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We analyze quark and gluon condensates in quantum chromodynamics. We suggest that these
are localized inside hadrons, because the particles whose interactions are responsible for them are
confined within these hadrons. This can explain the results of recent studies of gluon condensate con-
tributions to vacuum correlators. We also give a general discussion of condensates in asymptotically

free vectorial and chiral gauge theories.

PACS numbers: 11.15.-q, 11.30.Rd, 12.38.-t

Hadronic condensates play an important role in quan-
tum chromodynamics (QCD). Two important exam-
ples are (qq9) = <Z¢sz£1 Gaq®) and (G, GM) =
<Ziv:°;1 G, G, where ¢ is a light quark (i.e., a quark
with current-quark mass small compared with the con-
finement scale), G, = OuAS — &,AZ + gscabcAZA,ﬁ,
a, b, c denote the color indices, and N, = 3. For QCD
with Ny light quarks, the (G¢) = (7,4, + §rq,) con-
densate spontaneously breaks the global chiral symme-
try SU(Ny)r x SU(Ny)r down to the diagonal, vectorial
subgroup SU(NF)giqg, where Ny = 2 (or Ny = 3 if one
includes the s quark). (Pre-QCD studies of spontaneous
chiral symmetry breaking, SxSB, include [1].) In an oth-
erwise massless theory, the (G, G*") condensate breaks
dilatation invariance. Conventionally, these condensates
are considered to be properties of the QCD vacuum and
hence to be constant throughout spacetime [2].

Some insight into spontaneous chiral symmetry break-
ing in QCD was obtained via an approximate solution of
the Schwinger-Dyson equation for a massless quark prop-
agator; if the running coupling o, = g2/(47) exceeds a
value of order 1, this yields a nonzero dynamical (con-
stituent) quark mass 3 [3]. Since in the path integral, &
is formally a source for the operator gq, one associates
Y # 0 with a nonzero quark condensate (related stud-
ies of SxSB include [4]-[10]). However, this Schwinger-
Dyson equation, by itself, does not determine where this
condensate has spatial support and does not imply that
it is a spacetime constant.

Here we analyze the condensates (gg) and (G, G*)
and, in particular, the question of where they have spa-
tial and temporal support. We suggest that their spatial
support is restricted to the interiors of hadrons, since
these condensates are due to quark and gluon interac-
tions, and these particles are confined within hadrons.
Higher-order condensates such as ((g9)?), ((7q)G G"),
etc. are also present, and our discussion implicitly also
applies to these [11]. We first emphasize the subtlety in
characterizing the formal quantity (0|0|0), where O is a
product of quantum field operators, by recalling that one
can render this automatically zero by normal-ordering O.
This subtlety is especially delicate in a confining theory,
since the vacuum state in such a theory is not defined rel-
ative to the fields in the Lagrangian, quarks and gluons,

but to the actual physical, color-singlet, states.

A formulation wusing a FEuclidean path-integral
(vacuum-to-vacuum amplitude), Z, provides a precise
meaning for (O) as (O) = lim;_o(61InZ/6J), where J
is a source for O@. The path integral for QCD, inte-
grated over quark fields and gauge links using the gauge-
invariant lattice discretization exhibits a formal analogy
with the partition function for a statistical mechanical
system. In this correspondence, a condensate such as
(qq) or (G, ,G") is analogous to an ensemble average
in statistical mechanics [12]. To develop a physical pic-
ture of the QCD condensates, we pursue this analogy. In
a superconductor, the electron-phonon interaction pro-
duces a pairing of two electrons with opposite spins and
3-momenta at the Fermi surface, and, for T' < T,, an as-
sociated nonzero Cooper pair condensate (ee)r [16], (here
(...)r means thermal average). Since this condensate has
a phase, the phenomenological Ginzburg-Landau free en-
ergy function F' = |V®|? + co(P*®) + c4(P*P)? uses a
complex scalar field ® to represent it. The formal treat-
ment of a phase transition such as that in a supercon-
ductor begins with a partition function calculated for a
finite d-dimensional lattice, and then takes the thermo-
dynamic (infinite-volume) limit. The non-analytic be-
havior associated with the superconducting phase transi-
tion only occurs in this infinite-volume limit; for T < T,
the (infinite-volume) system develops a nonzero value of
the order parameter, namely (®)r, in the phenomeno-
logical Ginzburg-Landau model, or (ee)r, in the micro-
scopic Bardeen-Cooper-Schrieffer theory. In the formal
statistical mechanics context, the minimization of the
|[V®|? term implies that the order parameter is a con-
stant throughout the infinite spatial volume.

However, the infinite-volume limit is an idealization;
in reality, superconductivity is experimentally observed
to occur in finite samples of material, such as Sn, Nb,
etc., and the condensate clearly has spatial support only
in the volume of these samples. This is evident from
either of two basic properties of a superconducting sub-
stance, namely, (i) zero-resistance flow of electric current,
and (ii) the Meissner effect, that |B(z)| ~ [B(0)|e=%/
for a magnetic field B(z) a distance z inside the super-
conducting sample, where the London penetration depth
AL is given by A2 = m.c?/(4mne?) (n = electron con-
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centration); both of these properties clearly hold only
within the sample. The same statement applies to other
phase transitions such as liquid-gas or ferromagnetic;
again, in the formal statistical mechanics framework, the
phase transition and associated symmetry breaking by a
nonzero order parameter at low 7" occur only in the ther-
modynamic limit, but experimentally, one observes the
phase transition to occur effectively in a finite volume
of matter, and the order parameter (e.g., magnetization
M) has support only in this finite volume, rather than
the infinite volume considered in the formal treatment.
Similarly, the Goldstone modes that result from the spon-
taneous breaking of a continuous symmetry (e.g., spin
waves in a Heisenberg ferromagnet) are experimentally
observed in finite-volume samples. There is, of course,
no conflict between the experimental measurements and
the abstract theorems; the key point is that these sam-
ples are large enough for the infinite-volume limit to be
a useful idealization.

This condensed-matter physics helps to motivate our
suggestion for QCD. In our picture, the spatial support
for QCD condensates is where the particles are whose
interactions give rise to them, just as the spatial support
of a magnetization M, say, is inside, not outside, of a
piece of iron. The physical origin of the (g¢) condensate
in QCD can be argued to be due to the reversal of helicity
(chirality) of a massless quark as it moves outward and
reverses its three-momentum at the boundary of a hadron
due to confinement [7]. This argument implies that the
condensate has support only within the spatial extent
where the quark is confined; i.e., the physical size of a
hadron. Another way to infer this is to note that in
the light-front Fock state picture of hadron wavefunctions
[17], a valence quark can flip its chirality when it interacts
or interchanges with the sea quarks of multiquark Fock
states, thus providing a dynamical origin for the quark
running mass. In this description, the (gg) and (G, G"")
condensates are effective quantities which originate from
qq and gluon contributions to the higher Fock state light-
front wavefunctions of the hadron and hence are localized
within the hadron. Similarly, approaches to SxSB based
on the use of an effective instanton operator [6] lead one
to infer that the SxSB occurs in the region where these
instantons affect quark propagation, i.e., the interior of
hadrons, where these quarks are confined.

The Anti-De Sitter/conformal field theory (AdS/CFT)
correspondence between string theory in AdS space and
CFT’s in physical spacetime has been used to obtain an
analytic, semi-classical model for strongly-coupled QCD
which has scale invariance and dimensional counting at
short distances and color confinement at large distances
[18]. Color confinement can be imposed by introducing
hard-wall boundary conditions at z = 1/Agcp (2 = AdS
fifth dimension) or by modification of the AdS metric.
This AdS/QCD model gives a good representation of the
mass spectrum of light-quark mesons and baryons as well
as the hadronic wavefunctions [19]. One can also study
the propagation of a scalar field X (z) as a model for the

dynamical running quark mass [19]. The AdS solution
has the form [20] X (2) = a1z + a2z3, where a; is pro-
portional to the current-quark mass. The coefficient as
scales as AZ,C p and is the analog of (gq); however, since
the quark is a color nonsinglet, the propagation of X(z),
and thus the domain of the quark condensate, is limited
to the region of color confinement.

The AdS/QCD picture of effective confined conden-
sates is in general agreement with results from chiral
bag models [21], which modify the original MIT bag
by coupling a pion field to the surface of the bag in
a chirally invariant manner. Since explicit breaking of
SU(2) x SU(2)g chiral symmetry is small, and hence
my is small relative to typical hadronic scales like m,, or
my, these condensates can be treated as approximately
constant throughout much of the volume of a hadron.
In each of these pictures, the QCD condensates actually
have spatial support extending out a distance of order
1/my around hadrons.

Several  studies  have  reported  values  of
((as/m)GG*) from the vacuum-to-vacuum cur-
rent correlators relevant to ete™ — charmonium and
hadronic 7 decays [13]-[15]. In the pioneering work
on QCD sum rules [13] the authors obtained an es-
timate ~ 0.01 GeV?. Some recent values (in GeV*)
include 0.006 & 0.012 [15](a), 0.009 + 0.007 [15](b), and
—0.015 £ 0.008 [15](c). These values show significant
scatter and even differences in sign. Our explanation
would be that the gluon condensate is confined within
hadrons, rather than extending throughout all of space,
as would be true of a vacuum condensate.

In our picture, the QCD condensates should be con-
sidered as contributing to the masses of the hadrons
where they are located. This is clear, since, e.g., a pro-
ton subjected to a constant electric field will accelerate
and, since the condensates move with it, they comprise
part of its mass. Similarly, when a hadron decays to
a non-hadronic final state, such as 7 — ~+, the con-
densates in this hadron contribute their energy to the
final-state photons. Thus, over long times, the dominant
regions of support for these condensates would be within
nucleons, since the proton is effectively stable (with life-
time 7, >> Tynip =~ 1.4 x 10'0 yr.), and the neutron can
be stable when bound in a nucleus. In a process like
eTe™ — hadrons, the formation of the condensates oc-
curs on the same time scale as hadronization. In accord
with the Heisenberg uncertainty principle, these QCD
condensates also affect virtual processes occurring over
times ¢ < 1/Agep-

Our suggestion implies that condensates (Gq) in differ-
ent hadrons may be chirally rotated with respect to each
other, somewhat analogous to disoriented chiral conden-
sates in heavy-ion collisions [22]. Our suggestion can, in
principle, be verified by careful lattice gauge theory mea-
surements. Note that the lattice measurements that have
inferred nonzero values of (gq) were performed in finite
volumes [9], although these were usually considered as
approximations to the infinite-volume limit.



Having discussed QCD, we next consider, as an ex-
ercise, how our observation would apply to several hy-
pothetical asymptotically free gauge theories. We be-
gin with a vectorial gauge theory with the gauge group
SU(N.), allowing N, to be generalized to values N, > 3.
First, consider a theory of this type with no fermions, so
that only (G, G*”) need be considered. This condensate
would then have support within the interior of the glue-
balls. Second, consider a theory with Ny = 1 massless
or light fermion transforming according to some nonsin-
glet representation R of SU(N,). The (gq) and (G, G*")
condensates in this theory would have support in the inte-
rior of the mesons, baryons, and glueballs (or mass eigen-
states formed from glueballs and mesons). Here, the con-
densate (gq) does not break any non-anomalous global
chiral symmetry, so there would not be any Nambu-
Goldstone boson (NGB). In both of these theories, the
sizes of the mesons, baryons, and glueballs are ~ 1/A,
where A is the confinement scale.

We next consider asymptotically free chiral gauge the-
ories (which are free of gauge and global anomalies) with
massless fermions transforming as representations {R;}
of the gauge group. The properties of strongly coupled
theories of this type are not as well understood as those
of vectorial gauge theories [23]-[25]. One possibility is
that, as the energy scale decreases from large values and
the associated running coupling g increases, it eventually
becomes large enough to produce a (bilinear) fermion
condensate, which thus breaks the initial gauge symme-
try [25]. This is expected to form in the most attrac-
tive channel (MAC) Ry X Ry — Reond., which maxi-
mizes the quantity ACy = Cy(R1)+C2(R2) — Ca(Reond.)s
where C2(R) is the quadratic Casimir invariant. De-
pending on the theory, several stages of self-breaking
may occur [25, 26]. Let us consider an explicit model
of this type, with gauge group SU(5) and massless left-
handed fermion content consisting of an antisymmetric
rank-2 tensor representation, ¢}, and a conjugate fun-
damental representation, x; . This theory is asymp-
totically free and has a formal U(1), x U(1), global
chiral symmetry; both U(1)’s are broken by SU(5) in-
stantons, but the linear combination U(1)" generated by
Q = Qy — 3Qy is preserved. The MAC for condensa-

tion is 10 x 10 — 5, with ACy = 24/5, and the as-
sociated condensate is (eij;dnwik TCi/J%"), which breaks
SU(5) to SU(4). Thus, as the energy scale decreases
and the running o = ¢?/(47) grows, at a scale A at
which aACy ~ O(1), this condensate is expected to form.
Without loss of generality, we take ¢ = 1, and note

(ementy” T OVLY) o (W TCUE — vt TOYP

+ vp Tovr) (1)

The nine gauge bosons in the coset SU(5)/SU(4) gain
masses of order A. The six components of ¢} involved
in the condensate (1) also gain dynamical masses of order
A. These components bind to form an SU(4)-singlet me-
son whose wavefunction is given by the operator in (1).

This binding involves the exchange of the various (per-
turbatively massless) gauge bosons of SU(4). The con-
densate (1) breaks the global U(1)’, but the would-be re-
sultant NGB is absorbed by the gauge boson correspond-
ing to the diagonal generator in SU(5)/SU(4). We infer
that this condensate (1) has spatial support in the me-
son with the same wavefunction. Aside from the SU(4)-
singlet x1,r, the remaining massless fermion content of
the SU(4) theory is vectorial, consisting of a 4, 1/1?, and
ad, xjL,j = 2..4. The formal global flavor symmetry
of this effective SU(4) theory at energy scales below A is
U(1)LxU(1)r = U(1)y xU(1) 4, and the U(1) 4 is broken
by SU(4) instantons. This low-energy effective field the-
ory is asymptotically free, so that at lower energy scales,
the coupling « that it inherits from the SU(5) theory con-
tinues to increase, and the theory confines and produces
the condensate (wij TC'XJ-7 1), which preserves the gauged
SU(4) and global U(1)y. We infer that (;7 T C;,1) and
the SU(4) gluon condensate (G, G"") have spatial sup-
port in the SU(4)-singlet baryon, meson, and glueball
states of this theory.

Although our suggestion associates condensates in a
confining gauge theory G with G-singlet hadrons, these
condensates can affect properties of G-singlet particles if
they both couple to a common set of fields. For example,
the (F'F) condensate and the corresponding dynamical
mass Y of technifermions in a technicolor (TC) the-
ory give rise to the masses of the (TC-singlet) quarks
and leptons via diagrams involving exchanges of virtual
extended technicolor gauge bosons. Our analysis could
also be extended to supersymmetric gauge theories, but
we shall not pursue this here.

Our argument is only intended to apply to asymptoti-
cally free gauge theories. However, we offer some remarks
on the situation for a particular infrared-free theory here,
namely a U(1) gauge theory with gauge coupling e and
some set of fermions v; with charges ¢;. Here there are
several important differences with respect to an asymp-
totically free non-abelian gauge theory. First, while the
chiral limit of QCD, i.e., quarks with zero current-quark
masses, is well-defined because of quark confinement, a
U(1) theory with massless charged particles is unstable,
owing to the well-known fact that these would give rise to
a divergent Bethe-Heitler pair production cross section.
It is therefore necessary to break the chiral symmetry ex-
plicitly with bare fermion mass terms m;. If the running
coupling a; = e%/(4n) at a given energy scale y were
sufficiently large, a1 (i) 2 O(1), an approximate solution
to the Schwinger-Dyson equation for the propagator of a
fermion v; with m; << p would suggest that this fermion
gains a nonzero dynamical mass 3; [3] and hence, pre-
sumably, there would be an associated condensate (1);1);)
(no sum on ). However, in analyzing SxSB, it is impor-
tant to minimize the effects of explicit chiral symmetry
breaking due to the bare masses m;. The infrared-free
nature of this theory means that for any given value of
o at a scale u, as one decreases m;/p to reduce explicit
breaking of chiral symmetry, a;(m;) also decreases, ap-



proaching zero as m;/u — 0. Since a4 (m;) should be the
relevant coupling to use in the Schwinger-Dyson equa-
tion, it may in fact be impossible to realize a situation
in this theory in which one has small explicit breaking
of chiral symmetry and a large enough value of «;(m;)
to induce spontaneous chiral symmetry breaking. A full
analysis would require knowledge of the bound state spec-
trum of the hypothetical strongly coupled U(1) theory,
but this spectrum is not reliably known.

So far, we have discussed QCD and other theories at
zero temperature. For QCD in thermal equilibrium at a
finite temperature T', as T increases above the deconfine-
ment temperature Tye., both the hadrons and the associ-
ated condensates eventually disappear, although experi-
ments at CERN and BNL-RHIC show that the situation
for T 2 Tyee is more complicated than a weakly cou-
pled quark-gluon plasma. Our picture of the QCD con-

densates here is especially close to experiment, since, al-
though finite-temperature QCD makes use of the formal
thermodynamic, infinite-volume limit, actual heavy ion
experiments and resultant transitions from confined to
deconfined quarks and gluons take place in the finite vol-
ume and time interval provided by colliding heavy ions.

In conclusion, we have suggested a picture in which
the quark and gluon condensates in QCD are localized to
the interiors of hadrons, the reason being that the par-
ticles whose interactions give rise to the condensates are
confined within these hadrons. Our work has important
implications for cosmology [27].
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