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We propose a bootstrap method for approximating the long-range terms in the Contractor Renor-
malization (CORE) method. The idea is tested on the 2-D Heisenberg antiferromagnet and the
frustrated J2 — J1 model. We obtain renormalization group flows that directly reveal the Neel phase
of the unfrustrated HAF and the existence of a phase transition in the J2 — Ji model for weak
frustration. However, we find that this bootstrap method is dependent on blocking and truncation
schemes. For this reason, we discuss these dependencies and unresolved issues that researchers who

use this approach must consider.

PACS numbers: 75.40.Mg, 75.50.Ee, 02.70.-c

I. INTRODUCTION

Contractor Renormalization (CORE) [1] is a numeri-
cal method for finding the low energy spectrum and gen-
erating the renormalization group flow of operators in
quantum many-body models. Although it has been ap-
plied successfully to many systems(see [2] and references
therein), it relies on a cluster expansion whose higher or-
der terms are, in most cases, difficult to compute. How-
ever, as we noted in Ref.[2], in order to have confidence
that a CORE computation is reliable, the convergence of
the cluster expansion has to be checked carefully. This is
particularly true for higher-dimensional systems. Unfor-
tunately, for even the simplest 2-D systems, the compu-
tation of operators beyond nearest-neighbor blocks is a
formidable task since, if we suppose the number of states
per block is m, and the cluster expansion up to the k-
th term is defined to include all connected operators in a
k x k configuration of blocks, then the brute force calcula-
tion of the k-th term would require exact diagonalization
of an m¥* x m** matrix. Clearly this is not feasible for
large values of k. This paper reports our attempts to de-
vise schemes for approximating these longer-range terms
in the cluster expansion so as to get some control over
these terms which are usually neglected.

Getting a reasonably reliable handle on longer-range
terms is important for two reasons. First, we would like
to obtain the best accuracy for the ground-state and ex-
cited state energies, as well as the best values for criti-
cal exponents and other order parameters. Second, and
possibly more important, higher order terms will gener-
ate long-range operators that can introduce frustration,
and therefore possibly produce qualitative changes in the
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renormalization group flows. In this paper we propose a
CORE bootstrap scheme, wherein we use a variation of
CORE itself to compute approximations to these long-
range terms. The key idea behind this approach is that,
since our focus is on the computation of new connected
operators for a small number of blocks, we use a block
adapted version of CORE to approximate the cluster
Hamiltonian. By block adapted we mean that we use
a truncation and renormalization procedure specifically
tailored to the finite size and geometry of the particular
configuration.

The outline of this paper is as follows. In Section [,
we first test a variety of bootstrap schemes for the case of
an unfrustrated antiferromagnet(HAF), since the ground
state energy density of this model is known exactly|3].
We show that the increase in accuracy we obtain for
the ground state energy density can show significant de-
pendence upon the blocking scheme. Fortunately, all
schemes consistently reproduce a renormalization flow
that illuminates the Néel nature of the HAF ground state.
In Section [[TI we take the best blocking scheme from the
previous section and apply it to a specific frustrated an-
tiferromagnet, the J; — J2 model. This scheme predicts a
renormalization flow as a function of frustration, in which
a phase transition appears around 0.37 < J2/J; < 0.38.
This is in rough agreement with literature, and it is the
first time such a renormalization picture is obtained for
this well-studied model. Section [[V] reports on the re-
sults of some variations of this bootstrap procedure and
the puzzles they pose. Finally, we conclude Section [V]
with a discussion of what we believe the implications of
these results to be.

II. BLOCKING SCHEMES FOR THE
BOOTSTRAP STEP

As in Ref.|2], we begin our study of the CORE boot-
strap by studying the 2-D spin-1/2 Heisenberg Antifer-
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romagnet:
H= > -8
<i,j>
= > SP-SP48Y.-8Y+8;-8;, (1)
<i,j>

As before, we assume nine-site square blocks for the basic
CORE renormalization group computation and truncate
to the two lowest lying eigenstates of the corresponding
nine-site Hamiltonian. The simplicity of the lowest range
CORE computation for this system makes it a good test
bed for a computation of the four-block plaquette oper-
ator. Note that the CORE prescription for computing
this operator exactly would be require computing those
lowest lying eigenstates of the 236 x 236 cluster Hamil-
tonian which have a non-vanishing overlap with the 16
tensor product states constructed in the truncation step.
In general, this means computing more than the 16 low-
est lying eigenstates of the 36-site problem. This is a
formidable problem and it cannot be done on a PC.

A simplification which follows from the fact that our
renormalization procedure preserves the rotational in-
variance of the original theory, is that the renormalized
Hamiltonian must be rotationally invariant. This means
that, since we truncate to the lowest spin—% state per
block, the generic two-block and the generic plaquette
operators that appear in the Hamiltonian will have the
form:

ho = cuu—|—4cm;5_"1-5_"2 (2)
ha = Cunuul + 4Capun(Sy - So + S5 - S
+85 - Sy + S1 - S1) + 4cpuza(S1 - S5+ S2 - Sy)
+16¢40:2(S1 - Sz S3-Si+S1-Sy S+ S3)
+16¢420:(S1 - S5 2+ S4) (3)

where the 36 sites in the four nine-site blocks are labeled
as shown in Fig[ll The constants appearing in Eq.
are put in to ensure that the coefficients c;,,, are in
front of operators whose trace norm is unity. The coef-
ficients cyyzu, Cozz» indicate the strength of diagonal in-
teractions, while ¢ypyu, Craz» are for horizontal/vertical
interguctions. Note that both the c¢;, and cppy. terms
are S - S on two neighboring sites, so the total horizon-
tal or vertical coupling should be (cuy + 2¢Copuu). Since
the overall scale is irrelevant when we study the flow of
couplings, in the plots to follow we will often express the
couplings in Eq. Blin units of (¢zz + 2¢zzuy). Given this
notation, we now turn to a discussion of several possible
bootstrap schemes: the Whole Block Buffering scheme,
the Three-site Strip Blocking scheme, the Contour Line
Blocking scheme and the ”8+1" Blocking scheme.

A. CORE Bootstrap: Whole Block Buffering

The key to the CORE bootstrap is the introduction of
an intermediate, or buffering, step between each of the

FIG. 1: The labeling of the four nine-site blocks.

original CORE renormalization group steps. In this in-
termediate step we retain, along with the original Spin—%
doublet retained in the first step, additional spin multi-
plets so that the final number of retained states per block
is 22 > k > 2. This means that for a 4-block cluster there
will be a total of k* retained states.

Next, we use the CORE contraction procedure to con-
struct a k* x k* Hamiltonian which approximates the
full 236 x 235 in the following sense: one its low lying
states should have nearly the same eigenvalue spectrum
as in the full 36-site problem; two, if one restricts to the
lowest two states of the single block Hamiltonian, then
the renormalization group step should produce a reason-
able approximation to the connected operators we would
obtain by doing the exact 36-site computation. To be
precise, this approximating k* x k* Hamiltonian is con-
structed as follows: first, we compute the k x k range-1
(single block) terms and k? x k? connected range-2 (two
adjacent block) terms; second, we add these terms up
to construct the approximate Hamiltonian. The hope is
that since, if we kept all 2° states per block, there would
be no plaquette operator at all, keeping the range-2 ap-
proximation for k > 2 states will, for big enough k, be
a reasonable thing to do. The only question is how big
does k have to be for this to be true.

An important feature of this procedure is that we
keep the original spin—% multiplet as one of our k re-
tained states. This means that, if we carry out a nearest
neighbor renormalization group step for this approximate
Hamiltonian, keeping only the lowest Spin—% multiplet
for a single site, then we will automatically reproduce
the result obtained in the full eighteen-site, two-block
calculation. Obviously, this procedure can be general-
ized in ways that fail to guarantee that the connected
range-1 and connected range-2 terms computed for the
effective problem will be the same as those obtained from
the original 18-site calculations. In that case, however,
the question of what is the proper definition of the con-
nected plaquette operator raises its ugly head. To avoid
this complication, in what follows, we will only discuss
buffering stages for which this cannot happen.
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FIG. 2: Approximate energy density as a function of k, the
number of states per block in the buffering step. The four k
values are chosen to preserve whole spin multiplets in the first
iteration. For subsequent iterations, we keep instead all the
whole multiplets that can be fit within the k lowest states.

A point worth noting is that after the first CORE
iteration our renormalized Hamiltonian will contain a
connected plaquette term which couples every four site
square. This means that adjacent nine-site blocks will
be nearest-neighbors for the purpose of carrying out the
second iteration. As we are unable to diagonalize the
36-site Hamiltonian exactly, we have chosen to discard
the ¢ipzs, Crzer terms that couple all four blocks. We
then calculate two types of range-2 operators, connect-
ing horizontal (or vertical) blocks as well as diagonal
blocks. This approach is potentially problematic because
not only have we discarded some terms, we have also vi-
olated the diameter expansion rule proposed in Ref.|2]
by not including all diameter-v/2 operators. Neverthe-
less, for the purpose of testing the method, we follow
this strategy and see what happens for several values of
k. The resulting energy densities are shown in Figl2l The
general question of how best to include these plaquette
terms is clearly an issue that we must return to at a later
date. Fortunately, there are obvious ways to do better
than by simply throwing this interaction away.

Figl2 shows that as we add more states, we get closer
and closer to the exact energy density. This is nontrivial
and appears to indicate that we are on the right track,
but notice that for k = 6, the energy density at ~ —0.68
is much worse than the —0.666 obtained without boot-
strap. This may be the result of violating the diameter
expansion rule.

Apart from the energy density, this calculation (as well
as all other blocking schemes to be discussed) reveals an
important feature of the HAF. With each successive it-
eration, the sum of ¢,z + 2¢zuzy goes to zero and cpygy
becomes more and more negative. At the third iteration

FIG. 3: Two decoupled inter-penetrating lattice. The fact
that the HAF runs toward this configuration illustrates the
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FIG. 4: Three-site strip blocking. Shown on the right are
operators for the buffering step that can be embedded in the

36 sites that involve no more than the diagonalization of two
original nine-site blocks.
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of k = 14, for example, we have the following coefficients:
Cmuzu/(cmx + 2Czuxu) ~ _747 szzz/(czz + 2Cmuzu) ~
0.006, Cyruz2/(Crx + 2Couzu) = —4. This means that un-
der the renormalization group flow our lattice Hamilto-
nian flows to that of two weakly-coupled interpenetrating
ferromagnets (Figl3]). This picture appears to provide a
very attractive qualitative explanation as to why, at long
range, the HAF ground state is Néel-like.

B. Three-site Strips

The previous blocking scheme leaves the nine-site
blocks intact, but nothing prevents us from breaking
them up in the buffering step. Appropriately dividing
the block into smaller pieces allows us to include more
interactions at a smaller computational cost. More im-
portantly, this flexibility allows us to retain four-body
interactions we previously discarded, and so we will do
not have to violate the idea of ordering the cluster ex-
pansion by diameter /proximity.

FigH shows a way of breaking the nine-site block into
three rectangular strips, along with a list of operators
calculated in the buffering step. Embedding these terms
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FIG. 5: Running of horizontal/vertical couplings in four
CORE iterations using alternating strip blocking. The two-
body horizonal coupling is defined to be 2(0};14-2021““)/(0};1 +
2¢l o + Uy + 2¢% 10y ) and the four-body horizontal coupling
is 2¢0, .. /(e 4 2¢0 0w+ e +2¢0 10y ). The vertical couplings
are defined similarly.

in the 36-site problem, we see that there are two six-strip
terms that connect all four nine-site blocks. For this strip
blocking we keep two states (a spin—%) per strip, which
means that a six-strip term requires contracting the low-
est of 218 states to 2° states. Computationally this is
not much more demanding than the 2'8-to-22 contrac-
tion required for the original range-2 calculation without
bootstrap. Thus, in this way we can take into account
the four-block interaction more satisfactorily than in the
whole block buffering scheme.

The obvious problem with this approach is the loss of
rotational symmetry. Now, the up-down couplings will,
in general, be different from the left-right couplings. This
difference can and will grow as we run the renormaliza-
tion group flow. This, of course, limits the number of
RG steps which can be carried out and so, if the limiting
behavior of the renormalized Hamiltonian hasn’t clearly
emerged before these asymmetries grow too large one
loses the ability to understand the long distance behavior
of the theory. We can mitigate this problem somewhat by
alternating the blocking direction at every iteration, but
this only improves the energy from —0.6678 to —0.6679.
Compared to the exact value at —0.6694. Both numbers
are ~ 0.2% accurate, as was the k = 14 result in Fig. 2l

Figlhl shows how the asymmetry between horizontal
and vertical couplings grows with renormalization un-
der the alternating strip-blocking scheme. Just as in the
whole-block case, both horizontal and vertical couplings
are eventually dominated by the diagonal couplings. To
see this more clearly, we artificially restore the rotation
symmetry by averaging the horizontal and vertical in-
teraction, i.e. set ¢ « (cf, +c¥,)/2 etc. where the
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FIG. 6: Running of diagonal couplings in four CORE itera-
tions using strip blocking with averaging of coefficients. The
two-body diagonal term is 2¢%, 4. /(¢ +2¢0 1w+ €20 +28 0 0n)
and the four-body diagonal term is 202212/(021 +2ck L+
Cye + 2Cozuw). This shows that the HAF runs to the two-
lattice limit in Fig[3]

superscripts indicate horizontal and vertical coefficients.
The averaging scheme hardly changes the energy density,
which now becomes —0.6677, but here we get a clean pic-
ture (Figld)) of the growth of diagonal couplings. The flow
to two weakly-coupled interpenetrating ferromagnets is
once again made manifest.

C. Contour Lines

Since three-site strips artificially break the rotational
symmetry, one may wonder if we can rearrange the strips
to avoid this. Fig. [ exhibits two arrangements that
achieve this by breaking up the nine sites into 1+ 3 + 5
sites, forming a contour line structure. Notice that this
is no longer a scheme which could be used to compute
an RG flow for the full lattice, because no matter how
we orient the contour lines, no single arrangement covers
the entire lattice (four arrangements would be needed).
Nevertheless, in the buffering step there is no barrier to
using either of these arrangements to construct the ap-
proximation to the 36-Hamiltonian.

Table[[llists the results of a number of different contour
line blockings. Blocking scheme D) makes use of the
racetrack contour in Figl[l and keeps a spin—% multiplet
in each strip (made of one, three or five sites), which is
always possible with an odd number of sites. This scheme
does not include any extra long-range terms apart from
the term connecting two adjacent nine-site blocks (made
of six strips), so it is similar to the whole block buffering
scheme. However, instead of including the interaction
between two diagonal nine-site blocks, we only include



O
O
O
O

O OO O
O OO O
O 0O
O 00 O

O O 00 O O
O
O

OO
OO
O 0O OO
OO OO
O
QO

OO OO OO

O
O
O
O

FIG. 7: Two different types of rotationally symmetric con-
tour line blocking. We will refer to the left configuration as
a racetrack contour, and the right as a cross contour. For
the racetrack contour, we have calculated two operators that
couples all four nine-site blocks; the 4 x 4 square in the mid-
dle (shaded above), and the 20-site outer ring. For the cross
contour, the 20-site cross in the middle is the term connecting
four blocks we can handle.

TABLE I: Performance of strip and contour-line blocking as
measured by energy density. Two states per strip is assumed
except for G)

Approx. Energy Density
and Percentage Error
(Exact = -0.66943)
-0.6678 (+0.24%)

Bootstrap Scheme Used

A) Three-site strip

B) A) with alternating
orientation

C) A) with horizontal /vertical
coefficients averaged

D) Racetrack contour without
extra long-range terms

E) D) with 4 x 4 square in the
middle included

F) E) with 20-site outer ring

G) Like D) but with four
states instead of two kept in
each five-site strip

H) Cross contour with 20-site
cross in the middle

I) Coeflicients from F)
and H) averaged at the end
of each iteration

-0.6679 (+0.22%)

-0.6677 (+0.25%)

-0.6729 (-0.52%)

-0.6658 (+0.54%
-0.6646 (+0.72%)

-0.6669 (+0.37%)

-0.6718 (-0.36%)

-0.6668 (+0.39%)

the four-site interaction in the middle, and this does not
have to be calculated because the four sites in the middle
have been kept free.

Blocking scheme E) takes this further by adding the
operator corresponding to the 16 sites in the middle. To
make sure we are only adding connected operators, we
have to calculate embedded sub-blocks, such as the 2 x 4
rectangle, etc. Blocking scheme F) includes yet another
term corresponding to the 20-site outer ring. Note that
there are still many long-range operators that can be em-
bedded in the 36 sites under racetrack contour that we
have not included. For instance, we have not calculated
the 20-site ”T”-shaped term corresponding to two nine-
site blocks plus two other free-sites in the middle. How-
ever, it would seem that E) and F) already encodes most
of the interaction coupling the four nine-site blocks, and
this we know is important because the diagonal coupling
grows with renormalization.

As apparent from the energy density, our hope was not
borne out. The energy densities obtained from E) and
F) are even further from the exact value than the result
without bootstrap [2]. To see whether including more
states would help, we modify D) by increasing the num-
ber of states in five-site strips from two to four (i.e. two
spin-3 multiplets). This is blocking scheme G), and while
it improves the accuracy, it is only about as good as the
non-bootstrap calculation. Switching from the racetrack
contour to the cross contour and including the 20-site for
the strips in the middle (shaded on the right of Figl[7)
gets us about the same level of accuracy. Finally, artifi-
cially averaging the coefficients from the racetrack con-
tours with those from the cross contours does not help
either.

This experiment appears to teach us two things. First,
we see that the numbers roughly bracket the exact value,
so just as in Figl2 this indicates that a good approxi-
mation of the four-block plaquette should yield a very
good energy density. On the other hand we learn that
a complex blocking scheme is prone to over-emphasizing
certain interactions, and that adding longer-range opera-
tors in such situation does not necessarily lead to better
accuracy. In absence of something resembling the diam-
eter expansion rule |2](which only makes sense in large,
uniform lattices), it is not clear what operators we should
calculate to get improvements.

D. The ”8+1” Blocking Scheme

With the lessons of our previous attempts in mind,
we now present a blocking scheme that produces much
better accuracy. We saw that the whole blocks in Section
[[TA] gave reasonably good results and did not assume
arbitrary structures. The problem there was that the
four-site operator in the middle, which would be present
after the first iteration or in a frustrated model, cannot
be handled in a simple, natural manner. The minimal
way to deal with this is to break the nine sites into 8+1
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FIG. 8: The ”8+1” blocking scheme. One site out of each
nine-site block is left free, enabling the interaction on the
four sites in the middle to be included naturally.

sites, leaving the corner site towards the middle of the
four blocks free. This is shown in Fig[8l

To mimic the 14-state whole block calculation, we keep
all the multiplets that can be fit within the lowest eight
states in the L-shaped eight sites. This turns out to be
seven states in the first iteration, so together with the free
site we would have 14 states per nine-site block. This
simple scheme yields a remarkable value, —0.66927 as
energy density, which is +0.03% from the exact value.
With this encouraging result, we are ready to see what
happens in the more complicated J; — J2 model.

II1. THE J, — J; MODEL

As we have seen, CORE’s way of exhibiting the long-
range Néel order of the HAF, is that RG with bootstrap
always generates strong diagonal couplings; i.e., in all the
blocking schemes Cpyzy/(Crz + 2Czzun) flows to a large
negative number. This raises the question of what hap-
pens if we add a large positive czyzy at the initial step.
This, of course, brings us to the well known frustrated
J1 — Jo model:

H=51Y §8+5h> 58 (4)

nn diag

where the first sum is over nearest-neighbors and the
second sum is over diagonal sites. This corresponds to
{Cmm = lecmuzu = JQ/lecmmuu = Cxzaxz = Cxxzz =
0}. The J — J; model has been extensively studied in
the condensed-matter literature (|4, |5, 16] and references
therein) and it is generally believed that there are sev-
eral phase transitions within the region 0 < Jy/J; < 1.
Ref.|4] for example lists four conjectured critical points
at Jo/J; = 0.34,0.38,0.5,0.62. In this work the ground
state transitions from the Néel phase to various dimerized
configurations with increasing frustration .

Past works on this subject typically rely on two types
of techniques. One is to use perturbative methods around

FIG. 9:

Renormalization group flow generated by
78417 bootstrap CORE for weak frustration Jo/Ji =
{0.2,0.3,0.35,0.371,0.372,0.373, 0.374, 0.375, 0.39, 0.4, 0.45 }.
All the couplings above are implicitly divided by
(czz + 2Czauu), so that the overall scale does not affect
our analysis of phases. We run the system starting from
several values of cyyzw from 0.2 to 0.45; each arrow on the
lines indicate a CORE iteration, their size indicates amount
of change in each step. To avoid cluttering, this region in
parameter space has been selected to give a clear picture of
the quantum phase transition.

some conjectured starting configurations; the other is to
perform calculations on finite lattices with some numer-
ical methods and extrapolate to an infinite lattice. The
bootstrap CORE is therefore a very different method and
may provide independent checks on past results. Since
we have an RG flow picture that describes the Néel phase
at Jo/J1 = 0, we would expect to find at least one critical
point where this picture begins to change.

In what follows, using the ”8+1” bootstrap scheme,
we compute the renormalization flow for J2/J; < 0.5, as
shown in Figldl For Jo/J; < 0.371, the system flows to-
wards the unfrustrated case, whereas Jo/J; > 0.372, the
frustration grows. The qualitative feature of the entire
region can be seen quite clearly from the plot. To our
knowledge this is the first time such a renormalization
group result has been obtained directly from first prin-
ciples for the J; — J; model. In Ref.|4], Jo/J1 = 0.34
is thought to be the point where columnar spin dimers
begin to appear. Another critical point at Jy/J; = 0.38,
which is more established, is thought to be where the sys-
tem becomes a disordered spin-liquid. In between these
two values is a region where columnar dimer order and
Néel order coexist. The critical point we see in Fig[
appears to be in agreement with literature.

Things do not go as well for Jo/J; > 0.5. As the
frustration increases, there is more competition among
states and the gaps decrease and the gap between the
lowest spin—% and other excited states in the nine-site
block become very small. In fact, after one iteration with
Jo/J1 = 059 or Jo/J; = 0.75, we arrive at a system

where the nine-site block no longer has a spin—% as its



FIG. 10: Renormalization group flow starting with strong
frustrations. The gap between the lowest spin—% and other
states in the nine-site block is often small or even negative
in much of this region, so our algorithm may not be reliable
here. No clear pattern emerges compared to Fig[d and there
are many large erratic jumps from strong to weak frustration

region.

ground state, and so the truncation scheme we are using
should change. If we don’t do this then we see that,
starting with Jo/J; > 0.372, the frustration eventually
grows to a point where the CORE recipe breaks down.
Fig[IQl shows this happening to the flow of couplings at
Jo/J1 > 0.5.

While the first iteration always takes us to higher
frustration for 0.372 < Jo/J; <~ 0.9, the flow is
quite erratic in the strong frustration region. This pre-
sumably occurs because we fail to modify our trun-
cation procedure as needed. Another curious behav-
ior that is probably also due to our failure to follow
the true ground state, is that there is a neighborhood
around Czyuzu ~ 1 where the flow takes us back to
weakly frustrated regions. For example, if we start
with {Cruzu, Coxzz, Cozaz} = {1.085,—0.064, —0.223}, we
would be taken to {0.318, —0.021, —0.086} at the next it-
eration, and small changes at the beginning lead to very
different couplings later on. To give an idea how seri-
ous the gap issue is, we plot in Fig[I] the size of the
first excited state gap in the nine-site block as a func-
tion of cpugu/(Coz + 2Cazun)s Cozaz/(Caz + 2Cozun) With
Coz = 1, Copuu = —0.2, Cpzrr = 0. All of these results are
consistent with what has been seen in one-dimensional
examples when one fails to modify the space of retained
states as needed whenever level crossings occur.

Compared to the couplings, we see that, because it is
largely determined by the first two iterations, the energy
density is a little less sensitive to the small gaps. An
plot of the energy density with respect to J/J; is shown

Gap size

FIG. 11: Plot of the gap between the lowest spin-% multiplet
and the first excited states in the nine-site block in a typical
frustrated region. The couplings are implicitly in units of
(Caz + 2Czzun), With czz = 1, Czzuu = —0.2, Czez> = 0. The
gap is set to zero when the spin-% multiplet ceases to be the
ground states.

in Fig[l2l This can be contrasted with Fig.5 of Ref.|7],
where a qualitatively similar plot is obtained from finite
lattice extrapolation. Instead of a peak and discontinuity
at Jy/J; ~ 0.6, we find a peak around 0.53. No partic-
ular structure is found near Jy/J; ~ 0.6, but the slope
appears to be the steepest there. It is possible that these
features are indirect signs of conjectured phase transi-
tions at Ja/J; = 0.5,0.6 (similar features are found in
finite lattice entropy plots [6]), but we would have to
run magnetization and other specific operators such as
columnar dimers [4] to characterize the phases in detail.

IV. PERFORMANCE OF OTHER VARIANTS

In conclusion, we would say that our bootstrap algo-
rithm appears to be a promising was of increasing the ac-
curacy of CORE computations. However, we don’t have
a general prescription for estimating the number of states
to keep in the buffering step. Moreover, we haven’t yet
tried to do the more difficult questions of how to handle
the truncation scheme when we flow to points where level
crossings occur.

The issue of strong frustration aside, there are other
questions which need more study. How robust are our
results? What specific features in the blocking scheme
work best? How do we characterize the different phases
believed to exist in the o — J; model, if the flow of the
coefficients in the Hamiltonian fail to clearly distinguish
them? In this section we will discuss some preliminary
results on variants of the algorithm and the puzzles they
pose.
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FIG. 12: Energy density as a function of frustration in the
J1 — J2 model. The slope appears to be the steepest around
0.6. The last data point at 0.75 should be lower than it ap-
pears since we have to stop after one iteration.

A. Use of Reduced Density Matrix

Under the 8 + 1 bootstrap scheme the retained states
on the eight sites are chosen according to their energies.
One might question the arbitrariness of favoring this ir-
regular eight-site configuration. The reduced density ma-
trix technique discussed in Ref.[2] would be useful here,
because it would allow us to impose less arbitrary struc-
ture by, for example, considering only the lowest states
in nine-site block, taking their combined reduced density
matrix on the eight sites and selecting the states with the
most weight.

To do so, however, we would have to decide on how
many states in the nine sites to include in the calculation
of the reduced density matrix. Furthermore we would
have to enforce spin symmetry in the retained states very
carefully. Since we would like to have a simpler test of
the idea, we choose to target instead the ground state
of a 16-site square, a spin-0 state, and use its reduced
density matrix on the eight sites to choose our retained
states. In other words, let |¢)) be the ground state of a
16-site square and imagine a nine-site square embedded
in the 16 sites. If we subtract away the eight sites in the
8 + 1 configuration from the 16 sites, we would be left
with eight ”environment” sites, which we denote as E.
The reduced density matrix we are interested is:

p="Trg |¢) (Y| ()

Approximately seven eigenstates of p (depending on the
multiplet structure) with the largest eigenvalues would
be chosen as the retained states. With this particular
choice, the 8 + 1 bootstrap CORE for the unfrustrated
HAF gives us an energy density of -0.66962, —0.03% from
the exact value and is as good as our original recipe.

Unfortunately, this algorithm does not seem to per-
form as well in identifying phase transitions in the jo —J1
model. In Ref. [2] we have seen that targeting the su-
perblock ground state could lead to improved ground
state energy at the expense of accuracy in excited states.
Here, for presumably a related reason, we observe a sub-
tly altered RG flow. For relatively weak frustration, say,
Ja/J1 = 0.3, we see an initial flow to the left of Figld
i.e. the less frustrated region. Yet as we enter the far
front left region (negative cyyqzy, and negative ¢yy,»), the
renormalization turns around and changes direction to-
ward strong frustration on the right.

It is still possible, of course, that the situation would
improve if we targeted more states instead of the single
ground state. In fact, this technique could be important
to not just the choice of states for the bootstrap step, but
also for the choice of final retained states in the nine-site
block. We have seen in Fig[TTlthat the lowest spin—% may
not sufficiently capture the low energy spectrum under
strong frusltration. If we would like to continue to work

with spin-3, the reduced density matrix approach may

be the only option.

B. Resummation

There is another degree of freedom in the procedure
that affects the choice of retained states, and that is how
we decide which part of the Hamiltonian belongs to a
given set of sites. Suppose we want to include all the
operators that act on two bodies A and B, and we know
there is an operator O4 that acts on four bodies A, B, C
and D. For any operator Oy that acts on A and B, we
can always decompose Oy into (O4 — O3) + O2. Hence it
should be equally valid to say that we have an operator
O4 — O acting on the four bodies, and an operator Og
that acts on A and B. But Os can be anything, so what
should we choose it to be?

In our case, the question is whether we should set
Cox — Czpz + 2Cezuu, Cozuu — 0, .. consider the cpzyqy
term as a truly two body term instead of part of a four
body term. This would seem like a very natural thing
to do, but it would dramatically change the cluster ex-
pansion. Running 8 + 1 bootstrap CORE with this re-
summation yields —0.66957 for the HAF energy density,
and the growing ferromagnetic diagonal couplings come
out as well. However, the behavior of couplings in the
J1 — J3 model turns out to be very different. This time,
instead of running toward strong frustration too early,
the system runs to Néel for relatively large Jo/J;. The
critical point shifts to above 0.4. This change may not
seem surprising if we note that applying resummation to
the five-site blocks in Ref.[2] also obliterates the grow-
ing spin picture there. The problem is how we should
interpret the effects of resummation.

Mathematically the issue of grouping terms in the
Hamiltonian is hardly different from the issue of selecting
a blocking scheme, which strongly affects the resulting



qualitative picture in CORE. One possible explanation
for the effect of resummation is that the original group-
ing contains some structural information of the model
in large scale, such as what counts as self-interactions
within a group of blocks and what counts as long-range
interactions. Since we would like to study the flow of
parameters in the same parameter space, it may be more
consistent to preserve this information. Under this inter-
pretation, resummation can yield very accurate energies,
but we may lose control on the qualitative picture as a
result.

V. FURTHER DISCUSSION

We have shown that it is possible to approximate long-
range terms in CORE using a bootstrap approach and a
relatively small number of additional states. In particu-
lar, we have obtained some remarkable renormalization
flows that illuminate the phases of a 2-D antiferromagnet.
However, an equally important lesson that can be drawn

from our results is that CORE is sensitive to blocking
and truncation schemes. This suggests that the method
itself needs further study. Moreover, it is clear that one
should be careful about drawing any strong conclusions
about specific applications without checking that the im-
portant results one arrives at are common to several dif-
ferent schemes.

For future directions, our work should be immediately
extended in two ways. The first is to investigate the
effect of using reduced density matrix truncation with
different target states at both stages of the bootstrap
approximation. This has the prospect of resolving sym-
metry problems and allowing us to smoothly transition
between truncation schemes when level crossings occur.
This would be particularly important in extending our
results to the highly frustrated case. Second, of course,
is that we have not attempted to study how the expec-
tation values of various relevant operators change in the
Jo — J1 model with increasing frustration. Such informa-
tion is crucial to shedding more light on the structure of
the phases.

[1] C.J. Morningstar and M. Weinstein, Phys. Rev. Lett. 73,
1873 (1994); C.J. Morningstar and M. Weinstein, Phys.
Rev. D54, 4131 (1996).

[2] M.S. Siu and M. Weinstein, Phys. Rev. B 75, 184403
(2007).

[3] A.W. Sandvik, Phys. Rev. B56 11678 (1997).

[4] O.P. Sushkov, J. Oitmaa, and Zheng Weihong, Phys. Rev.
B 63, 104420 (2001).

[5] H.J. Schulz, T.A.L. Ziman and D. Poilblanc, J. Physique I,
6, 675 (1996); R.R.P. Singh, Zheng Weihong, C.J. Hamer
and J. Oitmaa, Phys. Rev. B 60, 7278 - 7283 (1999); V.

N. Kotov, J. Oitmaa, O. P. Sushkov, and Zheng Weihong,
Phys. Rev. B 60, 14613 - 14616 (1999); G Misguich, C
Lhuillier, M Mambrini, P Sindzingre, Eur. Phys. J. B
26, 167V183 (2002); P Sindzingre, C Lhuillier, JB Fouet,
”Quantum phases in two-dimensional frustrated spin-1/2
antiferromagnets”, larXiv:cond-mat /0110283.

[6] Y. Chen, Z.D. Wang, F.C. Zhang, Phys. Rev. B 73, 224414
(2006).

[7] M.S.L. du Croo de Jongh, J.M.J. van Leeuwen, and W.
van Saarloos, Phys. Rev. B 62, 14844 (2000).


http://arxiv.org/abs/cond-mat/0110283

