# Search for CPT Violation in $B^0$ - $\overline{B}^0$ Oscillations with BABAR\*

D.P. STOKER (for the BABAR Collaboration)

Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA E-mail: dpstoker@uci.edu

I describe searches for CPT violation in  $B^0-\overline{B}^0$  oscillations using  $\Upsilon(4S) \to B\overline{B}$  decays recorded by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. Preliminary results are given for combinations of the quantities  $\Delta a_{\mu}$  in the Lorentz-violating standard-model extension.

#### INTRODUCTION

In the general Lorentz-violating standard-model extension (SME) [1], the parameter for CPT violation in neutral meson oscillations depends on the 4-velocity of the meson [2]. We have searched [3] for this effect using  $\Upsilon(4S) \rightarrow B\overline{B}$  decays recorded by the BABAR detector at the PEP-II asymmetric-energy  $e^+e^-$  collider. Any observed CPT asymmetry should vary with a period of one sidereal day ( $\simeq 0.99727$  solar-day) as the  $\Upsilon(4S)$  boost direction follows the Earth's rotation with respect to the distant stars [4].

The "light" and "heavy" physical states of the  $B^0$ - $\overline{B}^0$  system are

$$|B_L\rangle = p\sqrt{1-\mathsf{z}}|B^0\rangle + q\sqrt{1+\mathsf{z}}|\overline{B}^0\rangle, |B_H\rangle = p\sqrt{1+\mathsf{z}}|B^0\rangle - q\sqrt{1-\mathsf{z}}|\overline{B}^0\rangle.$$
(1)

The complex parameter z vanishes if CPT is conserved; T invariance implies |q/p| = 1. In the  $w\xi$  formalism of the SME,  $\xi = -z$  and w = |q/p|.

In the SME, flavor-dependent Lorentz and CPT-violating coupling coefficients for the two valence quarks in the  $B^0$  meson are contained in quantities  $\Delta a_{\mu}$ . The CPT parameter z depends on the meson 4-velocity  $\beta^{\mu} = \gamma(1, \vec{\beta})$  in the observer frame as [2]

$$\mathbf{z} \simeq \frac{\beta^{\mu} \Delta a_{\mu}}{\Delta m - i \Delta \Gamma/2},\tag{2}$$

where  $\beta^{\mu}\Delta a_{\mu}$  is real and varies with sidereal time due to the rotation of  $\vec{\beta}$  relative to the constant vector  $\Delta \vec{a}$ . The magnitude of the decay rate difference  $\Delta \Gamma \equiv \Gamma_H - \Gamma_L$  is known to be small compared to the  $B^0 - \overline{B}^0$  oscillation frequency  $\Delta m \equiv m_H - m_L$ ; hence the SME constrains

$$\Delta m \operatorname{Re} \mathbf{z} \simeq 2\Delta m (\Delta m / \Delta \Gamma) \operatorname{Im} \mathbf{z} \simeq \beta^{\mu} \Delta a_{\mu}.$$
(3)

Analogous  $\Delta a_{\mu}$  apply to oscillations of other neutral mesons. Limits on  $\Delta a_{\mu}$  specific to  $K^0\overline{K}^0$  oscillations [5] and to  $D^0\overline{D}^0$  oscillations [6] have been reported by the KTeV and FOCUS collaborations, respectively. KTeV has also reported constraints on sidereal variation of the CPT parameter  $\phi_{+-}$  [7].

We adopt [8] the basis  $(\hat{X}, \hat{Y}, \hat{Z})$  for the fixed frame containing  $\Delta \vec{a}$  and the basis  $(\hat{x}, \hat{y}, \hat{z})$  for the rotating laboratory frame. We take  $\beta^{\mu}$  for each B meson to be the  $\Upsilon(4S)$  4-velocity and choose  $\hat{z}$  to lie along  $-\vec{\beta}$ , so that

$$\beta^{\mu}\Delta a_{\mu} = \gamma \left[ \Delta a_0 - \beta \Delta a_Z \cos \chi - \beta \sin \chi \left( \Delta a_Y \sin \Omega \hat{t} + \Delta a_X \cos \Omega \hat{t} \right) \right] \tag{4}$$

where the sidereal time  $\hat{t}$  is given by the right ascension of  $\hat{z}$  as it precesses around the Earth's rotation axis  $(\hat{Z})$  at the sidereal frequency  $\Omega$ . The latitude (37.4° N) and longitude (122.2° W) of BABAR and the  $\Upsilon(4S)$  Lorentz boost  $(\langle \beta \gamma \rangle \simeq 0.55 \text{ toward } 37.8^{\circ} \text{ east of south})$  yield  $\hat{t} = 14.0$  sidereal-hours at the Unix epoch (00:00:00, 1 Jan. 1970) and  $\cos \chi = \hat{z} \cdot \hat{Z} = 0.628$ .

<sup>\*</sup> Presented at the Fourth Meeting on CPT and Lorentz Symmetry, Indiana University, Bloomington (August 8–11, 2007).

## SEARCH USING INCLUSIVE DILEPTON EVENTS

Neutral *B* mesons from  $\Upsilon(4S)$  decay evolve in orthogonal flavor states until one decays, after which the flavor of the other continues to oscillate. We use *direct* semileptonic decays (where  $b \to X\ell\nu$ , with  $\ell = e$  or  $\mu$ ) to tag the flavor of each  $B^0(\overline{B}^0)$  by the charge of its daughter lepton  $\ell^+(\ell^-)$ . To first order in z, the decay rate for opposite-sign dilepton  $(\ell^+\ell^-)$  events is

$$N^{+-} \propto e^{-|\Delta t|/\tau_{B^0}} \qquad \{\cosh(\Delta\Gamma\Delta t/2) + \cos(\Delta m\Delta t) \\ -2\operatorname{Re} z \sinh(\Delta\Gamma\Delta t/2) + 2\operatorname{Im} z \sin(\Delta m\Delta t)\}.$$
(5)

We define  $\Delta t \equiv t^+ - t^-$  to be the difference of the proper times for B meson decays to  $\ell^+$ ,  $\ell^-$ . The asymmetry  $A_{CPT}$  between the decay rates at  $\Delta t > 0$  and  $\Delta t < 0$  compares the probabilities  $P(B^0 \to B^0)$  and  $P(\overline{B}^0 \to \overline{B}^0)$ :

$$A_{CPT}(\Delta t) \simeq \frac{-\operatorname{Re} \mathbf{z} \,\Delta\Gamma \Delta t + 2 \operatorname{Im} \mathbf{z} \sin(\Delta m \Delta t)}{\cosh(\Delta\Gamma \Delta t/2) + \cos(\Delta m \Delta t)}.$$
(6)

Here we make the approximation  $\sinh(\Delta\Gamma\Delta t/2) \simeq \Delta\Gamma\Delta t/2$ , which is valid for the range  $|\Delta t| < 15$  ps used in this analysis. We use  $|\Delta\Gamma| = 6 \times 10^{-3} \text{ ps}^{-1}$  in the  $\cosh(\Delta\Gamma\Delta t/2)$  term, consistent with the central value in Ref. [9].

The BABAR detector is described in detail elsewhere [10]. Any day/night variations in detector response tend to cancel over sidereal time for long data-taking periods. We use about 232 million  $\Upsilon(4S) \rightarrow B\overline{B}$  decays and 16 fb<sup>-1</sup> of off-resonance data, from 40 MeV below the  $\Upsilon(4S)$  resonance, collected during 1999–2004 to search for variations in z of the form

$$\mathbf{z} = \mathbf{z}_0 + \mathbf{z}_1 \cos\left(\Omega t + \phi\right). \tag{7}$$

Each event's timestamp yields the time elapsed since the Unix epoch. We use this time, folded over one sidereal day, for t in Eq. 7.

The event selection is the same as in Ref. [11]. Briefly, we suppress non- $B\overline{B}$  background by event-shape and event-topology requirements, and select events having at least two well-identified lepton candidates with momenta 0.8-2.3 GeV/c in the  $\Upsilon(4S)$  rest frame that are not part of reconstructed  $J/\psi, \psi(2S) \rightarrow e^+e^-, \mu^+\mu^-$  decays or photon conversions. Lepton candidates must have at least one z-coordinate measurement in the silicon vertex tracker (SVT) to allow  $\Delta t$  to be well-measured. We reject events for which a neural-network algorithm classifies either of the two highest-momentum lepton candidates (the *dilepton*) as a *cascade* lepton from a  $b \rightarrow (c, \tau) \rightarrow \ell$  transition. The selected dilepton sample comprises 1.18 million opposite-sign events and 0.22 million same-sign events.

To measure  $\Delta t$ , we assume each lepton originates from a direct *B* meson decay at the point on the lepton track with the least transverse distance to the  $\Upsilon(4S)$ . The component  $\Delta z$ , along the Lorentz boost, of the distance between these two points yields  $\Delta t = \Delta z / \langle \beta \gamma \rangle c$ . For opposite-sign events  $\Delta z = z^+ - z^-$ ; for same-sign events we take  $\Delta z > 0$ .

We model the  $\Delta t$ -distribution of the dilepton sample with the probability density functions (PDFs) used in Ref. [11] to represent contributions from  $B^0\overline{B}^0$  and  $B^+B^-$  decays and non- $B\overline{B}$  events. The latter are estimated, using offresonance data, to be 3.1% of the sample. The fit to data determines that 59% of the  $B\overline{B}$  events are  $B^+B^-$  decays. With contributions of minor  $B\overline{B}$  backgrounds fixed to values from Monte Carlo (MC) simulation, the fit to data determines the fractions of  $B^0\overline{B}^0$  and  $B^+B^-$  decays that are signal events ( $\simeq 80\%$ ) with two direct leptons, and the fractions that are opposite B cascade (obc) events with one direct lepton and a  $b \to c \to \ell$  decay of the other B meson ( $\simeq 10\%$ ). Same-sign dilepton events are retained to improve the determination of the signal and obc fractions.

Each PDF is a convolution of a decay rate in  $\Delta t$  with a resolution function that is a sum of Gaussians or, for events with a cascade lepton, its convolution with one or two double-sided exponentials accounting for the lifetimes of intermediate  $\tau$  or  $D_{(s)}$  meson states, respectively. For signal events, the resolution function is determined by the fit to data, with the width of the third (widest) Gaussian fixed at 8 ps. For leptons from different *B* mesons, we use a  $B^0\overline{B}^0$  decay rate that contains z (Eq. 5) for opposite-sign events and is  $\propto e^{-|\Delta t|/\tau_{B^0}} \{\cosh(\Delta\Gamma\Delta t/2) - \cos(\Delta m\Delta t)\}$ for same-sign events; for  $B^+B^-$  decays, it is  $\propto e^{-|\Delta t|/\tau_{B^\pm}}$ . For leptons from the same *B* meson, the decay rates are exponentials with effective lifetimes determined from MC simulation. Dilution factors are included to account for wrong flavor tags in non-signal events.

We extract z from a maximum likelihood fit to the numbers of opposite-sign and same-sign dilepton events, each binned in  $\Delta t$  and sidereal time t.

Several sources of systematic uncertainty are considered. We vary separately  $\tau_{B^0}$ ,  $\tau_{B^{\pm}}$ , and  $\Delta m$  by their known uncertainties [12], and  $|\Delta\Gamma|$  over the range  $0-0.1 \,\mathrm{ps}^{-1}$ . Fixed parameters in the PDF resolution functions for non-signal events are varied separately by 10%, as are fixed  $B\overline{B}$  background component fractions. The effects of possible

SVT internal misalignments and uncertainty in the absolute z-scale are evaluated in  $B^0\overline{B}^0$  MC samples. We use  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$  data events, with true  $\Delta z = 0$ , to check for sidereal variations in measured  $\Delta z$  that could mimic a Lorentz-violation signal and find a negligibly small amplitude of  $(0.022 \pm 0.025) \,\mu$ m.

Our preliminary results for the CPT violation parameter in Eq. 7 are:

$$Im z_{0} = (-14.1 \pm 7.3(\text{stat.}) \pm 2.4(\text{syst.})) \times 10^{-3},$$
  

$$Re z_{0} \Delta \Gamma = (-7.2 \pm 4.1(\text{stat.}) \pm 2.1(\text{syst.})) \times 10^{-3} \text{ps}^{-1},$$
  

$$Im z_{1} = (-24.0 \pm 10.7(\text{stat.}) \pm 5.9(\text{syst.})) \times 10^{-3},$$
  

$$Re z_{1} \Delta \Gamma = (-18.8 \pm 5.5(\text{stat.}) \pm 4.0(\text{syst.})) \times 10^{-3} \text{ps}^{-1}.$$
(8)

The statistical correlation between  $\operatorname{Im} z_0$  and  $\operatorname{Re} z_0 \Delta \Gamma$  is 76%; between  $\operatorname{Im} z_1$  and  $\operatorname{Re} z_1 \Delta \Gamma$  it is 79%. We note that  $z \to -z$  for  $\phi \to \phi + \pi$  in Eq. 7. The results are compatible with the SME constraint  $\operatorname{Re} z \Delta \Gamma \simeq 2\Delta m \operatorname{Im} z$ .

In Fig. 1 we exhibit the sidereal-time dependence of the measured asymmetry  $A_{CPT}^{\text{meas}}$  for the opposite-sign dilepton events with  $|\Delta t| > 3 \text{ ps}$ , thereby omitting highly-populated bins where any asymmetry is predicted to be small. Figure 2 shows confidence level contours for Im  $z_1$  and Re  $z_1 \Delta \Gamma$ . The significance for sidereal variations in z is  $2.2\sigma$ .



FIG. 1: Asymmetry  $A_{CPT}^{\text{meas}}$  for opposite-sign dilepton events with  $|\Delta t| > 3 \text{ ps}$  versus sidereal time (t = 0 at Unix epoch). The curve is a projection, for  $|\Delta t| > 3 \text{ ps}$ , using results of the two-dimensional likelihood fit for  $|\Delta t| < 15 \text{ ps}$ .



FIG. 2: Contours showing  $1\sigma$ ,  $2\sigma$ , and  $3\sigma$  significance for  $\text{Im} z_1$  and  $\text{Re} z_1 \Delta \Gamma$ .

We use Eqs. 3, 4, and 8 to extract values for the SME quantities  $\Delta a_{\mu}$ :

$$\Delta a_0 - 0.30 \Delta a_Z \approx -(5.2 \pm 4.0) (\Delta m / \Delta \Gamma) \times 10^{-15} \text{ GeV},$$
$$\sqrt{(\Delta a_X)^2 + (\Delta a_Y)^2} \approx (37 \pm 16) |\Delta m / \Delta \Gamma| \times 10^{-15} \text{ GeV}.$$

We now use the periodogram method [13] to compare the spectral power for variations in z at the sidereal frequency with those in a wide band of surrounding frequencies. The spectral power at a test frequency  $\nu$  is

$$P(\nu) \equiv \frac{1}{N\sigma_w^2} \left| \sum_{j=1}^N w_j e^{2i\pi\nu T_j} \right|^2,$$
(9)

where N data points measured at times  $T_j$  have weights  $w_j$  with variance  $\sigma_w^2$ . Here,  $T_j$  is the time elapsed since the Unix epoch for opposite-sign dilepton event j. We use weights  $w_j \propto \Delta m \Delta t_j - \sin(\Delta m \Delta t_j)$ , obtained by applying the SME constraint Re  $z \Delta \Gamma \simeq 2\Delta m$  Im z to the numerator of Eq. 6. In the absence of an oscillatory signal, the probability that  $P(\nu)$  exceeds a value S at a preselected frequency is  $\exp(-S)$ ; if M independent frequencies are tested, the largest  $P(\nu)$  value exceeds S with probability

$$\Pr\left\{P_{\max}(\nu) > S; M\right\} = 1 - \left(1 - e^{-S}\right)^{M}.$$
(10)

We use 20994 test frequencies from  $0.26 \text{ year}^{-1}$  to  $2.1 \text{ solar-day}^{-1}$ , separated by  $10^{-4} \text{ solar-day}^{-1}$ . This oversamples the frequency range by a factor of about 2.2 and avoids underestimating the spectral power of a signal. The number of independent frequencies is about 9500.



FIG. 3: Periodogram for opposite-sign dilepton events. The solar-day and sidereal-day frequencies are marked by triangles in the inset.

Figure 3 shows the largest spectral power we obtain is  $P_{\max}(\nu) = 8.80$ . With no signal, a larger value is expected with 76% probability. At the sidereal frequency,  $P(\nu) = 5.28$  — a value exceeded at 78 test frequencies. The inset of Fig. 3 shows the sidereal frequency lies 1.6 bin-widths below a peak with  $P(\nu) = 6.57$ . At the solar-day frequency, where any effects due to day/night variations in detector response should appear,  $P(\nu) = 1.47$ .

Neither the likelihood fit nor the periodogram method detect asymmetries large enough to provide strong evidence for CPT and Lorentz violation.

## SEARCH USING RECONSTRUCTED CP AND FLAVOR EIGENSTATES

A previous search [9] for CPT violation yielded a sidereal-time-integrated measurement of z using about 88 million  $\Upsilon(4S) \rightarrow B\overline{B}$  decays recorded by *BABAR*. With events in which one of two neutral *B* mesons from an  $\Upsilon(4S)$  decay is fully reconstructed as a CP or flavor eigenstate, we measure

$$(\operatorname{Re} \lambda_{CP} / |\lambda_{CP}|) \operatorname{Re} z = 0.014 \pm 0.035 (\operatorname{stat.}) \pm 0.034 (\operatorname{syst.}),$$
  
Im z = 0.038 ± 0.029 (stat.) ± 0.025 (syst.), (11)

where  $\lambda_{CP} = (q/p)(\overline{A}_{CP}/A_{CP})$  contains the amplitudes for  $\overline{B}^0$  and  $B^0$  decays to the reconstructed CP eigenstate, and  $|\lambda_{CP}|$  is of order unity.

## Acknowledgments

We are indebted to Alain Milsztajn (deceased) for his help with the periodogram analysis. This contribution was supported by the U.S. Department of Energy, and *BABAR* institutions are supported by the national funding agencies.

- D. Colladay and V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998); V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
- [2] V.A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998).
- [3] B. Aubert et al. (BABAR Collaboration), hep-ex/0607103.
- [4] V.A. Kostelecký, Phys. Rev. D 64, 076001 (2001).
- [5] H. Nguyen (KTeV Collaboration), in V.A. Kostelecký, ed., *CPT and Lorentz Symmetry II*, World Scientific, Singapore, 2002.
- [6] J.M. Link et al. (FOCUS Collaboration), Phys. Lett. B 556, 7 (2003).
- [7] Y.B. Hsiung (KTeV Collaboration), Nucl. Phys. B (Proc. Suppl.) 86, 312 (2000).
- [8] V.A. Kostelecký and C.D. Lane, Phys. Rev. D 60, 116010 (1999).
- [9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 012007 (2004).
- [10] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods A479, 1 (2002).
- [11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006).
- [12] K. Anikeev et al. (Heavy Flavor Averaging Group), hep-ex/0505100.
- [13] N.R. Lomb, Astrophys. Space Sci., 39, 447 (1976); J.D. Scargle, Astrophys. J, 263, 835 (1982).