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Abstract. Petascale systems are in existence today and will become common in the next few 
years. Such systems are inevitably very complex, highly distributed and heterogeneous. 
Monitoring a petascale system in real-time and understanding its status at any given moment 
without impacting its performance is a highly intricate task. Common approaches and off-the-
shelf tools are either unusable, do not scale, or severely impact the performance of the 
monitored servers. This paper describes unobtrusive monitoring software developed at 
Stanford Linear Accelerator Center (SLAC) for a highly distributed petascale production data 
set. The paper describes the employed solutions, the lessons learned, the problems still to be 
addressed, and explains how the system can be reused elsewhere 

1.  Introduction 
As High Energy Physics (HEP) experiments grow in size and their data volume reach the multi-
petabyte scale, the complexity of data storage and delivery systems grow accordingly. Large systems 
with thousands of users are often distributed geographically across different time zones, managed by 
different groups of administrators, and run on different operating systems. It is vital for efficient 
functioning of such systems to develop detailed understanding of how they perform and promptly 
respond to any arising issues. Monitoring such systems is certainly non-trivial. We know of no off-the-
shelf tools that report detailed byte-level file activity for studying data access patterns. The two most 
popular distributed monitoring systems, Ganglia [1] and Nagios [2] that are designed to monitor large 
clusters provide either very general OS metric data or only offer service status monitoring. 
 

SLAC [3] hosts the production data for BaBar [4] that is one of the largest HEP experiments 
currently on-line. BaBar uses xrootd [5] for its data access and with over 2 petabyte of data [6] is an 
ideal case for developing a large scale monitoring system. Xrootd is a highly scalable data server that 
includes load balancing among data servers and has transparent recovery from server crashes. These 
features together with automatic tape to disk staging of data have resulted in good system performance 
and system maintainability. But they do not help the system managers in their planning for system 
expansions to understand issues like typical data access patterns and how they change over a period of 
time, or identify the most active users at each site and the amount and type of data they access or the 
type of files most commonly accessed. To answer such questions, we extended xrootd by building a 
real-time, unobtrusive monitoring system capable of monitoring operations on highly distributed, 
multi-peta scale data sets. It is important to note that although the existing system was developed for 
the BaBar experiment it is an open source package with well documented client-server APIs, so it can 
be reused in other experiments assuming one can modify the server-side code. 

2.  Architecture of the Monitoring System 
The monitoring system is capable of monitoring in real time any number of data servers distributed 
worldwide. Data servers send data using UDP packets. The main advantage of this is complete 
isolation of the mission-critical data servers from the monitoring system. On the downside, UDP does 
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not guarantee data delivery, so potentially some data might be lost. But due to the statistical nature of 
monitoring this is not an issue. Also, UDP packets can arrive in any order, a feature that needs to be 
carefully handled by the receiving end. Decoded data is stored in the form of ASCII files. An 
application loads the decoded data to a database and another application prepares the data for fast 
analysis, mostly by building summary tables that are used by the web application. The key 
components of the system are described below. 

2.1.  Xrootd 
The xrootd server provides POSIX-like access to files and their enclosing directory namespace. 
Within xrootd the monitoring is implemented as part of the protocol plug-in and the client is given 
some limited access to the monitoring activities through the xrootd requests as discussed below. The 
Monitoring was designed with focus on four major issues:  

2.1.1.  Impact on client requests. The recording of the event must have almost no impact on the 
request itself to make the monitoring accurate and not impede client performance. This implied that 
the monitoring itself required very little resources (CPU, memory, I/O) and optimally did not serialize 
client requests in order to maintain low request/response latency. A low overhead design necessitated 
using compact binary data structures to avoid data translation overhead. Also precise timing of events 
can prove very costly. Hence, the design used statistical event recording where events are gathered in 
a precise time window but no particular event itself is given a precise time. This minimizes using high 
overhead processor timing facilities. 

 
Events occur in some order across all clients and for monitoring purposes the timing order of all 

events and their relationship to each other should be preserved, that is, event recording should be 
serialized. However, the xrootd read/write path executes without obtaining serialization locks in order 
to achieve extremely low latency [7]. To avoid introducing serialization in xrootd each client is 
allowed to generate its own event stream instead of generating a single coherent monitoring stream. 
Hence, xrootd presents multiple independent monitoring streams and it is up to the data collector to 
serialize those to obtain an ordered list of events. 

2.1.2.  Robustness in the event of multi-mode failure. Fault tolerance is a strong feature of xrootd. 
When deployed in a clustered environment, xrootd can ensure access to data by re-hosting data from 
failed servers and redirecting clients in real time to the new data location. The monitoring system 
design needed to be equally fault tolerant in the sense that any failure in the monitoring path would not 
affect the server in any way. This was achieved by simply making sure that system resources used for 
monitoring were always bounded. The design specifically focused on data delivery mechanisms that 
used limited buffering and would preferentially lose data instead of slowing down processing in the 
event of a data flow backup. 

2.1.3.  Precision and specificity of collected data. We addressed monitoring specificity by allowing 
clients to inject contextual as well as statistical information into the monitoring stream. The injected 
information retains its relationship to the events that occur at the time the client generates additional 
information. This allows server events to be related to client events and substantially increases the 
precision of the monitoring stream. Additionally, clients are allowed to enable and disable monitoring 
of server events with respect to themselves.  

2.1.4.  Real time scalability. One of our aims was to have a real time data access monitoring that was 
scalable and at the same time could capture very detailed information for special studies. These two 
requirements were at odds with one another since a detailed monitoring stream could easily create a 
data flow that would saturate the data collector agent either because of CPU or I/O constraints leaving 
little resources to extract data for real-time purposes. We solved this problem by allowing multiple 



 
 
 
 
 

data collectors for load sharing purposes, and by providing a means to separate low rate events and 
sending them to a different data collector. As a result, the monitoring can run in either light or bulk 
mode as depicted in figure 1. The light mode deals with session and file related data such as session 
start and stop times, host names, process ids, file open and close times, file paths and number of bytes 
read/written in each session as well as the xrootd restart time on each data server. It is used for real 
time displays. The bulk mode allows for much finer granularity by tracking each file access, recording 
its type (read/write), offset, and number of bytes accessed. The large volume of data and resulting load 
on the system makes this mode unsuitable for real time and sustained monitoring. It is meant to be 
used to collect a sample of the I/O stream during short periods of time for further off-line analysis to 
determine access pattern optimizations.  
 

 

Figure 1.  Monitoring architecture with 1 client/server and 2 collectors 

2.2.  Single Site Light Monitoring 
In our experience, two dedicated hosts are sufficient to monitor a single site, one for monitoring and 
one for web server. For security reasons, it is advisable to separate web application from the 
monitoring internals. The monitoring server hosts the database and is designated to run the database 
applications. Figure 2 shows a typical configuration. The monitoring system is simply set up by 
configuring each monitored data server and initializing the monitoring and web servers. This involves 
initializing the database by running the create application, and starting three other applications: 
collector/decoder, load and prepare. Setting up the web server requires a few configuration changes 
on the Tomcat server side to allow connection to the database [8]. 

 

Figure 2. Typical light monitoring configuration for a single site 

 



 
 
 
 
 

2.3.  Multi-Site Light Monitoring 
In this configuration the main site hosts the database server and receives the decoded monitor data 
from all other sites and loads them into the database. Each site runs its own collector to collect the data 
from local data servers. The decoded data, in ASCII format, is streamed to the main site over the web 
using a custom made package. The database tables for different sites are decoupled so they can be 
updated in parallel by running multiple instances of load and prepare to reduce latency. To provide 
ultimate scalability for very large systems with many sites and hundreds of servers, database update 
can be further parallelized, for example as shown in figure 3. 
 

 

Figure 3. Example configuration for light multi-site monitoring 

2.4.  Real-Time Considerations 
Most of the information on the data server side is flushed when a UDP packet is full or a specified 
time elapses (default 1 minute.) This data is decoded immediately and flushed to a log file in short 
intervals (typically 10 seconds.) Loading to the database introduces another short delay, related to the 
fact that load and prepare wake up every minute to process new data. So in practice, the information 
is available in the database for web browsing a few seconds to a few minutes after the event happens, 
depending on configuration. This delay can be shortened at the expense of a higher load on the system.  

2.5.  Generic Design 
In designing the system, while our main aim was to provide monitoring for the BaBar data access via 
xrootd we have made special effort to make it generic enough that other groups can use all or part of 
the system. Most monitored parameters, such as user, client host, data server etc. have standard 
definitions. One area that needed special attention concerned file classification. 
 

In a petascale dataset comprising millions of data files not all files are accessed with the same 
intensity. The files most frequently accessed are those relating to the on going analyses. To optimize 
the data access it is essential to be able to identify the files or classes of files that are in high demand 
in order to make them more readily accessible. The monitoring system follows the file classification 
used in the data production and for each file type it can monitor aggregate values such as number of 
files, total bytes read or number of users accessing them. It can also provide the list of files satisfying 
certain criteria for each class. Since file classification is designed for the purpose of identifying full 
datasets for all possible studies this kind of monitoring provides a constant polling of the user 
community for its on going requirements. 

 



 
 
 
 
 

In general the datasets are classified according to many different criteria and a file may belong to 
several classes at the same time. The information needed for the classification is either embedded in 
the file name or is contained in look up tables or a database. Since each experiment has its own 
naming convention the system is built in a generic way where the class names are supplied in a 
configuration file. On the other hand no a priori knowledge of the class member names, i.e. file types, 
is required. This information is dynamically built up as the database is populated and an experiment 
specific code provides the corresponding values for each file. As an example files may be classified as 
real or simulation within the class data-type with the convention that these values appear between the 
second and third slash in the file path. The file class data-type is declared in the configuration file but 
the system has no knowledge of the values real and simulation until the files /root/real/... and 
/root/simulation/... are accessed for the first time. 

2.6.  System Expansion 
The system in its present form allows easy expansion in two ways without major changes to the code. 
These are adding new sites to be monitored and new file classifications. A site is declared in the 
configuration file by giving its name, startup date and time zone. A separate application is used to 
upgrade the database by creating the site related tables. At the same time a simple expansion of the 
directory structure is needed on the database server to accommodate the new site. 
 
Adding a new file classification not only requires creating new tables it also affects some of the 
existing ones. Therefore the database upgrade needs a special outage. The code that evaluates file 
types as well as the configuration file is updated to reflect the new classification before the database 
upgrade. The outage could be quite long if one is dealing with multi-million row tables. However, the 
information arriving from the xrootd servers during the outage is buffered and subsequently processed 
and the database integrity is respected. 

3.  Implementation Details 
This chapter highlights implementation details of the key components of the monitoring system. 

3.1.  Xrootd 
Monitoring is configured in xrootd by the "monitor" directive. This directive specifies the events to be 
monitored, event buffer size and flush interval, monitoring window size, and data stream destinations. 
The events that can be monitored include file-related requests (open and close file), I/O request (read 
and write), client specified data submitted using xrootd protocol, and client logins and disconnects. 
Each event is 128 bytes of highly encoded binary information in network byte order. This was 
determined by the desire to compress the information as much as possible using the least amount of 
CPU resources. The buffer is always prefixed by a header that specifies the event count, the buffer 
type, and a relative sequence number that is used to order buffers in the proper time sequence. Several 
types of buffers exist: file and I/O trace events, and dictionary entry for user/path combination, 
user/information combination, user login name, and user authentication information. 

 
Typically, only one dictionary entry is placed in a buffer and flushed to ensure that the entries are 

received as early as possible as they map variable information (e.g. file path) to a unique number 
called a dictid. The dictid is then used in subsequent records in order to conserve space yet provide a 
tie to the external context in which the event occurred. The data collector is responsible for translating 
dictid's to the proper context. File and I/O events are collected in a buffer and flushed when the buffer 
is full or the flush time limit is reached. The buffer always starts and ends with a timing mark.  Each 
mark consists of two UNIX timestamps that record the original time and the latest time the mark is 
generated. The need for two timestamps is explained below 

 



 
 
 
 
 

In figure 4, each timing mark is logically placed in the buffer at a set interval corresponding to the 
configured window size. The events are recorded within a timing mark window defined by a start and 
an end mark. When two marks are adjacent to each other, indicating zero events in that window, 
xrootd merges them together. To maintain the notion of a window, two times must now be maintained 
as shown on the left hand side. The first time closes off the previous window while the second time 
starts the next window. A timing mark mechanism provides flexibility in controlling the tradeoff 
between accurate event timing versus the cost of doing so. Generally, a 60 second window size is 
sufficient to properly discriminate the overall order of events. When a buffer is flushed, it is written to 
a UDP based socket whose end-point is specified in the configuration file. 

 

 

Figure 4. Timing marks in event 

3.2.  Collector  
For performance reasons the collector is written in C++. It merges all incoming data from multiple 
data servers into a uniform coherent time stream. Care is taken to appropriately order the UDP packets 
using the time-stamp and the sequence number assigned to each packet. The latter also helps to 
discover if any packets are lost due to network congestion. The collector uses multi-threading to 
efficiently decode data from multiple data servers. Based on our experience at SLAC, a single 
collector should be able to handle several hundred servers configured to run in light mode. The 
performance with bulk mode heavily depends on underlying hardware used, in particular disk IO 
speed. At SLAC, we were easily able to handle 50 data servers in bulk mode on a modest 2-CPU host. 

3.3.  Database and database applications 
The most natural way to manage data from light-mode monitoring is through a relational database. For 
performance reasons we have chosen MySQL. The applications that create and maintain the database 
are written in Perl and access the database via Perl DBI module and are discussed below. 

3.3.1.  Create. This application creates and initializes the database. It chooses the optimum values for 
creating tables using the information contained in the configuration file. 

3.3.2.  Load. This application is responsible for loading the collector data into the database. In the 
current configuration it wakes up every minute to transfer the input data to its work area. During this 
short transfer time it places a lock on the input file to prevent concurrent collector updates. The load 
on this application is kept to a minimum to maintain low database latency and a built in recovery 
mechanism prevents data loss due to unplanned program terminations. 

3.3.3.  Prepare. This application is designed to maintain up-to-date summary and statistics tables used 
by the web application. It provides historic tables of varying granularity and time span, ranging from 



 
 
 
 
 

one hour to full length of time the monitor data is available, that track the time evolution of number of 
users, jobs, files and bytes transferred. At fixed intervals each historic table is updated, preferentially 
using entries from a table of shorter time span but higher granularity. The "last hour" table, however, 
is updated every minute using the actual values from detailed tables. When prepare is restarted after a 
period of inactivity or is started after running reload application there can be missing data points that 
can not be determined in above manner. In this case we resort to the detailed tables and use a special 
algorithm to get equivalent results. 

3.3.4.  Upgrade. This application is used to add a new site or file classification to the database. Adding 
a new site is non-intrusive. If the new site is not included in the instances of load and prepare that are 
running, it suffices to start another instance of each application for the new site. Otherwise the 
corresponding applications are restarted with the new configuration file. In case of adding a new file 
classification a database outage is needed since some of the existing tables are also affected. 

3.3.5.  Reload. It is important to have the possibility of recreating the database at any moment not only 
as a safeguard against losing valuable data but also as a means of implementing improvements or 
major schema changes. Reload has the capability of partially or fully reloading the backed up ASCII 
data to the database. It simulates the real time loading by breaking the data into one minute intervals. 
Even during a full reload it reuses as much of the existing tables as possible such as the ones with file 
and user information. This enhances the reload speed by avoiding resource intensive operations such 
as redoing file classifications. 
 

Certain combinations of database applications can not run in parallel. For example, when load is 
restarted after a period of inactivity it may need to catch up with a large backlog of input data. During 
this time the database is not fully up to date and prepare must wait until the backlog is cleared. Or 
load and prepare can not run during a schema upgrade for a new file classification. The 
communication among database applications is established through semaphore files. Each application 
is started and stopped using a special script that among other things is responsible for graceful 
termination of the application and handling of the semaphore files. 

3.4.  Web Application 
This application is written in JSP3 which offers a fast and easy way to create dynamic web 
applications and provides a set of tags to access databases using JDBC. These features were essential 
for creating a web front end whose pages and content is dynamically driven by database tables. The 
summary plots are created dynamically on the server side using the AIDATLD tags. These are JSP 
compatible tags that allow one to easily generate scientific plots from the outcome of database queries. 
To display tabulated data we used the Display Tag tags. With this technology it was possible to 
efficiently couple database queries with html tables with variable number of rows and sortable 
columns. Maven 1 is the technology we use to manage and build the web application. The web 
application is distributed as a war4 file and works in Tomcat 5.5 (or greater) servers installed on any 
OS.  

3.5.  Time Zones 
The UDP packets arriving from different sites contain local time information leading to a mixture of 
time zones when viewed collectively. For the sake of clarity and uniformity the data from all sites 
must be presented coherently by the web application using a single time zone. Storing the timestamps 
in a unique time zone in the database inevitably leads to simpler, hence faster queries. For this reason 
the timestamps are converted to GMT at the decoding stage. The web application, however, offers a 
pull down menu to select the viewing time zone. At present the choice is restricted to the time zones 
corresponding to the contributing sites but could easily be expanded to cover additional sites. 



 
 
 
 
 

3.6.  Job Definition 
The job attribute encompasses all operations performed by a user under one process id on one client 
node. This is a very useful parameter to monitor as it can be used to identify analysis or production 
related issues and bottlenecks. For monitoring purposes we are only concerned with the data access 
part of the job and not the user code. A job can span many parallel and consecutive sessions whereby 
the client host connects to data servers to perform file read and write. In this context a job starts with 
the first session the client node connects to a data server and ends with the last disconnect from a data 
server. A job is assumed to be running if it has at least one open session at that time. It may happen 
that for a short time there are no open sessions before the next session starts. During this time the job 
is dormant. As the monitoring system has no a priori knowledge of the last session within a job one 
must predefine the length of time a job can be dormant before it is declared as finished. In principle 
this can be as long as the cycle time of the process id on the client. However, one should choose the 
smallest possible value so that the database reflects the most accurate picture of the job status at any 
time. By definition the session related data should be sufficient to determine the status and duration of 
a job. But occasionally some session information may get lost due to xrootd restarts or system crashes. 
In this case the xrootd restart time or file related information is used to determine approximate 
timings. 

3.7.  Backup, Outages, Journaling 
We have taken great care that the monitoring data arriving from the xrootd servers remains constantly 
available for reprocessing in its entirety. The only time that a small amount of information is lost is on 
the rare occasions when the collector is stopped and restarted during upgrades or server restarts. At 
every load cycle the decoder output is moved to a journal directory for processing and is immediately 
appended to the latest backup file which is closed at regular and configurable intervals. During 
outages for database maintenance or upgrades the decoder keeps on updating its output file and the 
backlog is processed after the outage. Detailed journal files are maintained for recovery purposes in 
the event that an application stops abruptly. 

3.8.  Configurability 
A single configuration file that is used by all applications serves to set up the database and control its 
operations. The only hard coded numbers in the system are the one minute load cycle and the bin sizes 
in the statistics tables that are used for time plots. To set up the directory structure where the collector 
output and the journal and backup files reside only the base directory and the site names must be 
declared in the configuration file. All control parameters have default values that can be over-ridden in 
the configuration file. 

4.  BaBar Production System 
BaBar has so far collected over 2 PB of data. Data is processed and served from centers located in 
USA, Canada, France, Italy, Germany and UK, and accessed by more than 600 users from 80 
institutions worldwide. All this is centrally monitored at SLAC. Worldwide, BaBar has access to   
hundreds of data servers with nearly 1 PB of disk space and to several thousand processing nodes that 
access data from a pool of well over one million files. 

4.1.  File classification in BaBar 
For monitoring purposes we have implemented two of the file classifications used in BaBar and will 
be adding more in future. The first class is data-type which indicates whether the data is real or 
simulated and in either case whether it is filtered or not. In BaBar filtering is referred to as skimming. 
The second class is skim which contains the filter names. Each skim refers to a set of selection criteria 
that is used to obtain the corresponding data set. As the experiment progresses more skim names are 
added to the set. 



 
 
 
 
 

4.2.  Monitored Parameters  
The distribution comes with a web application that renders the contents of the database as plots and 
tables for all participating sites. Information is presented in a hierarchical structure allowing easy 
navigation from summaries to detailed pages following links in the tables or using the navigation 
menu. For example one can monitor the number of jobs, users and open files, or view tables of the 
most active users, most used files and file types and obtain detailed information for individual cases. 
Two examples for SLAC are shown in figures 5 and 6. A drop down menu selects the time period that 
can be last hour, day, week, month or year. In case of the top performers table, shown in figure 5, the 
number of rows for each section is also selectable up to a configurable maximum. We also provide a 
repertoire of popular queries to be continuously expanded through user feedback. 
 

 

Figure 5. Example summary page showing “Top Performers” 

4.3.  Statistics.  
We started deploying the monitoring system at SLAC in mid 2005 and gradually all Tier A sites, six in 
all, started participating. Currently, the database contains 200, mostly multi-million row, tables and 
exceeds 40 GB in size. The largest table has over 130 million rows. In the last two years over 30 
million jobs were recorded, which were submitted by more than 600 different users. These jobs ranged 



 
 
 
 
 

from few minutes to many weeks in duration and accessed over 1.3 million distinct files a total of 143 
million times. Currently over 200 skims are monitored both for real and simulated data. During peaks 
of activity we have observed over 100 active users for prolonged periods of time processing many 
thousand jobs and accessing well over one hundred thousand files at any given moment. 
 

 

Figure 6. Example of monitoring information for one user 

5.  Future Plans 

5.1.  Monitoring tape to disk staging 
In multi-petabyte experiments it is neither economical nor practicable to store the entire dataset on 
disk. Disks are much more expensive than tapes for the same data volume and more importantly they 
consume power even in the absence of IO. Since only a fraction of the data is accessed at a given time 
the files are continuously staged and purged. Monitoring staging would be very valuable in detecting 
the inefficiencies in the automatic staging and in planning disk upgrades for optimum data access.  

5.2.  Multi-experiment monitoring  
In a data grid world where computing resources are used jointly by several experiments it is highly 
desirable to have per experiment view of the shared resource usage. The work is in progress to 
introduce an experiment layer in the monitoring system. 

5.3.  Fractional data usage 
Filtering data is a resource intensive process and its usage should be carefully monitored to avoid 
producing types of data that are no longer in demand. In BaBar an off line monitoring system uses the 
production database and the xrootd log files to determine the fraction of data accessed for each skim 
type. We are in the process of setting up a separate stream that will update the monitoring database 
with the amount of data produced. This is being done in a generic manner so that it can be used as part 
of the monitoring system by any experiment. 

6.  Summary 
At SLAC we have developed an unobtrusive data access monitoring system for petascale datasets. The 
monitoring system is decoupled from the underlying data access server and its scalable architecture 
allows it to be used for monitoring distributed systems of virtually any size. We have deployed it in 
the last two years to monitor the data access in BaBar experiment that has over 2 petabyte of 
production data. The system can either be used to monitor the access in real time in lightweight mode, 
or as a tool for periodically collecting fine-grained access statistics for further offline analysis. 
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