidence for another proposal [14], namely
that gluon-gluon scatteringgg→ gg in MSYM, for any scattering angleθ can be fully
specified by just three functions ofλ , independent ofθ . One of these three functions is
already “known”, because it is justγK(λ ). This proposal has received some confirmation
at strong coupling, through the work of Alday and Maldacena [5]. It was motivated by
the structure of IR divergences in gauge theory.

INFRARED DIVERGENCES

In a conformal field theory, scale invariance implies that the interactions never shut off,
so that a scattering process cannot really be defined. While strictly speaking this is true,
we are able to get around it in practice by regulating the theory in the IR. We’ll use
dimensional regularization withD = 4− 2ε and ε < 0 (actually a version of it that
preserves all the supersymmetry [15]). The regulator breaks the conformal invariance,
but we can recover it by performing a Laurent expansion aroundε = 0, up to and
including theO(ε0) terms.

At one loop, there are two types of IR divergences:soft-gluon exchange, in which
the virtual gluon energyω → 0; andcollinear regions, in which the gluon’s transverse
momentum (with respect to a massless external line)kT → 0. The soft and collinear
regions each produce a 1/ε pole, resulting in a 1/ε2 leading behavior for on-shell
amplitudes at one loop. AtL loops, the leading behavior is 1/ε2L, coming from multiple
soft-gluon exchange that is arranged hierarchically, so that the outermost gluons are
softer and more collinear than the innermost ones.

In fact, all the pole terms forL-loop amplitudes are predictable in planar gauge theory,
thanks to decades of work on the soft/collinear factorization and exponentiation of
amplitudes, and of quark and gluon form factors, in QCD [16, 17, 18, 19, 20, 21]. For
both QCD and MSYM, in the planar limit the pole terms are given in terms of three
quantities (in the notation of refs. [19, 21]):

• the beta functionβ (λ ) (but of course this vanishes in MSYM),
• the cusp anomalous dimensionγK(λ ),
• a “collinear” anomalous dimensionG0(λ ).

The cusp anomalous dimension gets its name because it appears [22, 23, 24] in the
renormalization group equation for the expectation value of a Wilson lineW(ρ,g) for
two semi-infinite straight lines, joined at a kink or cusp:

(

ρ
∂

∂ρ
+β (g)

∂
∂g

)

lnW(ρ,g) = −2γK(λ ) lnρ2+O(ρ0), (1)

whereρ2 ≡ n1 ·n2/(
√

n2
1n2

2)→ ∞ as the two straight lines become light-like,n2
1,n

2
2 → 0.

The cusp anomalous dimension also controls [18] the universal (flavor independent)
large-spin limit of anomalous dimensionsγ j of leading-twist operators with spinj, such



FIGURE 2. Factorization of soft and collinear singularities.

as the quark operatorsO j ≡q(γ+D+) jq:

γ j =
1
2

γK(λ ) ln j +O( j0) , j → ∞. (2)

Finally, through a Mellin transform of eq. (2),γK(λ ) appears in the largex limit of the
DGLAP kernel for evolving the parton distributions,

Paa(x) =
1
2

γK(λ )

(1−x)+
+ · · · , x→ 1. (3)

Thus, in the study of QCD at colliders it is an important quantity for resumming the
effects of soft gluon emission.

The general infrared structure of massless gauge amplitudes can be exposed [17, 20,
21] by factoring off soft singularities, which arise from long-distance gluon exchange,
and collinear singularities, which are also at long distances, but only out along the axis
of a hard parton. This space-time picture is shown in fig. 2. DefiningMn to be the full
amplitudeAn divided by the tree amplitudeA tree

n , the factorization formula reads,Mn = S({ki},µ,ε)×
n

∏
i=1

Ji(ki ,µ,ε)×hn({ki},µ) , (4)

whereµ is the factorization scale, andhn is the hard remainder function, and is finite
as ε → 0. The soft functionS only sees the classical color charge of theith particle.
In general it is a complicated matrix acting on the possible color configurations forhn,
because soft gluons can attach to any pair of external partons. The jet functionJi is color-
diagonal, but depends on theith spin. Terms that are color-diagonal and spin-independent
can be moved arbitrarily betweenSandJi .

In the large-Nc planar limit, the picture simplifies, to that shown in fig. 3. HereM
represents the coefficient of a particular color structure, tr[Ta1Ta2 · · ·Tan]. Now soft
gluons can only connect adjacent external partons; and indeed there is no mixing of
different color structures at largeNc. Because of the color-triviality of the planar limit,
one can absorb the entire soft functionS into jet functions, or break up the right-hand
side of fig. 3 inton wedges. Each wedge represents the square root of the Sudakov form



FIGURE 3. Soft-collinear factorization in the planar limit.

factor, the amplitudeM [1→gg] for a color-singlet state “1” to decay to a pair of partons,
say gluons. Hence the planar version of eq. (4) isMn =

n

∏
i=1

[M [1→gg]
(

si,i+1

µ2 ,αs,ε
)]1/2

×hn({ki},µ,αs) . (5)

The only dependence of the singular terms on the kinematics is through the momentum
scale,si,i+1 = (ki +ki+1)

2, entering theith Sudakov form factor.
Factorization also implies that the Sudakov form factor obeys a differential equation

in the momentum scale [16, 24, 18, 19],

∂
lnQ2 lnM [1→gg](Q2/µ2,αs,ε) =

1
2

[

K(ε,αs)+G(Q2/µ2,αs,ε)
]

. (6)

Here K(ε,αs) is a pure counterterm, or series of 1/ε poles. By analogy with theD-
dimensionalβ -function, β (ε,αs), the single poles (related toγK) determineK com-
pletely. The functionG is finite asε → 0, but contains all theQ2 dependence; it will
generate a single pole in lnM [1→gg] upon integrating eq. (6) with respect toQ2. The
functionsK andG obey renormalization group equations,

(

µ
∂

∂ µ
+β

∂
∂g

)

K = −
(

µ
∂

∂ µ
+β

∂
∂g

)

G = −γK(λ ). (7)

The collinear anomalous dimensionG0(λ ) arises as a constant of integration for the
differential equation forG.

Solving the differential equations forK, G and the Sudakov form factor is particularly
easy in a conformal theory because the four-dimensional coupling does not run. Doing
this, and inserting the form-factor solution into eq. (5) for then-point amplitude, we
obtain [14],Mn(ε) = 1+

∞

∑
L=1

aLM(L)
n (ε)

= exp

[

−1
8

∞

∑
l=1

al
( γ̂(l)

K

(l ε)2 +
2Ĝ(l)

0

l ε

) n

∑
i=1

(

µ2

−si,i+1

)l ε
]

×hn({ki}) , (8)



where

a≡ Ncαs

2π
(4πe−γ)ε =

λ
8π2(4πe−γ)ε (9)

is the loop expansion parameter in the ’t Hooft limit, andγ̂(l)
K

and Ĝ(l)
0

are thel -loop
coefficients ofγK(a) andG0(a).

The argument of the exponential in eq. (8) looks very much like the one-loop ampli-
tude, but withε replaced byl ε, denoted byM(1)

n (lε). Thus we are motivated to rewrite
eq. (8) as Mn(ε) = exp

[ ∞

∑
l=1

al
(

f (l)(ε)M(1)
n (lε)+hn({ki})+O(ε)

)

]

, (10)

where f (l)(ε) ≡ f (l)
0

+ ε f (l)
1

+ ε2 f (l)
2

collects three series of constants. Two of these are
identified with the previous quantities as,

f (l)
0

=
1
4

γ̂(l)
K

, f (l)
1

=
l
2

Ĝ(l)
0

, (11)

while the third quantity,f (l)
2

, is related to the consistency of eq. (10) under collinear
limits [4].

A SURPRISING RELATION

The surprise in planar MSYM is that in some cases the hard remainder functionhn({ki})
defined through eq. (10) is actually a constant, independent of the kinematics. This
result, which has been tested perturbatively forn = 4 through three loops [4, 14], and
for n = 5 at two loops [25], is a conjecture beyond that:Mn = exp

[ ∞

∑
l=1

al
(

f (l)(ε)M(1)
n (lε)+C(l) +O(ε)

)

]

. (12)

The dependence of the finite part of the logarithm of the amplitude is predicted to all
orders by eq. (12), in terms of the cusp anomalous dimension. The prediction for four-
gluon scattering is M finite

4 = exp

[

1
8

γK(a) ln2
(

s
t

)

+const.

]

, (13)

wheres= s12, t = s23. As we shall discuss in section , this formula was confirmed at
strong coupling by Alday and Maldacena [5] using the AdS/CFT correspondence [3]. In
contrast, even at two loops there does not appear to be any comparably simple formula
for the finite parts of four-gluon scattering amplitudes in QCD, or for the subleading-in-
Nc terms in MSYM [4]. Instead of a constant, as in eq. (12), one finds thath(2)

n in eq. (10)
is given by a complicated combination of polylogarithms involving the dimensionless
ratio t/s. On the other hand, eq. (12) is reminiscent of the observation [26] that finite
terms can also exponentiate in QCD, ine.g. the Drell-Yan cross section near partonic
threshold.



FIGURE 4. Example of generalized unitarity at three loops.
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FIGURE 5. Integrals contributing to four-gluon scattering in planar MSYM, from one to four loops.

EVIDENCE

The evidence in favor of eq. (12) was collected from explicit computations of the multi-
loop scattering amplitudes. The amplitudes were constructed by evaluating (generalized)
unitarity cuts [27, 28, 29, 30, 31, 32] and matching them to compact representations in
terms of a relatively small number of multi-loop integrals, which turn out to have rather
interesting properties. Ordinary unitarity relates discontinuities (cuts) in a given channel
to products of lower-loop amplitudes, summed over the possible intermediate states in
that channel. Generalized unitarity allows the lower-loop amplitudes to be further sliced,
all the way down to tree amplitudes. Figure 4 shows an ordinary three-particle cut for the
four-gluon amplitude. The information in this cut can be extracted more easily by further
cutting the one-loop five-point amplitude on the right-hand side of the cut, decomposing
it into the product of a four-point tree and a five-point tree; as illustrated, there are
three inequivalent ways to do this. If one finds a representation of the amplitude that
reproduces all the generalized cuts (inD dimensions), then that representation is correct.

Figure 5 shows the integrals that enter the four-gluon scattering amplitude in planar
MSYM, from one to four loops [33, 7], along with their numerator factors. An overall
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FIGURE 6. The two-loop planar double box integral (in orange) and associated dual graph (in blue).

factor ofst is omitted from the rescaled amplitudeM4(s, t), and only one permutation
of each integral is shown. At one and two loops, only scalar integrals appear; that is, the
numerator factors in the integrand depend only on the external momentum invariants. At
three loops, there are two integrals, the scalar triple ladder integral and the “tennis-court”
integral shown at the top right of fig. 5. The latter integral marks the first appearance of
a loop-momentum factor in the numerator, of the form(l i + l j)

2, as dictated by the “rung
rule” [33]. The rung-rule correctly describes all integral topologies that can be reduced
to trees by a sequence of two-particle cuts. At four loops, the last two integrals in fig. 5
have no two-particle cuts, and are somewhat more work to determine. At five loops (not
shown) there are a total of 34 distinct integrals [34]. Still, it is remarkable that so few
integrals are required to describe the amplitude.

PSEUDO-CONFORMAL INTEGRALS

In fact, the integrals that appear in the four-point amplitude through five loops are all
pseudo-conformal. To describe what this means [35], first consider taking all the external
legs off shell,k2

i 6= 0, in order to be able to perform the integral without dimensional
regularization, inD = 4. Next define dual momentum or sector variablesxi , such that the
original momentum variableski are differences of thexi , with kµ

i
= xµ

i+1
− xµ

i
. Similarly

define anxi associated with each loop, such thatxi j ≡ xi − x j is equal to the momentum
flowing through the propagator that separatesxi from x j . Figure 6 illustrates the dual
diagram (in blue) associated with the planar double box integral (in orange) which
appears in the two-loop MSYM amplitude. The dual propagators (denominator factors)
are shown as solid blue lines, while dashed blue lines correspond to numerator factors
in the integrand. The integral is given by

I(2)({ki}) = s2t
∫

d4p d4q
p2(p− k1)

2(p− k1− k2)
2q2(q− k4)

2(q− k3− k4)
2(p+q)2(14)

= (x2
13)

2x2
24

∫ d4x5 d4x6

x2
15x2

25x2
35x2

36x2
46x2

16x2
56

, (15)

usings = (k1+ k2)
2 = x2

13, p2 = x2
15, and so forth.



Under an inversion,xµ
i
→ xµ

i
/x2

i , we have

x2
i j →

x2
i j

x2
i x2

j

, d4x5 →
d4x5

(x2
5)

4 , d4x6 →
d4x6

(x2
6)

4 , (16)

and it is easy to see that eq. (15) is left invariant. In general, an integral is invariant under
inversion if there is a net of zero (four) lines emerging from each external (internal)xi
vertex, where “net” means solid lines minus dashed lines. Every integral is automati-
cally invariant under translations of the dual variables,xi → xi + c, and under Lorentz
transformations. Because these transformations, together with inversions, generate the
conformal group, invariance under inversion suffices to guarantee dual conformal invari-
ance for the integral. Now we can define a pseudo-conformal integral to be one which
is finite in D = 4, after all thek2

i are taken off-shell, is dual conformal invariant, and
possesses a smoothk2

i → 0 limit. The last condition ensures that the integral does not
become infinite or vanish as we return to the on-shell limit.

Dual conformal symmetry arose in the context of multi-loop ladder integrals [36], and
in two dimensions in the theory of (planar) Reggeon interactions [37]. Its relevance for
the structure of MSYM amplitudes was first pointed out by Drummond, Henn, Smirnov
and Sokatchev [35], based on the structure of the amplitudes through three loops, and
the rung-rule contributions at four loops. The four- and five-loop four-gluon amplitudes
can be organized as well, according to the two principles:

• Only pseudo-conformal integrals appear.
• The pseudo-conformal integrals appear only with weight±1.

Originally it appeared that two integrals at four loops [7] and 25 integrals at five
loops [34] were pseudo-conformal but didnot appear in the amplitude. However, it was
later pointed out that those integrals were not actually finite inD = 4 [38]. Recently,
some intuition into the signs±1 has been given by considering the singularity structure
of the various integrals more carefully [39].

EVALUATING INTEGRALS

Once the structure of the amplitude is known in terms of basic integrals, the next task is
to evaluate those integrals, analytically if possible, otherwise numerically. For example,
to test eq. (12) at three loops, we first expand it out to third order, obtaining the iterative
relation,

M(3)
n (ε) = −1

3

[

M(1)
n (ε)

]3
+M(1)

n (ε)M(2)
n (ε)+ f (3)(ε)M(1)

n (3ε)+C(3) +O(ε). (17)

To test this relation at orderε0 for n = 4 [14], we need the following integrals:

• The one-loop box integral throughε4 — because it has 1/ε2 poles, and appears
cubed in eq. (17).

• The planar double box integral [40] in fig. 6 throughε2 — becauseM(2)
4

(ε) appears

in eq. (17) multiplied byM(1)
4

(ε).
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FIGURE 7. (a) Mapping a single-trace operator to a spin chain. (b) One-loop contribution to the
anomalous dimension matrix at largeNc.

• The triple ladder [41] and tennis-court [14] integrals throughε0.

Mellin-Barnes techniques (seee.g. ref. [42]) are very useful in this regard. Inserting the
results into eq. (17), and using identities among weight 6 harmonic polylogarithms [43],
the relation (17) was verified, and three of the four constants at three loops could be
extracted:

f (3)
0

=
11
5

(ζ2)
2, f (3)

1
= 6ζ5+5ζ2ζ3, f (3)

2
= c1 ζ6+ c2(ζ3)

2, (18)

C(3) =

(

341
216

+
2
9

c1

)

ζ6+

(

−17
9

+
2
9

c2

)

(ζ3)
2 . (19)

The first two of these constants control infrared divergences. The value off (3)
0

= γ̂(3)
K

/4
confirms a result for the three-loop cusp anomalous dimension in planar MSYM, which
was first obtained [44] by applying the principle of “maximal transcendentality” to the
corresponding result in QCD [45]. The value off (3)

1
= (3/2)Ĝ(3)

0
gives the three-loop

collinear anomalous dimension, which was found to agree (applying the same principle)
with the QCD result [46]. The constantsf (3)

2
andC(3) are inseparable using only the

four-gluon amplitude; either the five-gluon amplitude or a collinear analysis would be
required to separate them. The numbersc1 andc2 are expected to be rational.

A similar analysis can be performed at four loops [7, 8, 47], except that the integrals
become less tractable analytically. Fortunately, there are methods available for automat-
ing the construction of Mellin-Barnes representations [48], the extraction of 1/ε poles,
and the setting up of numerical integration over multiple contours for the Mellin inver-
sion [49, 50]. Before describing the four-loop results, let us turn to some very interesting
developments that have taken place, based on integrability.

INTEGRABILITY AND ANOMALOUS DIMENSIONS

In large-Nc gauge theory, a preferred role is played by local “single-trace operators”. In
the case of MSYM, one subsector of such operators is provided by products of the 3
complex scalar fields,Xi, i = 1,2,3. The operator Tr[Xn

1 ] is a so-called BPS operator,
and is unrenormalized to all orders inλ . A set of operators with more interesting



renormalization properties are close to BPS [51], and contain X2 fields as well asX1,
for example,

Tr[. . .X2X2X1X1X1 . . .] . (20)

As shown in fig. 7(a), this set of operators can be mapped to a one-dimensional, periodic
spin chain, in whichX1 (X2) is mapped to spin up (spin down), corresponding to a finite-
dimensional (spin 1/2) representation ofSU(2) spin symmetry.

The anomalous dimensions of the set of operators (20) are found by diagonalizing
the dilatation operator, which can be mapped to a Hamiltonian for the spin chain. In the
large-Nc limit, this Hamiltonian is local, because non-local interactions correspond to
non-planar diagrams. For example, as shown in fig. 7(b), a one-loop contribution from
a four-scalar interaction can only affect color-adjacentXi fields (spins). (The range of
the interactions does increase with the number of loops.) Minahan and Zarembo [52]
showed that the one-loop Hamiltonian wasintegrable; that is, the system possesses

• infinitely many conserved charges,
• a spectrum of quasi-particles (spin waves, or magnons),
• magnon scattering via a 2→ 2 S matrix obeying the Yang-Baxter equation,
• solutions for the anomalous dimensions (energies) via a Bethe ansatz.

Integrable structures in QCD had been identified previously [53, 54, 55]. In planar
MSYM, however, the integrability appears to persist to all orders inλ ; indeed, it is
known to be present at strong coupling, from the form of the classical sigma model on
target space AdS5×S5 [56].

There is a rich literature of extensions of the one-loop results of ref. [52] to higher
loops, even all loop orders, and to more general sectors of planar MSYM, which I can
only touch on here [6, 57, 58, 59, 60]. The sector most relevant to gluon scattering
amplitudes is not the spin 1/2SU(2) sector (20), but that in which theX2 fields are
replaced by covariant derivativesD+ acting in the+ (light-cone) direction,

Tr[. . .D+D+X1X1X1 . . .] . (21)

These derivatives act as an infinite-dimensional representation of the noncompact ver-
sion ofSU(2), namelySL(2). Within this sector, the cusp anomalous dimension can be
found by taking the limit of a small number of fields (spin chain length)L, and a large
number of derivativesj, to get the operator

O j = Tr
[

X1(D+) jX1

]

, j → ∞. (22)

By the universality of the cusp anomalous dimension, it does not matter which leading-
twist large j operator is used; they all have the behavior (2) at largej.

AN ALL-ORDERS PROPOSAL

In brief, and omitting many subtleties, the Bethe-ansatz solution consists of taking the
eigenstates of the Hamiltonian to be multi-magnon states, with phase-shifts induced by
repeated 2→ 2 scatterings. The periodicity of the wave function on the closed chain



leads to the Bethe condition, which depends on the chain length L. In the limit L → ∞,
the Bethe condition becomes an integral equation, which depends on the form of the
2 → 2 magnonS matrix [60]. ThisS matrix is almost fixed by the symmetries, but an
overall phase, thedressing factor, is not so easily deduced. Finally, there is a potential
wrapping problem in extrapolating to the cusp anomalous dimension: The Bethe ansatz
is only rigorously valid when the interaction range (the number of loops) is smaller
than the chain periodicityL. However, even though the cusp anomalous dimension has
L = 2, it has been argued that its universality leads it to appear within large-L sectors,
and renders it immune to the wrapping problem [55, 60, 61].

Eden and Staudacher [60] derived an integral equation for the all-orders behavior of
the cusp anomalous dimension from an all-loop Bethe ansatz [58], by assuming that the
dressing factor did not play a role perturbatively. This equation agreed with the known
one-, two-, and three-loop coefficients ofγK(λ ), and made the four-loop prediction,

f (4)
0

∣

∣

∣

ES
=

1
4

γ̂(4)
K

∣

∣

∣

ES
= − 73

2520
π6+(ζ3)

2 = −26.4048255. . . , (23)

motivating the computation of the four-loop four-gluon scattering amplitude, and the
numerical extraction off (4)

0
from it. The result found [7],

f (4)
0

= −29.335±0.052, (24)

and later with much improved precision [8],

f (4)
0

= −29.29473±0.00005, (25)

was consistent, not with eq. (23), but with a version in which the sign of the(ζ3)
2 term

was flipped,

f (4)
0

∣

∣

∣

BES
=

1
4

γ̂(4)
K

∣

∣

∣

BES
= − 73

2520
π6− (ζ3)

2 = −29.2947071202. . . . (26)

Remarkably, the latter value was predicted, simultaneously with ref. [7], by Beisert,
Eden and Staudacher (BES) [6], based on a modified integral equation taking into
account a new proposal for the dressing factor, with nontrivial effects beginning at
four loops. The proposed dressing factor was deduced by using its properties at strong-
coupling, where it had been known to be nontrivial [62]. Perhaps even more remarkably,
the only effect of including the dressing-factor term on the weak-coupling expansion of
the integral equation, is to make the substitutionζ2k+1 → iζ2k+1, which affects only the
signs of the odd-zeta terms in the perturbative expansion. At five loops, this sign-flip is

f (5)
0

∣

∣

∣

ES
= (887/56700)π8−2ζ2(ζ3)

2−10ζ3 ζ5 = 131.21. . . (27)

→ f (5)
0

∣

∣

∣

BES
= (887/56700)π8+2ζ2(ζ3)

2+10ζ3 ζ5 = 165.65. . . , (28)

which also agrees with interpolation-based estimates [7].
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FIGURE 8. Gluon scattering in anti-de Sitter space. Four-dimensional space-time has coordinatesx.
Hard-scattering kinematics force the strings to stretch a long distance in the radial directionr, from their
infrared “anchor”, aD brane located atrIR.

The BES integral equation was solved numerically [9], and later expanded analyti-
cally to all orders in the strong-coupling (1/

√
λ ) expansion [10]. Its strong-coupling be-

havior is consistent with the known first three terms in this expansion [11, 12, 13]. This
concordance, plus the agreement with the first four loops at weak coupling, strongly
suggests that the BES equation is an exact solution for the cusp anomalous dimension,
valid for arbitraryλ .

The next quantity appearing in the planar MSYM gluon scattering amplitudes,G0(λ ),
which controls single poles in the argument of the exponential in eq. (10), is not quite as
well known. The first four loop coefficients are known, the fourth numerically [47],

G0(λ ) = −ζ3

(

λ
8π2

)2

+
2
3

(

6ζ5+5ζ2ζ3

)

(

λ
8π2

)3

− (77.56±0.02)

(

λ
8π2

)4

+ · · · ,
(29)

and one coefficient is now known in the strong-coupling expansion [5]. A Padé approx-
imant incorporating this data has been constructed [47]. Clearly, it would be of great
interest if an integral equation could be found governingG0(λ ) for all values of the cou-
pling. Finding a cleaner operator interpretation for this quantity may be quite useful in
this respect.

GLUON SCATTERING AT STRONG COUPLING

Now let us return to the picture of gluon scattering at strong coupling developed by
Alday and Maldacena [5]. Figure 8 is another view of the AdS space sketched in fig. 1,
showing also a pair of incoming open string states prior to a hard scattering. The ends of
the open strings are anchored on aD brane, which serves as an infrared regulator and is
located at a small value of the AdS radial variable,rIR. The short-distance (UV) nature
of the hard scattering forces part of the string to penetrate to large values ofr ∼√

s,
√

t.
Gluons correspond to this part of the string, and the rest of the string can be thought
of as the color string a gluon has to drag along with it, which is particularly important
at strong coupling. Because the string has to stretch a long way, the scattering is semi-
classical [5].
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FIGURE 9. (a) Boundary condition atr = 0 for gg→ gg scattering at 90◦ in the u-channel. (b) The
cusp solution, showingr as a function ofy0 andy1′.

This regime is similar to very high-energy, fixed-angle scattering in string theory in
flat space-time, which was studied long ago [63]. Evaluated on the classical solution,
for the case of color-ordered scattering with gluons 1 and 3 incoming, 2 and 4 outgoing,
the string world-sheet action is imaginary. The Euclidean action, or area, is real, and is
logarithmically divergent, leading to a large exponential suppression [5],M4 ∼ exp[iScl] ∼ exp[−SE

cl] ∼ exp[−
√

λ ln2(r/rIR)] , (30)

wherer ∼ √
s,
√

t. The coupling-constant dependence in eq. (30) originates from the
formula for the radius of curvature of AdS,R2

AdS =
√

λ , which enters the world-sheet
action. From the string point of view, the suppression can be attributed to a tunnelling
suppression factor. From the point of view of a four-dimensional collider physicist, it is
a typical Sudakov suppression factor [16]: The probability for a pair of gluons to make
it all the way into and back out of the scattering without radiating at all is exponentially
small — especially at strong coupling,λ → ∞ — with a double log in the exponential.

To make contact with the perturbative results, Alday and Maldacena constructed a
dimensionally-regularized version of AdS5× S5, instead of using theD brane location
rIR as a regulator. They also introducedT -dual variablesyµ in place of the usual four-
dimensional coordinates. TheT -duality transformation is a kind of Fourier transform,
so theyµ are like momentum variables. Indeed, the asymptotic boundary value for the
world-sheet, which resides atr = 0 in the dimensionally-regularized setup, is a polygon
constructed from light-like segments inyµ , with the cornersyµ

i
satisfying

yµ
i+1− yµ

i = kµ
i , (31)

wherekµ
i

is the momentum of theith gluon. From eq. (31), we see that theyi coincide
precisely with the dual variablesxi introduced in section to discuss dual conformal
invariance! Figure 9(a) shows the light-like quadrilateral boundary satisfying eq. (31)
for the case of 2→ 2 gluon scattering at 90◦ in the 1-2 plane, withk1 andk3 incoming.
The vertical direction is the (dualized) time direction.

Near each corner of the polygonal boundary, the solution must look like a cusp
solution, previously constructed by Kruczenski [64], in whichr behaves liker =
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FIGURE 10. Planar Feynman diagrams, ringed by the strong-coupling boundary condition in dual
momentum variables. Each Sudakov wedge has a single cusp associated to it.

√

(2+ ε)[(y0)2− (y1′)2] =
√

(2+ ε)y+y− for some spatial coordinatey1′ , and light-
cone coordinatesy±. This hyperboloid is shown in fig. 9(b). The classical action (area)
for this solution has a divergence regulated byε,

iScl = −SE
cl → −R2

AdS

∫

0

dy+dy−

(y+y−)1+ε/2
∼ − 1

ε2

√
λ

2π
∼ − 1

ε2

γK(λ )

2
. (32)

The coefficient of the leading divergence is just the strong-coupling limit of the cusp
anomalous dimension [11],

γK(λ ) ∼
√

λ
π

, asλ → ∞ . (33)

Figure 10 illustrates the situation heuristically. The singular part of the planar amplitude
can be broken up into Sudakov wedges, as in fig. 3 and eq. (5). The overlap of soft and
collinear divergences corresponds to regions between two hard lines,e.g. ki andki+1.
Thus each wedge is associated with a single divergent cusp [65], of the form shown in
fig. 9(b).

The full classical solution, for arbitrary scattering angle, was found by Alday and
Maldacena [5]. Its action gives a strong-coupling amplitude of the form,M4 = exp[−SE

cl] ,

−SE
cl = − 1

ε2

√
λ

π

[(

µ2
IR

−s

)ε/2

+

(

µ2
IR

−t

)ε/2]

− 1
ε

√
λ

2π
(1− ln2)

[(

µ2
IR

−s

)ε/2

+

(

µ2
IR

−t

)ε/2]

+
λ
8π

[

ln2
(

s
t

)

+C̃

]

+O(ε) , (34)

where µ2
IR = 4πe−γ µ2. This expression can be compared with the strong-coupling

extrapolation of the ansatz (12) [5]. The 1/ε2 poles agree, using the strong-coupling



value for γK(λ ) from eq. (33). The 1/ε poles give the strong-coupling limit of the
collinear anomalous dimensionG0(λ ),

G0(λ ) ∼
√

λ
(1− ln2)

2π
, asλ → ∞ . (35)

The finite part ofM4 has a dependence ons andt which is precisely as predicted by
eq. (13).

DUAL VARIABLES AND WILSON LOOPS AT WEAK COUPLING

The dual momentum variablesxµ
i

play a prominent role in the strong-coupling compu-
tation of Alday and Maldacena, which is essentially the same as computing a Wilson
loop vacuum expectation value at strong coupling. Inspired by this connection, there
has been a sequence of recent Wilson-loop computations for loops corresponding to the
dual-momentum boundary conditions for ann-point amplitude, namely polygons com-
posed ofn-light-like segments, with corners obeying eq. (31).

The first of these computations was by Drummond, Korchemsky and Sokatchev [38],
for the one-loop expectation value of a quadrilateral (n = 4) Wilson loop. Up to constants
of the kinematics, attributable to a different regulator (in the UV) than the one used
for the amplitudes (in the IR), the expectation value agreed, surprisingly, with the
one-loop four-gluon amplitude, normalized by the tree amplitude,i.e. eq. (13). Next,
Brandhuber, Heslop and Travaglini [66] showed that the same statement is actually
true for then-gon Wilson loop for anyn, compared with the normalized one-loop
amplitude [28] for the so-called maximally-helicity-violating (MHV) configuration of
gluon helicities (two negative and(n−2) positive). The Wilson-loop computation knows
nothing about the polarizations of the external gluons. It is manifestly symmetric under
cyclic permutations and reflections of the polygon. Forn = 4 and 5, a Ward identity forN = 4 supersymmetry shows that all helicity configurations in MSYM are equivalent,
and that the normalized amplitudes have the same manifest symmetries as the polygonal
Wilson loop [67]. However, beyondn = 5 there are non-MHV configurations which do
not have these symmetries. How does the Wilson loop know it is “supposed to” match
the MHV amplitude alone?

Drummond, Henn, Korchemsky and Sokatchev (DHKS) then repeated the Wilson-
loop computation in MSYM at two loops, first for then = 4 case [68] and then2 for the
n = 5 case [69]. Again the results matched the full two-loop MSYM scattering ampli-
tudes [4, 25], up to constants of the kinematics. Furthermore, DHKS first proposed [68]
and then proved [69] an anomalous dual conformal Ward identity for Wilson loops, in
which the anomaly arises from UV divergences proportional toγK(λ ). The solution to
the Ward identity is unique forn = 4 and 5. Beyondn = 5, there are multiple solutions,
due to the existence of nontrivial conformally-invariant cross ratios. For example, for

2 Most of the results reported from this point on appeared after this talk was presented, but before the
write-up was completed. I include them here because of their close connection with the contents of the
talk.



n = 6 the quantityu1 ≡ x2
13x2

46/(x2
14x2

36) = s12s45/(s123s345) is invariant under the inver-
sion (16), and there are two other such cross ratios. (The appearance ofx2

i,i+1 = k2
i in a

cross ratio is forbidden by the on-shell constraintk2
i = 0.)

DHKS also showed that the amplitude ansatz (12) obeys the anomalous dual confor-
mal Ward identity. Given that the ansatz was known to be correct forn = 4 and 5 [4, 25],
and the uniqueness of the Ward identity solution for these cases, this result could ex-
plain why the amplitude should match the Wilson loop in these cases. However, it was
not clear what should happen for largern. Indeed, Alday and Maldacena [70] gave an
argument, based on approximating a Euclidean rectangular loop by a zig-zag configu-
ration composed of many light-like segments, that the ansatz (12) should fail at strong
coupling for sufficiently largen. DHKS [71] found that the hexagonal Wilson loop could
not be described at two loops by the ansatz (12). This result left open the question, how-
ever, of whether the ansatz failed to describe MHV amplitudes beyondn = 5, or whether
the relation between amplitudes and Wilson loops failed beyond two loops (or both).

The high-energy limits of the ansatz (12) have been examined for consistency with
expected Regge behavior. Forn = 4 and 5, the ansatz appears to have consistent behavior
in all such limits [38, 72, 73, 74] However, there appears to be a difficulty with the ansatz
for the six-gluon amplitude starting at two loops [74]. Very recently, a computation of
the “parity even” part of the six-gluon MHV amplitude [75] has revealed directly that
the ansatz (12) does fail forn = 6. However, a numerical comparison [75, 76] with the
corresponding hexagonal Wilson loop [71] shows that the MHV-amplitude-Wilson-loop
equivalence is still intact at two loops andn = 6. This result means that the scattering
amplitude also obeys the dual conformal Ward identity. On the other hand, the solution to
the Ward identity is not unique forn = 6. Hence some other principle, as yet unidentified,
is needed to explain why MHV amplitudes are equivalent to Wilson loops in MSYM.

CONCLUSIONS

We have seen that gluon scattering amplitudes in planarN = 4 super-Yang-Mills theory
have some remarkable properties. It appears that the exact forms of the four-gluon and
five-gluon amplitudes are given by the ansatz (12), which depends only on four different
functions of the large-Nc coupling parameterλ : f0, f1, f2 andC. Because an exact
solution for one of the four functions —f0, the cusp anomalous dimension — seems
to be in hand [6], perhaps one can say that these cases are “1/4 solved”. The fixed
dependence of the ansatz (12) on the scattering angle(s) is apparently related to the
uniqueness of solutions to a dual conformal Ward identity forn = 4 and 5 [68, 69],
and an equivalence between (MHV) amplitudes and Wilson lines [5, 38, 66, 68, 69].
Although the ansatz (12) fails for the MHV six-gluon amplitude [75] at two loops, the
equivalence remains valid [75, 76].

There are still many open questions. Are there simple(r) AdS/operator interpretations
of the other three functions? Can one find integral equations for them, based on inte-
grability? What is the precise relation between integrability and dual conformal invari-
ance? Do non-MHV amplitudes obey any simple patterns, or bear any relation to Wilson
loop expectation values? From the structure of the one-loop amplitudes,e.g. for six glu-



ons [29], any such relations must be considerably more intricate. What happens in other
conformal theories? Finally, we can hope that some of these advances may eventually
help to shed light on scattering amplitudes in other gauge theories, particularly QCD,
whose understanding — as exemplified by the other talks at this symposium — is vital
to the search for new physics at the Large Hadron Collider.
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11. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Nucl. Phys. B636, 99 (2002) [hep-th/0204051].
12. S. Frolov and A. A. Tseytlin, JHEP0206, 007 (2002) [hep-th/0204226].
13. R. Roiban, A. Tirziu and A. A. Tseytlin, JHEP0707, 056 (2007) [0704.3638 [hep-th]];

R. Roiban and A. A. Tseytlin, JHEP0711, 016 (2007) [0709.0681 [hep-th]].
14. Z. Bern, L. J. Dixon and V. A. Smirnov, Phys. Rev. D72, 085001 (2005) [hep-th/0505205].
15. Z. Bern and D. A. Kosower, Nucl. Phys. B379, 451 (1992);

Z. Bern, A. De Freitas, L. Dixon and H. L. Wong, Phys. Rev. D66, 085002 (2002) [hep-ph/0202271].
16. V. V. Sudakov, Sov. Phys. JETP3, 65 (1956) [Zh. Eksp. Teor. Fiz.30, 87 (1956)];

R. Akhoury, Phys. Rev. D19, 1250 (1979);
A. H. Mueller, Phys. Rev. D20, 2037 (1979);
J. C. Collins, Phys. Rev. D22, 1478 (1980); inPerturbative QCD, ed. A. H. Mueller, Advanced Series
on Directions in High Energy Physics, Vol. 5 (World Scientific, Singapore, 1989) [hep-ph/0312336];
A. Sen, Phys. Rev. D24, 3281 (1981);
G. Sterman, Nucl. Phys. B281, 310 (1987).



17. A. Sen, Phys. Rev.D28, 860 (1983);
J. Botts and G. Sterman, Nucl. Phys. B325, 62 (1989);
N. Kidonakis, G. Oderda and G. Sterman, Nucl. Phys.B525, 299 (1998) [hep-ph/9801268]; Nucl.
Phys.B531, 365 (1998) [hep-ph/9803241].

18. G. P. Korchemsky, Mod. Phys. Lett. A4, 1257 (1989);
G. P. Korchemsky and G. Marchesini, Nucl. Phys. B406, 225 (1993) [hep-ph/9210281].

19. L. Magnea and G. Sterman, Phys. Rev. D42, 4222 (1990).
20. S. Catani, Phys. Lett. B427, 161 (1998) [hep-ph/9802439].
21. G. Sterman and M. E. Tejeda-Yeomans, Phys. Lett. B552, 48 (2003) [hep-ph/0210130].
22. A. M. Polyakov, Nucl. Phys. B164 (1980) 171.
23. S. V. Ivanov, G. P. Korchemsky and A. V. Radyushkin, Yad. Fiz.44, 230 (1986) [Sov. J. Nucl. Phys.

44, 145 (1986)].
24. G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys.B283, 342 (1987).
25. F. Cachazo, M. Spradlin and A. Volovich, Phys. Rev. D74, 045020 (2006) [hep-th/0602228];

Z. Bern, M. Czakon, D. A. Kosower, R. Roiban and V. A. Smirnov, Phys. Rev. Lett.97, 181601
(2006) [hep-th/0604074].

26. T. O. Eynck, E. Laenen and L. Magnea, JHEP0306, 057 (2003) [hep-ph/0305179].
27. R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne,The Analytic S Matrix(Cambridge

University Press, 1966).
28. Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B425, 217 (1994) [hep-

ph/9403226].
29. Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B435, 59 (1995) [hep-

ph/9409265].
30. Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B513, 3 (1998) [hep-ph/9708239].
31. Z. Bern, L. J. Dixon and D. A. Kosower, JHEP0001, 027 (2000) [hep-ph/0001001]; JHEP0408, 012

(2004) [hep-ph/0404293].
32. R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B725, 275 (2005) [hep-th/0412103].
33. Z. Bern, J. S. Rozowsky and B. Yan, Phys. Lett. B401, 273 (1997) [hep-ph/9702424].
34. Z. Bern, J. J. M. Carrasco, H. Johansson and D. A. Kosower, Phys. Rev. D76, 125020 (2007)

[0705.1864 [hep-th]].
35. J. M. Drummond, J. Henn, V. A. Smirnov and E. Sokatchev, JHEP0701, 064 (2007) [hep-

th/0607160].
36. D. J. Broadhurst, Phys. Lett. B307, 132 (1993).
37. L. N. Lipatov, Nucl. Phys. B548, 328 (1999) [hep-ph/9812336].
38. J. M. Drummond, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B795, 385 (2008) [0707.0243

[hep-th]].
39. F. Cachazo and D. Skinner, 0801.4574 [hep-th].
40. V. A. Smirnov, Phys. Lett. B460, 397 (1999) [hep-ph/9905323].
41. V. A. Smirnov, Phys. Lett. B567, 193 (2003) [hep-ph/0305142].
42. V. A. Smirnov,Evaluating Feynman integrals, Springer tracts in modern physics,211 (Springer,

Berlin, Heidelberg, 2004).
43. E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15, 725 (2000) [hep-ph/9905237].
44. A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko and V. N. Velizhanin, Phys. Lett. B595, 521 (2004)

[Erratum-ibid. B632, 754 (2006)] [hep-th/0404092].
45. S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B688, 101 (2004) [hep-ph/0403192]; Nucl.

Phys. B691, 129 (2004) [hep-ph/0404111].
46. S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B625, 245 (2005) [hep-ph/0508055].
47. F. Cachazo, M. Spradlin and A. Volovich, Phys. Rev. D76, 106004 (2007) [0707.1903 [hep-th]].
48. J. Gluza, K. Kajda and T. Riemann, Comput. Phys. Commun.177, 879 (2007) [0704.2423 [hep-ph]].
49. C. Anastasiou and A. Daleo, JHEP0610, 031 (2006) [hep-ph/0511176].
50. M. Czakon, Comput. Phys. Commun.175, 559 (2006) [hep-ph/0511200].
51. D. E. Berenstein, J. M. Maldacena and H. S. Nastase, JHEP0204, 013 (2002) [hep-th/0202021].
52. J. A. Minahan and K. Zarembo, JHEP0303, 013 (2003) [hep-th/0212208].
53. L. N. Lipatov, hep-th/9311037; JETP Lett.59, 596 (1994) [Pisma Zh. Eksp. Teor. Fiz.59, 571

(1994)];
L. D. Faddeev and G. P. Korchemsky, Phys. Lett. B342, 311 (1995) [hep-th/9404173].



54. V. M. Braun, S. E. Derkachov and A. N. Manashov, Phys. Rev. Lett. 81, 2020 (1998) [hep-
ph/9805225];
V. M. Braun, S. E. Derkachov, G. P. Korchemsky and A. N. Manashov, Nucl. Phys. B553, 355 (1999)
[hep-ph/9902375];
A. V. Belitsky, Phys. Lett. B453, 59 (1999) [hep-ph/9902361].

55. A. V. Belitsky, A. S. Gorsky and G. P. Korchemsky, Nucl. Phys. B667, 3 (2003) [hep-th/0304028].
56. I. Bena, J. Polchinski and R. Roiban, Phys. Rev. D69, 046002 (2004) [hep-th/0305116].
57. N. Beisert, C. Kristjansen and M. Staudacher, Nucl. Phys. B664, 131 (2003) [hep-th/0303060];

N. Beisert, Nucl. Phys. B676, 3 (2004) [hep-th/0307015]; JHEP0309, 062 (2003) [hep-th/0308074];
N. Beisert and M. Staudacher, Nucl. Phys. B670, 439 (2003) [hep-th/0307042];
M. Staudacher, JHEP0505, 054 (2005) [hep-th/0412188].

58. N. Beisert and M. Staudacher, Nucl. Phys. B727, 1 (2005) [hep-th/0504190].
59. N. Beisert, Bulg. J. Phys.33S1, 371 (2006) [hep-th/0511013]; N. Beisert, hep-th/0511082.
60. B. Eden and M. Staudacher, J. Stat. Mech.0611, P014 (2006) [hep-th/0603157].
61. A. V. Kotikov, L. N. Lipatov, A. Rej, M. Staudacher and V. N. Velizhanin, J. Stat. Mech.0710,

P10003 (2007) [0704.3586 [hep-th]].
62. G. Arutyunov, S. Frolov and M. Staudacher, JHEP0410, 016 (2004) [hep-th/0406256];

R. Hernández and E. López, JHEP0607, 004 (2006) [hep-th/0603204];
R. A. Janik, Phys. Rev. D73, 086006 (2006) [hep-th/0603038];
L. Freyhult and C. Kristjansen, Phys. Lett. B638, 258 (2006) [hep-th/0604069];
N. Beisert, R. Hernández and E. López, JHEP0611, 070 (2006) [hep-th/0609044].

63. D. J. Gross and P. F. Mende, Phys. Lett. B197, 129 (1987).
64. M. Kruczenski, JHEP0212, 024 (2002) [hep-th/0210115].
65. E. I. Buchbinder, Phys. Lett. B654, 46 (2007) [0706.2015 [hep-th]].
66. A. Brandhuber, P. Heslop and G. Travaglini, Nucl. Phys. B794, 231 (2008) [0707.1153 [hep-th]].
67. M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, Phys. Rev. D15, 996 (1977);

M. T. Grisaru and H. N. Pendleton, Nucl. Phys. B124, 81 (1977);
Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Phys. Lett. B394, 105 (1997) [hep-
th/9611127].

68. J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B795, 52 (2008)
[0709.2368 [hep-th]].

69. J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, 0712.1223 [hep-th].
70. L. F. Alday and J. Maldacena, JHEP0711, 068 (2007) [0710.1060 [hep-th]].
71. J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, 0712.4138 [hep-th].
72. H. J. Schnitzer, hep-th/0701217; 0706.0917 [hep-th];

S. G. Naculich and H. J. Schnitzer, Nucl. Phys. B794, 189 (2008) [0708.3069 [hep-th]];
V. Del Duca and E. W. N. Glover, 0802.4445 [hep-th].

73. R. C. Brower, H. Nastase, H. J. Schnitzer and C.-I. Tan, 0801.3891 [hep-th].
74. J. Bartels, L. N. Lipatov and A. Sabio Vera, 0802.2065 [hep-th].
75. Z. Bern, L. J. Dixon, D. A. Kosower, R. Roiban, M. Spradlin, C. Vergu and A. Volovich, 0803.1465

[hep-th].
76. J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, 0803.1466 [hep-th].


