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1. Introduction

Spontaneously broken supersymmetry (SUSY) has long been one of the most attractive pos-

sibilities for physics beyond the Standard Model [1]. Considerable effort has been devoted to

elucidating dynamical mechanisms of SUSY-breaking, in which strong-coupling effects give

rise to a naturally small SUSY-breaking scale [2]. The SUSY-breaking vacua of such theories

need not be global minima of the potential, and metastability of phenomenologically-viable

vacua appears to be generic when embedding the MSSM into a larger setting. Indeed, the

– 1 –



study of metastable dynamical SUSY-breaking has recently undergone something of a renais-

sance, catalyzed by the observation that massive supersymmetric QCD (SQCD) possesses

SUSY-breaking local minima whose lifetimes can be longer than the present age of the uni-

verse [3] (for an excellent review, see [4]). The simplicity and genericness of such theories

makes them particularly well-suited to supersymmetric model-building.

Far from serving only as a possible resolution of the hierarchy problem, spontaneously-

broken supersymmetry emerges frequently in inflationary settings as well [5–8]. There exist a

plethora of possible models aimed at realizing inflation in a natural context [9], many of which

exploit supersymmetry and supersymmetry breaking [10–14]. Based on the moderate success

of such theories, it is tempting to suppose that inflation may be built into a supersymmetry-

breaking sector. Indeed, it has already been demonstrated that inflation may arise in simple

strongly-coupled gauge theories [13]. This suggests that it may be possible to inflate while

rolling into the metastable vacuum of massive SQCD from sub-Planckian initial field values.

The appeal of successful inflation in this scenario is twofold: first, it provides a generic and

technically natural means of simultaneously realizing inflation and supersymmetry breaking;

second, it furnishes a robust UV completion for the inflationary sector. Moreover, the spon-

taneous global symmetry-breaking that accompanies the end of inflation in these models may

give rise to additional curvature perturbations exhibiting observable non-gaussianities. In

this note we address the prospects for, and signatures of, slow-roll inflation in models with

metastable dynamical supersymmetry breaking.

The organization of the paper is as follows. In Sec. 2 we review the traditional scenario

of supersymmetric hybrid inflation proposed in [12], wherein one-loop corrections drive in-

flation along a flat direction of a theory with a relatively simple superpotential. In Sec. 3

we review the means by which supersymmetric hybrid inflation may be realized in strongly-

coupled gauge theories [13]. Subsequently, in Sec. 4 we turn to the Intriligator, Seiberg, and

Shih (ISS) model [3] of metastable supersymmetry breaking in supersymmetric QCD and

explore its implications. In the vicinity of the supersymmetry breaking metastable vacuum,

features of the ISS model are reminiscent of supersymmetric hybrid inflation. With this mo-

tivation, in Sec. 5 we explore the prospects for, and constraints on, inflation while rolling

into the metastable supersymmetry breaking vacuum of the ISS model; in Sec. 6 we discuss

the subsequent inflationary predictions assuming the inflaton is primarily responsible for the

primordial curvature perturbation. However, the spontaneous symmetry breaking that ac-

companies the end of slow-roll inflation may give rise to additional curvature perturbations

through inhomogenous preheating [15]. In Sec. 7 we explore this possibility and its conse-

quences, including the prospects for observable non-gaussianities. In Sec. 8 we conclude the

analysis and consider directions for further work.

2. Supersymmetric Hybrid Inflation

Hybrid inflation provides a compelling alternative to traditional chaotic inflation, in that a

second non-inflationary field provides the bulk of the inflationary energy density and a natural
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end to inflation without recourse to trans-Planckian field values [16, 17]. Such theories were

found to arise naturally in the context of supersymmetry [14]. One particularly effective

model, due to [12], obtains the scalar potential of hybrid inflation from a simple globally-

supersymmetric superpotential involving three chiral superfields: a superfield ψ transforming

as a fundamental of the gauge symmetry; a superfield ψc transforming as an anti-fundamental;

and a gauge singlet superfield X. The superpotential of this theory is

WX = hψcXψ − µ2X, (2.1)

which exhibits an unbroken R symmetry. In the D-flat directions, the scalar potential of the

theory obtains the form 1

V = h2|X|2(|ψc|2 + |ψ|2) + |hψcψ − µ2|2. (2.2)

For X ≤ Xc = µ/
√
h, the minimum for the ψ,ψc is at 〈ψ,ψc〉 = µ/

√
h, and there exists a

supersymmetric vacuum at

〈X〉 = 0 〈ψ,ψc〉 = µ/
√
h. (2.3)

However, for X > Xc, the minimum is at 〈ψ,ψc〉 = 0, thanks to the effective mass term

arising from 〈X〉 .

2.1 Rolling from supersymmetry-breaking

For X > Xc, there arises a µ4 contribution to the vacuum energy density that drives inflation;

inflation ends when X < Xc and the scalars ψ,ψc roll off into the supersymmetric vacuum.

At tree level, there’s nothing to drive X to its minimum and end inflation; an adequate

potential is obtained only when corrections at one loop are taken into consideration. Indeed,

when X > Xc the F -term for X is nonzero and supersymmetry is broken; the scalar potential

accumulates one-loop corrections of the form

V1(X) =
∑

i

(−1)F

64π2
Mi(X)4 log

(

Mi(X)2

Λ2

)

(2.4)

where Λ is a cutoff scale. The contributions to the effective potential from X > Xc come

from splittings in the ψ,ψc superfields; the ψ scalars have masses m2
s = h2X2±hµ2, while the

ψ fermions have masses m2
f = h2X2. The one-loop effective potential along the inflationary

trajectory is then given by

Veff (X) = µ4 +
Nch

2

32π2

[

2µ4 log

(

h2|X|2
Λ2

)

+ (hX2 − µ2)2 log

(

1 − µ2

hX2

)

(2.5)

+(hX2 + µ2)2 log

(

1 +
µ2

hX2

)]

.

1We will henceforth abuse notation by using the same notation for superfields and their scalar components.
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This contribution from the one-loop effective potential drives X to the origin. When X ≃ Xc,

the ψ,ψc become tachyonic and roll off to their supersymmetric minima. Below Xc, the

inflaton X is efficiently driven to the origin by the ψ,ψc vevs. Inflation ends as the ψ,ψc vevs

cancel the effective contribution to the vacuum energy density and the slow-roll conditions

are violated. Defining, for convenience, the parametrization X = xXc, i.e., X = µ√
h
x, the

effective potential is of the form

Veff (x) = µ4 +
Nch

2

32π2

[

2µ4 log

(

hx2µ2

Λ2

)

+ (x2µ2 − µ2)2 log

(

1 − 1

x2

)

(2.6)

+(x2µ2 + µ2)2 log

(

1 +
1

x2

)]

.

The slow-roll parameters in this scenario are (in reduced Planck units MP = 1/
√

8πG =

2.4 × 1018 GeV)

ǫ =
M2
P

2

(

V ′

V

)2

≃ h5N2
cM

2
P

128π4µ2
x2

[

(x2 − 1) log

(

1 − 1

x2

)

+ (x2 + 1) log

(

1 +
1

x2

)]2

(2.7)

η = M2
P

V ′′

V
≃ h3NcM

2
P

8π2µ2

[

(3x2 − 1) log

(

1 − 1

x2

)

+ (3x2 + 1) log

(

1 +
1

x2

)]

. (2.8)

The slow-roll conditions η ≪ 1, ǫ≪ 1 are generally satisfied until x ∼ 1, where both ǫ, η grow

rapidly and inflation comes to an end. Notice that |ǫ| ≪ |η| and generally η < 0, thereby

guaranteeing a suitably red spectrum.

2.2 Inflationary predictions for supersymmetric hybrid inflation

The initial displacement Xe required to obtain a sufficient number of e-foldings, Ne ∼ 54± 7,

is given by

Ne ≃
1

M2
P

∫ Xe

Xc

(

V

V ′

)

dX ≃ 4π2

Nc

(

µ

MP

)2 (x2
e − 1)

h3
. (2.9)

This suggests the field value of X at Ne e-foldings prior to the end of inflation is

Xe ≃
√
NeNc

2π
hMP . (2.10)

This corresponds to a naturally sub-Planckian initial condition, provided h
√
Nc

<∼ 1.

It is natural to ask whether such a theory is compatible with observation. The vac-

uum fluctuation of the inflaton generates a time-independent curvature perturbation ζ with

spectrum [18–21]

P1/2
ζ ≃ V

V ′

(

H

2πM2
P

)

≃ 1√
2ǫ

(

H

2πMP

)

. (2.11)
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With H =
√

V0/3M2
P = hµ2

√
3MP

, this corresponds to

P1/2
ζ ≃

√

4Ne

3Nc

(

µ

MP

)2

. (2.12)

The WMAP normalization is P1/2
ζ = 4.86 × 10−5, as taken at the comoving scale k0 = 0.002

Mpc−1. Matching the observed curvature perturbation thus entails

µ

MP
∼ 2 × 10−3 ·N1/4

c (2.13)

and hence the assumption of GUT-scale µ ∼ 1015 GeV.

The spectral index, for ǫ≪ η, is given simply by

ns ≈ 1 − 2|η| ≈ 1 − 1

Ne
≈ 0.98, (2.14)

somewhat higher than the central value ns ≈ 0.95 given by WMAP data [22]. The tensor-to-

scalar ratio is negligible, r <∼ 10−4, as is the running in the spectral index, dns/d log k <∼ 10−3.

Taken together, this simple scenario of globally supersymmetric hybrid inflation accu-

mulates a number of successes: reasonable correspondence with the observed spectral index,

sub-Planckian initial conditions, ready provision of Ne ∼ 54 e-foldings, and a graceful exit

from inflation. Moreover, as we shall see in subsequent sections, the requisite superpotential

arises naturally in the context of supersymmetric gauge theories.

3. Supersymmetric Hybrid Inflation from Strongly Coupled Theories

Let us now consider scenarios wherein the superpotential (2.1) is generated in the context of

strongly-coupled supersymmetric gauge theories, as was demonstrated in [13]. Consider an

SU(2) gauge theory whose matter content consists of four doublet chiral superfields QI , Q̄
J

(with flavor indices I, J = 1, 2) and a singlet superfield S, with the classical superpotential

Wcl = gS(Q1Q̄1 +Q2Q̄2) (3.1)

with coupling constant g. In the classical theory without any superpotential, the moduli space

of D-flat directions is parametrized by the following SU(2) invariants:

S, MJ
I = QIQ̄

J , B = ǫIJQIQJ , B̄ = ǫIJQ̄
IQ̄J (3.2)

These invariants are subject to the constraint

detM − B̄B = 0. (3.3)

With the superpotential turned on, the classical moduli space consists of two branches – one

with S 6= 0,M = B = B̄ = 0, where the quarks are massive and the gauge symmetry is
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unbroken; and one with S = 0, where the mesons and baryons satisfy the above constraint

and the gauge group is broken.

It is particularly interesting to consider the S 6= 0 branch, where a non-zero vacuum

energy may drive inflation. For S 6= 0, far from the origin, the ‘quarks’ Q, Q̄ become massive

and decouple; the theory consists of a free singlet S and pure supersymmetric SU(2). The

SU(2) sector has an effective scale ΛL given by the one-loop matching to the quarks at the

scale Λ of the original theory,

Λ3
L = gSΛ2. (3.4)

In the pure SU(2) sector, gaugino condensation generates an effective superpotential

Weff = Λ3
L = gSΛ2 (3.5)

This effective superpotential gives rise to a non-zero F -term, FS = gΛ2, and supersymmetry

is broken with a vacuum energy density ∼ g2Λ4.

While this is a convenient heuristic, it is useful to consider the full theory in detail. The

quantum modified constraint for the confined theory is given by

detM − B̄B − Λ4 = 0, (3.6)

so that the full quantum superpotential is given by

W = A(detM − B̄B − Λ4) + gS TrM. (3.7)

For S 6= 0, the F -terms are

FA = detM −BB̄ − Λ4

FMJ
I

= AǫIKǫ
JLMK

L + gδJI S

FS = g TrM (3.8)

FB = AB̄

FB̄ = AB

For S 6= 0, all F -terms save FS may be set to zero via

B̄ = B = 0, MJ
I = δJI Λ2, AΛ2/g = −S, FS = gΛ2, (3.9)

which defines a natural D-flat trajectory for the rolling of S.

The inflationary behavior of the theory maps onto that of conventional supersymmetric

hybrid inflation. For S > Sc, the quarks are integrated out, providing a non-zero vacuum

energy ∼ g2Λ4. The one-loop effective potential for S drives the inflaton along its D-flat

trajectory towards Sc. Inflationary predictions are the same as before, albeit without the

need to introduce any additional dimensionful parameters. By exploiting the dynamics of

strongly-coupled theories, the hybrid inflation mass scale is set by the strong coupling scale

Λ.
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4. Metastable SUSY breaking in Supersymmetric QCD

In the preceding sections, we have seen how slow-roll inflation may arise naturally in the

context of supersymmetric gauge theories. Consider now the case of massive supersymmetric

QCD (SQCD). In [3] it was shown that for sufficiently small mass of the electric quarks in

SU(Nc) SQCD, there is a long lived metastable vacuum in which supersymmetry is broken.

Given the close resemblance of the ISS model to the inflationary theories considered above, it is

tempting to consider scenarios in which inflation occurs during the transition to a metastable

SUSY-breaking vacuum. In this section we shall briefly review the key features of the ISS

model before turning to inflationary dynamics in subsequent sections.

4.1 Microscopic (electric) theory

In the ultraviolet, the microscopic (electric) ISS theory consists of asymptotically free N =

1 supersymmetric SU(Nc) QCD with Nf massive flavors Q,Qc; the theory exhibits an

SU(Nf )L × SU(Nf )R approximate global flavor symmetry. The quarks transform under

the symmetries of the theory as

Q ∼ (�Nc ,�NF L
) Qc ∼ (�Nc ,�NF R

). (4.1)

The nonzero quark masses break the global symmetry to SU(Nf )L × SU(Nf )R → SU(Nf )

with a superpotential

We = m TrQQc. (4.2)

For the sake of simplicity, the masses m are taken to be degenerate. This theory with small

m is technically natural.

4.2 Macroscopic (magnetic) theory

This electric theory becomes strongly coupled at a scale Λ. In order to retain full control of the

dynamics, we assumem≪ Λ. Below this strong-coupling scale the system may be described by

an IR-free dual gauge theory provided Nc < Nf <
3
2Nc [23]. The dual macroscopic (magnetic)

theory is an SU(N) gauge theory (where N = Nf − Nc) with Nf magnetic ‘quarks’ q and

qc. This dual theory possesses a Landau pole at a scale Λ and runs free in the IR.2 The

magnetic quarks have the same approximate SU(Nf )L × SU(Nf )R flavor symmetry as the

electric theory, transforming under the symmetries of the magnetic theory as

q ∼ (�N ,�NF L
) qc ∼ (�N ,�NF R

). (4.3)

2In principle the strong-coupling scale Λ̃ of the IR theory is different from the strong-coupling scale Λ

of the UV theory, related only through an intermediate scale Λ̂ by the relation Λ3Nc−Nf Λ̃3(Nf−Nc)−Nf =

(−1)Nf−Nc Λ̂Nf , with Λ̃, Λ̂ not uniquely determined by the content of the electric theory. Naturalness and

conceptual simplicity, however, suggest Λ ∼ Λ̃, which will remain our convention throughout.
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There is also an additional gauge singlet superfield, M, that is a bi-fundamental of the flavor

symmetry:

M ∼ (�NF L
,�NF R

). (4.4)

The meson superfield M may be thought of as a composite of electric quarks, with Mij =

QiQ
c
j, whereas the magnetic quarks q, qc have no obvious expression in terms of the electric

variables.

This infrared theory is IR free with Nf > 3N. The metric on the moduli space is smooth

about the origin, so that the Kähler potential is regular and can be expanded as

K =
1

β
Tr (|q|2 + |qc|2) +

1

α|Λ|2 Tr|M |2 + ... (4.5)

The coefficients α, β are O(1) positive real numbers that are not precisely determined in terms

of the parameters of the electric theory, and at best may be estimated by näıve dimensional

analysis [24–26]; the size of these couplings will be relevant in our subsequent inflationary

analysis.

After appropriate rescalings to obtain canonically-normalized fields M, q, qc, the tree-level

superpotential in the magnetic theory is given by

Wm = y Tr qMqc − µ2 TrM, (4.6)

where µ2 ∼ mΛ and y ∼ √
α. Supersymmetry is spontaneously broken at tree level in this

theory; the F -terms of M are

F †
Mij

= y qa iqc ja − µ2δij (4.7)

which cannot vanish uniformly since δij has rank Nf but qa iqc ja has rank Nf − Nc < Nf .

Hence supersymmetry is spontaneously broken in the magnetic theory by the rank condition.

This SUSY-breaking vacuum lies along the quark direction,

〈M〉ssb = 0 〈q〉ssb = 〈qc〉ssb ∼ µ1IN (4.8)

with 〈FM 〉 ∼ √
Nc µ

2. A careful analysis of the one-loop contribution to the effective potential

around this vacuum reveals that there are no tachyonic directions, and all classical pseudo-

moduli are stabilized at one loop. The remaining fields not stabilized at one loop are goldstone

bosons of the broken flavor symmetry, and remain exactly massless to all orders.

The theory also possesses supersymmetric vacua, in accordance with the non-vanishing

Witten index of SQCD. For large values of the meson vev, the quarks become massive and

may be integrated out below the scale 〈M〉; here the magnetic theory becomes pure SU(N)

super-Yang Mills. This theory has a dynamically generated strong coupling scale, Λm(M),

given by

Λm(M) = M

(

M

Λ

)
a
3

, (4.9)
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where a =
Nf

N − 3, a strictly positive quantity when the magnetic theory is IR free. Here,

for simplicity, we have taken the meson vev to be proportional to the identity, i.e. 〈M〉 ∼
M1INf

. Gaugino condensation at this scale leads to an ADS superpotential [27] for M . Below

the mass of the quarks this additional nonrenormalizable contribution obtains the form [27]

Wdet = N
(

yNf detM

Λ
Nf−3N

)
1
N

. The complete low-energy superpotential in the magnetic theory

is then given by

W = N
(

yNf detM
)

1
N Λ−a − µ2 TrM + y TrqMqc. (4.10)

Interpreted physically, the parameter a characterizes the irrelevance of the determinant super-

potential. Larger values of a correspond to
Nf

N ≫ 1 and an increasingly-irrelevant contribution

from gaugino condensation.

The complete superpotential of the magnetic theory admits a SUSY-preserving solution

with FM = 0. However, this vacuum is very distant from the origin (and also the metastable

vacuum) due to the irrelevance of the SUSY-restoring gaugino contribution to the superpo-

tential; it lies in the meson direction at

〈M〉SUSY =
µ

y

(

Λ

µ

)
a

2+a

1INf
〈q〉SUSY = 〈qc〉SUSY = 0. (4.11)

The existence of supersymmetric vacua indicates the SUSY-breaking vacuum is metastable;

in [3] it was shown that the metastable vacuum may be made parametrically long-lived.

Explicitly, the bounce action corresponding to the nucleation of a bubble of true vacuum was

found to be S4 ∼
(

Λ
µ

)
4a

2+a
, which can be made arbitrarily large – and the false vacuum long

lived – by taking µ ≪ Λ. Ensuring that no transition to the supersymmetric minimum has

occurred during the lifetime of the Universe (i.e., that the lifetime of the nonsupersymmetric

universe exceeds 14 Gyr) places a constraint on the theory [28]

a

a+ 2
log

Λ

µ
>∼ 0.73 + 0.003 log

µ

TeV
+ 0.25 logN. (4.12)

This is a very weak constraint (amounting to (Λ/µ)a/(a+2) >∼ 2) , and one that is naturally

satisfied by the hierarchy µ/Λ ≪ 1 required to keep the Kähler corrections under control.

Although parametric longevity may be ensured by taking µ≪ Λ, notice also that the longevity

bound also becomes weaker for large a (correspondingly, Nf ≫ N) since the operator creating

the SUSY vacuum becomes increasingly irrelevant in this limit.

The parametric longevity of the metastable SUSY-breaking vacuum persists at finite

temperature, and in fact finite-temperature effects have been shown to lead to preferential

selection of the metastable-vacuum after high-scale reheating [28–30]. Here we wish to con-

sider a somewhat different scenario – namely, that inflation itself may result from population

of the metastable vacuum, with the mesonic scalar M playing the role of the inflaton and the

squarks q, qc serving as the waterfall fields of hybrid inflation. While it bears considerable

resemblance to a multi-component version of supersymmetric hybrid inflation, this scenario

is distinguished observationally by the unique features of the ISS model.
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5. Mesonic inflation in SQCD: Rolling into the metastable vacuum

Let us now consider the inflationary dynamics resulting from massive SQCD with Nc < Nf <
3
2Nc. At high energies the theory is characterized by the electric description, with superpo-

tential (4.2) and strong-coupling scale Λ. Below the scale Λ, the dynamics are described in

terms of the IR-free magnetic variables with superpotential (4.6). Given a random initial

vev for the mesonic scalar M, inflation may occur as the theory settles into the metastable

SUSY-breaking vacuum.

5.1 Slow-roll trajectory

To analyze the inflationary dynamics, let us parametrize the inflaton trajectory by M ∼
ϕ√
Nf

1INf
, which maximally respects the SU(Nf ) global flavor symmetry of the theory. Then

the tree-level scalar potential near the origin (neglecting the determinant superpotential re-

sponsible for creating the SUSY vacuum) is given by

V0 = Nfµ
4 − yµ2 Tr(qqc) − yµ2 Tr(q∗qc∗) +

y2

Nf
| Tr(qqc)|2 (5.1)

+
y2

Nf
|ϕ|2

[

Tr(|qc|2) + Tr(|q|2)
]

.

After diagonalizing the resultant mass matrix, the masses of the squarks along this tra-

jectory are given by m2
s = y2|ϕ|2

Nf
±yµ2, while those of the quarks are m2

f = y2|ϕ|2
Nf

. The one-loop

effective potential for ϕ is then

Veff (ϕ) = Nfµ
4 +

NNfy
2

32π2

[

2µ4 log

(

y2ϕ2

NfΛ2

)

+

(

yϕ2

Nf
− µ2

)2

log

(

1 − Nfµ
2

yϕ2

)

(5.2)

+

(

yϕ2

Nf
+ µ2

)2

log

(

1 +
Nfµ

2

yϕ2

)

]

.

The squarks in this theory become tachyonic and roll off into the SUSY-breaking vacuum

below ϕc =
√

Nf

y µ. Taking the parametrization ϕ = xϕc =
√

Nf

y µx, we have

Veff (x) = Nfµ
4

{

1 +
Ny2

32π2

[

2 log

(

yx2µ2

Λ2

)

+
(

x2 − 1
)2

log

(

1 − 1

x2

)

(5.3)

(

x2 + 1
)2

log

(

1 +
1

x2

)]}

.

The slow-roll parameters for this trajectory are the same as those of supersymmetric hybrid

inflation, namely

ǫ ≃ y5N2M2
P

128π4µ2
x2

[

(x2 − 1) log

(

1 − 1

x2

)

+ (x2 + 1) log

(

1 +
1

x2

)]2

(5.4)

η ≃ y3NM2
P

8π2µ2

[

(3x2 − 1) log

(

1 − 1

x2

)

+ (3x2 + 1) log

(

1 +
1

x2

)]

. (5.5)
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These slow-roll parameters naturally satisfy the slow-roll constraints ǫ, |η| ≪ 1 provided

x > 1. Up to flavor rotations, the inflationary story is as follows: Assuming arbitrary initial

vevs for the scalar components of the meson superfield M, with 〈M〉 > µ√
y , the scalar com-

ponents of q, qc roll rapidly to 〈q〉 = 〈qc〉 = 0 due to the effective mass terms arising from the

meson vevs. Since SUSY is broken away from the supersymmetric vacuum, mass splittings

between the squarks and quarks provides a gently-sloping potential for M at one loop, driving

its slow-roll evolution towards the origin.

For arbitrary meson vevs, the scalar potential contains a constant contribution to the

energy density of order Nfµ
4; however, this is only reduced to Ncµ

4 in the metastable

supersymmetry-breaking vacuum. In the context of supergravity, we assume some mecha-

nism arises in the present era to cancel the cosmological constant in this vacuum.3 While M

is slowly rolling, the effective energy density Nfµ
4 drives inflation. Inflation continues until

the diagonal components of M reach the critical value, i.e.,

〈Mc〉 =
µ√
y
1INf

. (5.6)

Here the squarks q, qc become tachyonic, but only N of the Nf flavors of q, qc obtain nonzero

vevs in rolling off to the supersymmetry-breaking vacuum. This is a consequence of the rank-

condition breaking of SUSY in ISS models, wherein there are not enough independent degrees

of freedom to cancel all the F-terms of M. When 〈M〉 ≤ Mc, N flavors of the squarks q, qc

become tachyonic and roll off into the SUSY-breaking vacuum, with

〈q〉 = 〈qc〉T =

(

µ√
y1IN

0

)

. (5.7)

In this vacuum the remaining Nc flavors are stabilized at one loop, and η ∼ 1; thus inflation

comes to an end. Notice that η ∼ 1 at this stage even for the components of M that do not

obtain large masses from the squark vev; the one-loop effective masses for the pseudo-moduli

at this stage are sufficient to terminate slow-roll inflation. Here the SU(Nf ) flavor symmetry

of the magnetic theory is broken by the squark vev to SU(N) × SU(Nc).

5.2 Slow-roll constraints

It is natural to consider whether this inflationary trajectory can produce sufficient e-foldings

of inflation. As with supersymmetric hybrid inflation, the value of ϕ at Ne e-foldings from

the end of inflation is

ϕe =

√
NeN

2π
yMP . (5.8)

3As was pointed out in [3], adding a constant term to the magnetic superpotential so that the metastable

vacuum has our observed vacuum energy makes the SUSY vacua anti-deSitter; this may lead to a suppressed

tunneling rate due to quantum gravity effects, thereby preserving the metastability of the SUSY-breaking

vacuum against first-order transitions to the AdS SUSY vacua.
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Whereas conventional supersymmetric hybrid inflation enjoys significantly sub-Planckian ini-

tial vevs with suitably small values of the yukawa coupling, one might worry here that y is not

naturally small at energies close to Λ.4 We may estimate the size of y at the strong-coupling

scale using näıve dimensional analysis; from [31] we have y <∼ 4π√
NNf

near Λ. For sufficiently

large Nf , y may be made naturally O(10−1) or smaller near the strong-coupling scale, and

runs free in the IR.

The total displacement of the inflaton (the sum of displacements of the Nf diagonal com-

ponents of M, defining the inflationary trajectory) is ϕ. In order to obtain a total inflationary

displacement
√
NeN
2π yMP , each component of M need only be displaced by a distinctly sub-

Planckian amount ∼
√

NeN
4π2Nf

yMP . With the NDA estimate for the size of y below the scale

Λ, this corresponds to a required displacement of each individual field by ∼ 2
√
Ne

Nf
MP , which

may be made sufficiently small for large Nf . Moreover, this guarantees 〈M〉 ≪ Λ, rendering

the magnetic description valid throughout the inflationary trajectory.

Unlike the case of supersymmetric hybrid inflation, recall that there exist additional

vacua in the ISS theory – supersymmetric minima created by gaugino condensation far from

the origin. A supersymmetric minimum lies along the inflaton trajectory at

〈ϕ〉SUSY ∼
√

Nf µ

(

Λ

µ

)
a

a+2

y−
a+3
a+2 . (5.9)

For initial field values of O(MP ), it is plausible for the inflaton to roll away from the origin and

into the supersymmetric vacuum, rather than towards the origin along the slow logarithmic

potential generated by one-loop effects. It is doubtful whether inflation will occur while rolling

into the SUSY vacuum, since large corrections to the Kähler potential so far from the origin

make slow roll implausible in that direction.

Naturally, one would like to check the field value above which rolling into the SUSY

vacuum is preferred. For ϕ≫ ϕc, the logarithmic effective potential for an inflaton component

rolling toward the origin goes as

Veff (ϕ) ≈ Nfµ
4

[

1 +
Ny2

32π2

(

log

(

y2ϕ2

Λ2

)

+
3

2

)]

, (5.10)

whereas the tree-level contribution from gaugino condensation that gives rise to the SUSY

vacuum is

Vsusy(ϕ) = NfΛ
4

∣

∣

∣

∣

∣

∣

y

(

yϕ
√

NfΛ

)2+a

− µ2

Λ2

∣

∣

∣

∣

∣

∣

2

. (5.11)

4It is important to note here that the effective yukawa coupling y appearing in the scalar potential (5.1)

contains factors of wavefunction renormalization from the Kähler potential, and thus depends logarithmically

on the energy scale.
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The maximum of this potential Veff + Vsusy lies around

ϕmax ≈
√

Nf µ

(

Λ

µ

)
a

a+2

y−
a+1
a+2

(

N

π2

)
1

2+a

2
5

2+aa1/a. (5.12)

The requirement that the initial value of the inflaton lie within the basin of attraction of the

metastable SUSY-breaking vacuum, rather than the SUSY-preserving one, amounts to the

condition ϕe ≪ ϕmax. For large a (i.e., Nf/N ≫ 1,) this corresponds to the constraint
√

NeN

4π2Nf
y2MP

Λ
≪ 1 (5.13)

Clearly, this constraint is most readily satisfied for a strong-coupling scale Λ close to MP .

However, it is instrumental to consider how large Λ may be before imperiling the radiative

stability of the Planck scale. As noted in [32,33], in effective theories with a large number of

species, radiative stability of Newton’s constant gives rise to a constraint on the size of the

cutoff. Coupling the magnetic theory to N = 1 supergravity, the contribution to the effective

Planck mass from light fields is of the form

δM2
P ∼ Λ2

16π2

(

∂2K

∂φ†α∂φβ

)−1(

∂2K

∂φ†α∂φβ

)

=
Λ2

16π2

(

N2
f + 2NNf

)

. (5.14)

Radiative stability of Newton’s constant therefore suggests Λ <∼ 4π
Nf
MP . Thus the natural

value of Λ – as well as the viable value most likely to favor slow roll towards the metastable

vacuum – is Λ ∼ 4πMP /Nf . With this value of Λ and the NDA estimate of y, the condition

(4.10) becomes
√

4Ne

NNf
≪ 1. (5.15)

The late turnover in the potential owes largely to the considerable irrelevance of the

determinant superpotential. This suggests that, for large Nf and naturally Planck-scale Λ,

the turnover may be pushed sufficiently close to MP to guarantee that ϕ rolls towards the

origin rather than the SUSY vacuum. Notice this is compatible with a≫ 1, a condition that

likewise supports the parametric longevity of the metastable SUSY-breaking vacuum.

5.3 SUSY η problem

Thus far our discussion has been restricted to the case of global supersymmetry; naturally,

one would like to extend the analysis to the case of local supersymmetry. As in the case of

supersymmetric hybrid inflation, there is no η problem at leading order provided an exactly

canonical Kähler potential K = Tr|M |2 + Tr|q|2 + Tr|qc|2. The supergravity scalar potential

is of the general form

Vs = eK/M
2
P





(

∂2K

∂φ†α∂φβ

)−1
(

∂W

∂φα
+

W

M2
P

∂K

∂φα

)

(

∂W †

∂φ†β
+
W †

M2
P

∂K

∂φ†β

)

− 3

M2
P

|W |2


 . (5.16)
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Along the inflationary trajectory of the ISS model (M = ϕ√
Nf

1INf
, q = qc = 0), coupling the

theory to supergravity thus yields the scalar potential

Vs(ϕ
†, ϕ) = Nfµ

4 exp

[

ϕ†ϕ

M2
P

]

[

(

1 +
ϕ†ϕ

M2
P

+ ...

)2

− 3
ϕ†ϕ

M2
P

]

(5.17)

= Nfµ
4

(

1 +
(ϕ†ϕ)2

2M4
P

+ ...

)

provided an exactly canonical Kähler potential. All terms proportional to |ϕ|2 cancel directly,

preserving the small mass of the inflaton; the leading supergravity correction is O
(

|ϕ|4
)

.

However, this convenient cancellation should be considered a fine-tuning. Any additional

contributions to the Kähler potential beyond canonical terms – which one would anticipate

in the context of effective field theory – might be expected to generate the usual SUSY η

problem. A Kähler potential for the inflationary trajectory of the form

K(ϕ†, ϕ) = ϕ†ϕ+ b
(ϕ†ϕ)2

Λ2
+ ..., (5.18)

where b is a dimensionless coefficient, yields a scalar potential for the inflaton with terms

quadratic in ϕ,

V (ϕ) = Nfµ
4

(

1 +
bϕ†ϕ
Λ2

+ ...

)

. (5.19)

These corrections arise both in the context of global and local supersymmetry, leading to an

inflaton mass m2
ϕ = bNf

µ4

Λ2
>∼ bH2, which kills inflation for b ∼ O(1).

It is natural to consider how finely-tuned the coefficients of higher-order terms in the

Kähler potential must be in order to preserve slow-roll inflation. Consider the magnetic

Kähler potential in terms of the rescaled variables. Generalizing the large-Nf arguments

of [31] to the case of N ≥ 1, higher-order corrections to the Kähler potential should obtain

the form

δK(M †M) =
b1(4π)2

N2N2
fΛ

2
Tr
(

M †M
)

Tr
(

M †M
)

+
b2(4π)2

N2NfΛ2
Tr
(

M †MM †M
)

+ ... (5.20)

where b1, b2 are O(1) coefficients. Upon rescaling to obtain canonically-normalized fields, this

translates to a Kähler potential along the inflationary trajectory of

K(ϕ†ϕ) = |ϕ|2 +
16π2b1
N2N2

fΛ
2

(

|ϕ|2
)2

+
16π2b2
N2N2

fΛ
2

(

|ϕ|2
)2

+ ... (5.21)

These corrections to the Kähler potential give rise to an inflaton mass term of the form

m2
ϕ = 16π2(b1 + b2)

µ4

N2Nf Λ2 , and thus correction to the slow-roll parameter η of order δη ≈
16π2(b1 + b2)

M2
P

N2N2
f
Λ2 ∼ b1+b2

N2 . In order for this contribution to the slow-roll parameters not

to interfere with slow-roll inflation, the coefficients b1, b2 must satisfy

b1, b2 ≪ N2. (5.22)
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Here the condition on b1, b2 may be reasonably satisfied for N >∼ 1. Although quadratic cor-

rections to the inflationary potential arise as expected, the coefficients may naturally be small

enough to preserve slow-roll inflation without additional fine-tuning. It is worth emphasizing

that this statement relies upon näıve dimensional analysis estimates of corrections to the

Kähler potential; such corrections are not explicitly known in terms of microscopic variables.

Yet it is suggestive that the SUSY η problem for inflationary theories involving supersym-

metric gauge dynamics may be resolved by carefully considering the strong-coupling behavior

of the Kähler potential near the cutoff.

6. Inflationary predictions for ISS-flation

In order to obtain inflationary predictions, it is useful to employ the formalism of [34] for

a multi-component inflaton. There arise contributions to the spectral index and density

perturbations from fluctuations both along the inflationary trajectory (parameterized by ϕ)

and orthogonal to the inflationary trajectory. In order to account for orthogonal contributions,

consider parameterizing M by

M =
ϕ

√

Nf

1INf
+ φ (6.1)

where φ is an adjoint of the flavor symmetry, corresponding to directions orthogonal to the

inflationary trajectory. The amplitude of density perturbations in this case is given by

Pζ(ϕ, φ)1/2 =
1

2
√

3πM3
P

V 3/2

√

VφVφ + VϕVϕ
(6.2)

where, e.g., Vϕ = ∂V
∂ϕ . Assuming initial fluctuations are all roughly of the same order, the

contributions from orthogonal directions are equal to those from the inflationary trajectory,

hence

Pζ(ϕ, φ)1/2 ≃
√

2Pζ(ϕ)1/2 ≃
√

8NeNf

3N

1

y

(

µ

MP

)2

≃
√

Ne

6π2
Nf

(

µ

MP

)2

. (6.3)

Notice that the constraint guaranteeing the validity of slow-roll inflation in the ISS theory,

Nf/N ≫ 1 likewise increases the amplitude of density perturbations and allows a greater

separation of scales between µ,MP . Recall that the WMAP normalization is P
1/2
ζ = 4.86 ×

10−5; this corresponds to a constraint

µ

MP
∼ 7 × 10−3N

−1/2
f . (6.4)

Neglecting the dependence on Nf , we would again obtain the inference of GUT-scale µ ∼ 1015

GeV. This is somewhat unfortunate for low-scale gauge mediation of supersymmetry breaking.

Even in gravity-mediated SUSY-breaking scenarios, this would naively lead to gaugino and

gravitino masses of order m1/2 ∼ m3/2 ∼ µ2/MP ∼ 1012 GeV, far too high for weak-scale
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SUSY. The situation is helped somewhat by Nf ≫ 1, but only by a few orders of magnitude

for even an absurdly large value of Nf ; obtaining m1/2 ∼ m3/2 ∼Mweak (and thus µ ∼ 1010)

in a gravity-mediated scenario would require Nf ∼ 1010. Indeed, Maintaining the hierarchy

µ≪ Λ ≃ 4πMP /Nf in this scenario instead constrains Nf
<∼ 106.

The spectral index of the density perturbations in this case is given by

ns − 1 = −3M2
P

V 2
(VϕVϕ + VφVφ) +

2M2
P

V
(VϕVϕ + VφVφ)

(

Vϕϕ
VϕVϕ

+
2Vφϕ
VφVϕ

+
Vφφ
VφVφ

)

(6.5)

≈ −2
y2NM2

P

4π2

1

ϕ2
e

= − 1

Ne
(6.6)

Thus we find the spectral index of density perturbations to again be

ns ≃ 1 − 1

Ne
≈ 0.98. (6.7)

While this appropriately red spectrum is appealing, the high scale of µ required to match the

observed amplitude of density perturbations – even provided Nf ≫ 1 – makes conventional

scenarios for SUSY-breaking using ISS dynamics unattractive.

Of course, a high scale of SUSY breaking is not necessarily fatal, since the approxi-

mate R-symmetry of the ISS theory may be a compelling setting for the realization of split

SUSY [35–37]. Here m3/2 is far too large for anomaly-mediated split SUSY, which requires

m3/2
<∼ 50TeV for TeV-scale gauginos. However, if we assume cancellation of the cosmological

constant in the SUSY-breaking metastable vacuum in a post-inflationary era, it is reasonable

to consider generation of gaugino masses directly from R- and SUSY-breaking as in [35].

Provided the F-term of the chiral compensator is engineered so that Fφ ≪ m3/2 (as might

be obtained in a suitable extra-dimensional construction), one readily obtains a gravitino

mass m3/2 ∼ √
Ncµ

2/MP ∼ 1013 GeV with gaugino/Higgsino mass m1/2 ∼ m3
3/2/M

2
P ∼ TeV.

Alternately, one might imagine the persistence of an unbroken R symmetry in the low-energy

theory, whose breaking by additional dynamics generates suitably small gaugino and Higgsino

masses.

A more attractive scenario for conventional gauge or gravity mediation would require

further separation of the scales involved in SUSY-breaking and the generation of density

perturbations. Such a scenario may arise naturally in the context of ISS models, where

inhomogenous preheating results from the breaking of the global flavor symmetry at the end

of slow-roll.

7. Curvature perturbations from broken flavor symmetries

In [15, 38, 39] it was observed that curvature perturbations may be generated by inhomoge-

nous preheating due to the breaking of an underlying global symmetry at the end of slow-roll

inflation. Quantum fluctuations generated during the inflationary era correspond to fluctu-

ations in the initial conditions of the preheating phase. Whereas in the case of unbroken
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global symmetry these fluctuations in the initial conditions lead to background evolutions

that are related by time translation, in the case of broken global symmetry they give rise

to inhomogeneities in preheating efficiency and thereby generating curvature perturbations.

The scale of these curvature perturbations depends on the dynamics of both the inflationary

and preheating phases, and may readily constitute the main source of perturbations to the

background metric.

The ISS model provides a natural context for the realization of this scenario, since the

SU(Nf ) global flavor symmetry of the theory is broken at the end of slow-roll inflation in

the SUSY-breaking vacuum. Contributions to the power spectrum of curvature perturbations

arising from inhomogenous preheating may be significant and, moreover, admit a lower scale

of µ suitable for weak-scale SUSY breaking.

7.1 Inhomogenous preheating

Let us first briefly review the general mechanism elucidated in [15]. In a multi-component

inflationary scenario where the inflaton ~φ consists of many background fields φi related by a

global symmetry, there may arise fluctuations of the φi both parallel and perpendicular to

the inflaton trajectory. Fluctuations parallel to the direction of motion in field space corre-

spond to adiabatic curvature perturbations of the sort generated in single-field inflationary

scenarios, while fluctuations orthogonal to the direction of motion correspond to isocurvature

perturbations. At the time t0 between the end of the slow-roll inflationary era and decay of

the inflaton, the value of the background inflaton will have acquired a spatial dependence due

to quantum fluctuations,

~φ(t0, x) = ~φ0(t0) + δ~φ(t0, x). (7.1)

The values of the background inflaton fields φi at the end of slow-roll inflation serve as initial

conditions for the comoving number density nχ of particles produced during preheating [40].

If the global symmetry of ~φ is unbroken, these fluctuations are all related by symmetry trans-

formations, and do not lead to fluctuations in preheating efficiency. If the global symmetry is

broken before the preheating phase, however, these fluctuations are no longer related by sim-

ple transformations, and inhomogeneities in preheating may ensue. In this case, fluctuations

in ~φ(t0, x) result in fluctuations of nχ. Since the energy density generated during preheating

is proportional to the comoving number density, ρχ ∝ nχ. Assuming non-adiabatic pressure

perturbations during the preheating phase may be neglected, curvature perturbations during

preheating can thus be expressed in terms of the number density perturbation,

ζ ≡ ψ −H
δρχ
ρ̇χ

≈ α
δnχ
nχ

. (7.2)

Here we have taken the spatially flat gauge; the proportionality constant α depends on the

redshifting of the preheating particle. Now fluctuations in ~φ parallel to the direction of mo-

tion in field space lead to initial conditions for nχ related by time-translation; the resultant

adiabatic curvature perturbations could be gauged away by a suitable choice of slicing and
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threading. Fluctuations in ~φ perpendicular to the direction of motion may not be gauged away

in an analogous manner, and lead to observable fluctuations in nχ. In this manner, isocur-

vature perturbations are converted into adiabatic perturbations through inhomogeneities in

preheating efficiency. From Eqn. (7.2) we may estimate the curvature perturbations arising

from inhomogenous preheating efficiency,

ζ ≈ α
∂ ln(nχ)

∂φ⊥
δφ⊥ (7.3)

where δφ⊥ denotes fluctuations perpendicular to the inflationary trajectory during preheating.

It is crucial to note that the amplitude of quantum fluctuations δφ⊥ is determined during

the slow-roll inflationary phase, while α
∂ ln(nχ)
∂φ⊥

comes from the details of the preheating

process. The resultant power spectrum and spectral index of the curvature perturbations

from inhomogenous preheating are

Pζ(k) =

[

α
∂ ln(nχ)

∂φ⊥

]2

Pδφ⊥(k) (7.4)

ns − 1 =
dPζ
d ln k

=
d lnPδφ⊥
d ln k

. (7.5)

The key feature is that the power spectrum of these curvature perturbations is the product

of orthogonal perturbations Pδφ⊥(k), determined during the slow-roll inflationary process, and

an amplifying factor
[

α
∂ ln(nχ)
∂φ⊥

]2
from the inhomogenous preheating process after slow-roll

inflation has ended.

The fluctuations in nχ may be readily calculated in models of instant preheating [41]. Here

the inflaton φ is coupled to the scalar preheating field χ via an interaction Lφχ = −1
2g

2|φ|2χ2,

and χ is coupled to fermions ψ by an interaction Lχψ = hψ̄ψχ. The process φ→ χ→ ψ leads

to efficient conversion of the energy stored in the inflaton into fermions.

If the inflaton trajectory doesn’t pass exactly through the minimum of the potential,

but instead at a minimum distance |φ∗|, the preheat particles will be characterized by an

effective mass m2
χ(φ∗) = g2|φ∗|2. Then the comoving number density of preheat particles is

given by [41]

nχ =

(

g|φ̇∗|
)3/2

8π3
exp

[

−π
m2
χ(φ∗)

g|φ̇∗|

]

. (7.6)

The power spectrum of curvature perturbations may then be calculated from the dependence

of |φ∗| on φ⊥. Let us now consider the explicit realization of inhomogenous preheating in

ISS-flation.

7.2 Inhomogenous preheating in ISS-flation

The ISS model possesses a large SU(Nf ) flavor symmetry that is broken to SU(Nf ) →
SU(Nc) × SU(N) in the metastable SUSY-breaking vacuum. As this global symmetry is
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broken at the end of slow-roll inflation, prior to any preheating or reheating effects, it pro-

vides a natural context for the realization of inhomogenous preheating and the generation of

curvature perturbations.

Consider the fate of components of the inflaton trajectory after slow-roll inflation has

ceased, ϕ <∼ ϕc. N components obtain masses m2
1 ∼ yµ2 from the squark vev, while the

remaining Nc components are pseudo-moduli with vanishing tree-level masses. These pseudo-

moduli instead obtain positive masses at one loop, which in [3] were determined to be m2
2 ∼

log 4−1
8π2 Ny2µ2.

Once the squarks roll off into the SUSY-breaking vacuum, the components of the inflaton

feel a quadratic potential near the origin, but one that is much steeper for the N components

with tree-level masses than for the Nc pseudo-moduli. Consider now the inflationary trajec-

tory after slow-roll, parameterized by massive components ϕ1 and pseudo-moduli ϕ2:

M =

(

ϕ1√
N

1IN
ϕ2√
Nc

1INc

)

(7.7)

The potential near the origin is essentially quadratic, given by

V (ϕ1, ϕ2) ≈ m2
1ϕ

2
1 +m2

2ϕ
2
2 (7.8)

with m2
1,m

2
2 as above. Under the influence of the quadratic potential, the components ϕ1, ϕ2

roll to the origin. Recall that the inflaton is coupled to the squarks q, qc via an interaction

LMqqc = −1

2

y2

Nf
|ϕ|2

(

|q|2 + |qc|2
)

(7.9)

and that there also exists a coupling of squarks to fermions of the form

Lqqcψ =
y

√

Nf

qψϕψqc +
y

√

Nf

qcψϕψq. (7.10)

These couplings give rise to preheating as the inflaton components roll through the origin, with

the light components of the squarks q, qc playing the role of the preheat fields. Oscillations

of the inflaton about the origin begin when |M | < µ√
y , i.e., the amplitudes of oscillation are

|ϕ1| = ϕ1,c =
√

N
y µ, |ϕ2| = ϕ2,c =

√

Nc

y µ. The velocities of the fields as they pass through

the minimum of the potential are given by |ϕ̇1|0 ≈ m1ϕ1,c and |ϕ̇2|0 ≈ m2ϕ2,c, respectively.

As the fields begin to oscillate, ϕ1 rolls much faster than ϕ2, with

|ϕ̇1|
|ϕ̇2|

∝ m1

m2
=

(

log 4 − 1

8π2
Ny

)−1/2

≫ 1. (7.11)

As such, when ϕ1 rolls through the minimum of its potential and initiates preheating, ϕ2 is

still close to its initial amplitude. The velocity entering into the number density of preheat

particles, Eqn. (7.6), is dominated by |ϕ̇1|, while the displacement at the minimum is set
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by the amplitude of |ϕ2|. To good approximation, then, |φ̇∗| ≈ m1ϕ1,c, |φ∗| ≈ ϕ2,c, m
2
χ ≈

y2

Nf

(

ϕ2
1 + ϕ2

2

)

, and the comoving number density of preheat particles is then given by

nχ ≈
(√

N/Nfyµ
2
)3/2

8π3
exp

(

− πyϕ2
2

√

NNfµ2

)

. (7.12)

The fluctuations in nχ are dominated by those of ϕ2, so we have to leading order

δnχ
nχ

≈ − 2πyϕ2
√

NNfµ2
δϕ2 ≈ −2π

µ

√

y

N
δϕ2. (7.13)

The ensuing power spectrum of curvature perturbations arising from inhomogenous preheat-

ing in the ISS model is given by (see Appendix A for details)

P1/2
ζ ≈

√

yNf

48N

µ

MP
. (7.14)

Whereas the adiabatic curvature perturbations arising during slow-roll inflation go as (µ/MP )2,

those from inhomogenous preheating go as µ/MP , allowing a greater separation of the in-

flationary and SUSY-breaking scale µ from MP . Matching the observed spectrum due to

curvature perturbations of this type would entail

µ

MP
∼ 9 × 10−5 ·N3/4N

−1/4
f (7.15)

This separation of scales is nearly two orders of magnitude greater than considered previ-

ously; neglecting factors of N,Nf it suggests µ ∼ 1014 GeV, and further separation of scales

is obtained at large Nf . However, obtaining m1/2 ∼ Mweak in this scenario would still re-

quire Nf ∼ 1010, far too large to maintain the hierarchy µ ≪ Λ ≃ 4πMP /Nf . Assuming

preheating is relatively efficient, the curvature perturbations arising from inhomogenous pre-

heating should dominate over those arising from the inflaton alone provided N
3/2
f

<∼ 1
10
MP

µ .

For µ/MP ∼ 10−5, this is the case for Nf
<∼ 500.

The spectral index of these curvature perturbations is

ns ≈ 0.98, (7.16)

preserving the red spectral index prediction from supersymmetric hybrid inflation.

7.3 Curvature perturbations from a separate preheating sector

Alternatively, one might imagine coupling the inflaton to a separate preheating sector not

itself embedded in the ISS model. Assuming ϕ preferentially decays to preheat particles ς via

an interaction of the form Lϕς = −1
2λ

2|ϕ|2ς2, the resultant density perturbations are of the

form

P1/2
ζ ≈ λ

4
√

3

√

NfNc

Ny

µ

MP
. (7.17)
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Matching the observed curvature perturbations in this scenario would entail

µ

MP
∼ 9 × 10−4 · λ−1N

−5/4
f . (7.18)

Assuming λ is perturbative, one may obtain weak-scale SUSY-breaking in this scenario from

Nf ∼ 103; the hierarchy µ ≪ Λ is automatically satisfied in this scenario. In this case,

curvature perturbations from inhomogenous preheating would certainly dominate over those

from slow-roll inflation. The spectral index is again ns ∼ 0.98, independent of the preheating

mechanism. This is perhaps the most compelling setting for inflation and weak-scale SUSY

breaking in the ISS model.

7.4 Non-gaussianities from inhomogenous preheating

There is no a priori reason to expect the curvature perturbations arising from inhomogenous

preheating to be entirely gaussian [42]. Indeed, such perturbations may exhibit a significant

degree of non-gaussianity and may serve to discriminate ISS-flation from more conventional

models of supersymmetric hybrid inflation.

The degree of non-gaussianity may be characterized by the non-linearity parameter fNL
parameterizing the non-gaussian contribution to the Bardeen potential Φ,

Φ = ΦG + fNLΦ2
G. (7.19)

Here ΦG denotes the gaussian part. Assuming |fNL| > 1, Φ and ζ may be accurately related

via

Φ = −3

5
ζ = −3α

5

δnχ
nχ

. (7.20)

We may estimate fNL in ISS-flation by expanding δnχ/nχ to second order in δϕ2; for instan-

taneous preheating within the ISS sector this yields

δnχ
nχ

≃ −2πyϕ2
√

NNfµ2
δϕ2 −

1

2

(

2πy
√

NNfµ2
− 4π2y2ϕ2

2

NNfµ4

)

(δϕ2
2) (7.21)

As such, the non-linearity parameter is given by

fNL ≃ 10

3

(

1

2π

√

N

Nf
− 1

)

(7.22)

Given N/Nf ≪ 1, this suggests that the non-gaussianities of the inhomogenous preheating

curvature perturbations in this model are well approximated by

|fNL| ≈
10

3
. (7.23)
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A similar estimate is obtained for the case of a separate preheating sector, although in both

cases it should be emphasized that this is only a rough approximation. This result corre-

sponds well with intuition developed for non-gaussianities in inhomogenous preheating sce-

narios with small global symmetry breaking [42]; O(1) global symmetry breaking, as in the

case of ISS-flation, leads to a relatively small degree of non-gaussianity. It is interesting to

note, however, that this degree of non-gaussianity is above the observational limit fNL ∼ 1

and close to the anticipated |fNL| ∼ 5 sensitivity of Planck and other future tests of the an-

gular bispectrum [43]. Moreover, it is significantly larger than the negligible non-gaussianity

expected for conventional models of hybrid inflation [44]. Given that ISS-flation and con-

ventional supersymmetric hybrid inflation produce the same prediction of the spectral index,

non-gaussianities arising from spontaneous symmetry breaking at the end of slow-roll inflation

may serve as a key experimental discriminator.

8. Conclusions

We have seen that inflation may naturally occur while rolling into the supersymmetry-

breaking metastable vacuum of massive supersymmetric QCD. Although the combination

of supersymmetry-breaking and inflation is more a matter of novelty than profundity, this

scenario is particularly attractive in that it contains a concrete UV completion of the infla-

tionary sector and the potential for distinctive observational signatures. Successful slow-roll

inflation in the ISS model requires a large number of flavors and relatively small magnetic

gauge symmetry, as well as a natural hierarchy m ≪ µ ≪ Λ <∼MP . Although quadratic

corrections to the inflationary potential arise in the presence of a non-canonical Kähler po-

tential, the ensuing contribution to slow-roll parameters may be small enough to forestall the

conventional SUSY η problem. Moreover, the spontaneous global symmetry breaking that ac-

companies the end of slow-roll inflation in the ISS model may give rise to dominant curvature

perturbations through inhomogenous preheating. Such perturbations may possess observable

non-gaussianities, further distinguishing ISS-flation from its more conventional cousins.

It is difficult to simultaneously obtain weak-scale SUSY breaking and the observed infla-

tionary spectrum strictly from the dynamics of the ISS model; standalone ISS-flation would

seem to favor split SUSY or other high-scale mediation. However, weak-scale SUSY-breaking

using conventional gauge- or gravity-mediation is feasible if the primary contribution to pri-

mordial curvature perturbations arises from coupling to a separate preheating sector.

It would be interesting to consider concrete realizations of split supersymmetry using ISS

SUSY-breaking dynamics, given the high scale of SUSY-breaking required to match inflation-

ary observables in the absence of inhomogenous preheating. Likewise, a more careful analysis

of non-gaussianities arising from inhomogenous preheating may be useful in light of recent

evidence for significant non-gaussianities in the WMAP 3-year data [45].
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Appendix A. Power spectrum from inhomogenous preheating

The power spectrum of the curvature perturbations arising from inhomogenous preheating in

the ISS theory is given by

Pζ(k) =

[

α
∂ ln(nχ)

∂φ2

]2

Pδϕ2(k) =
π2y

4Nµ2
Pδϕ2(k). (A.1)

The power spectrum of δϕ2 is set during inflation, and may be calculated accordingly. On

superhorizon scales the amplitude of quantum fluctuations is given by

|δϕ2(k)| ≃
Hk√
2k3

(

k

aH

)η

(A.2)

and the resultant power spectrum is

Pδϕ2(k) ≡
k3

2π2
|δϕ2(k)|2 =

(

Hk

2π

)2( k

aH

)2η

(A.3)

Evaluated at horizon exit, k = aH, we arrive at the observable power spectrum

Pδϕ2 =

(

H

2π

)2

≈ Nfµ
4

12π2M2
P

(A.4)

Thus the power spectrum of curvature perturbations arising from inhomogenous preheating

in the ISS model is given by

P1/2
ζ ≈

√

yNf

48N

µ

MP
(A.5)

As for the spectral index of these curvature perturbation, we have

ns − 1 ≡ d logPζ
d log k

=
d logPδϕ2

d log k
≈ 2η ≈ − 1

Ne
(A.6)
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