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Accurate measurement of the beam phase-space is essential for the next generation of electron
accelerators. A scheme for beam optics optimisation and beam matrix reconstruction algorithms
for the diagnostics section of the beam delivery system of the International Linear Collider based on
laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system
together with their corresponding performance are presented. Based on these results, prospects for
reconstructing the ILC beam emittance from representative laser-wire beam size measurements are
evaluated.

I. INTRODUCTION

Future electron machines will need accurate determi-
nation and monitoring of their transverse phase space
in order to meet their challenging performance specifica-
tions. In this paper, prospects for the transverse emit-
tance measurements at the International Linear Collider
(ILC) are presented, with special emphasis on the beam
delivery system (BDS).

The main parameters of the ILC [1], [2] are presented
in Tab. I

TABLE I: Nominal ILC Parameters

Beam energy E 250(500) GeV

Normalised horizontal emittance γεx 10−5 m rad

Normalised vertical emittance γεy 4 · 10−8 m rad

Train repetition rate f 5 Hz

Number of bunches per train Ntrain 2625

Inter-bunch spacing 369 ns

Bunch length Lb 300 µm

Number of electrons per bunch Ne 2 ×1010

The ILC luminosity L is given by [3]

L =
NtrainN

2
e f

4πσ∗
eyσ

∗
ex

×HD (1)

where the asterix denotes the value at the e+e− interac-
tion point (IP). HD is the disruption parameter due to
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the mutual attraction of electrons and positrons in the
collision and has value HD ' 2. Although the beam
sizes at the IP depend strongly on the aberrations in the
final focus system, accurate measurement of beam pa-
rameters upstream of the final focus is required to tune
the main linac performance. The information about the
transverse beam phase space is gained by putting beam
profile scanners at several locations along the beam-line.
The vertical beam sizes in the diagnostics section of the
beam delivery system of the ILC are of order of 1µm
which is too small to measure with a solid wire, so the
transverse beam profile measurements will be performed
by the laser-wire (LW) system [4],[5]. A similar situation
applies to portions of the RTML (ring-to-main-linac) and
the main linac sections of the ILC.

In contrast to a ring machine, where an individual
bunch can be measured many times as it passes around
the ring, the emittance measurement in the ILC BDS
will need to be performed on a single pass basis. This
will require laser-wire scans that sample across succes-
sive bunches within a train, necessarily involving both a
projection of any bunch position jitter and an averaging
over successive bunches. The analysis described below of
the extraction of the emittance from the bunch dimen-
sion measurements applies equally to circular and linear
machines, although additional allowances for variations
between ILC trains may also be necessary, for instance
when performing quadrupole scans or measurements of
linear dispersion. Throughout this paper, the electron
bunch is assumed to be pure Gaussian; an extension of
the analysis presented here to more realistic post-linac
ILC bunch profiles will be included in a future publica-
tion.

In section II the beam matrix reconstruction using a
series of beam profile monitors is described. This sec-
tion deals mostly with an analysis of how the emittance
measurement error depends on the precision of the beam
profile measurement. The general ideas behind the beam
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matrix reconstruction method described here are well
known ( see e.g. [6], [7], [8], [9] ). After presenting
the framework we discuss numerical algorithms for ma-
trix reconstruction and introduce a numerical criterion
allowing beam optics optimisation. Simulations of emit-
tance reconstruction using ILC parameters are presented.
The methods described in this section are independent of
the type of the beam profile monitor or beam sizes.

In section III the laser-wire (LW) beam profile monitor
is introduced and its use in the measurement of trans-
verse beam profiles is described. The LW is useful as
a non-invasive device to measure electron beam profiles
ranging from a few tens of microns down to the micron
scale. Issues of Gaussian beam optics that influence the
measurement are discussed and quantitative results pre-
sented. We conclude by quoting the requirements on the
laser-wire system, plus associated laser specifications nec-
essary to achieve the desired emittance measurement pre-
cision of a few percent.

Laser-wire specifications are given for the beam sizes
relevant to the 500 GeV beam (1 TeV centre of mass)
machine upgrade, which is more challenging because the
bunches are smaller. Other issues such as beam matrix
reconstruction methods are independent of the beam en-
ergy and the results shown are normally for the 250 GeV
beam.

II. BEAM MATRIX RECONSTRUCTION

In this section we first describe the standard approach
to reconstructing the 4d coupled beam matrix with the
least-squares fit method [6]. In the presence of coupling
the emittance reconstruction precision falls dramatically
with the beam size measurement error. The Cholesky
decomposition method is analysed as an option to reduce
this effect.

We further introduce a criterion which allows numeri-
cal optimisation of beam-line lattice parameters to min-
imise the error of the emittance measurement. The con-
tributions to the beam profile scan from effects such as
beam jitter is discussed towards the end of the section.
The described methods were used to simulate the emit-
tance reconstruction process with the ILC lattice and
with the beam size measurement precision predicted in
section III.

A. Beam matrix reconstruction from measured

beam sizes

One is generally interested in reconstructing the
(x, x′, y, y′, ∆p

p ,∆t) beam phase space. To the first or-

der it is given by correlations like 〈xx′〉,
〈

x∆p
p

〉

etc. The

transverse coordinates r can be represented as the sum
of the betatron oscillations rβ and dispersive trajectory

η∆p
p

r = (x, x′, y, y′), rβ = (xβ , x
′
β , yβ, y

′
β)

r = rβ + η
∆p

p

where the dispersion vector is

η = (ηx, η
′
x, ηy , η

′
y) .

Ideally dispersion should be zero in the diagnostics
section. But in reality some residual dispersion can be
present. The dispersion at the beginning of the transfer
line is defined as [10]

η0 =

〈

r
∆p

p

〉

/δ2E .

where δ2E =

〈

(

∆p
p

)2
〉

is the RMS momentum spread.

The transverse beam envelope matrix is then defined as

σ =
〈

rrT
〉

=

〈

(

rβ + η
∆p

p

)(

rβ + η
∆p

p

)T
〉

or

σ =











〈

x2
〉

〈xx′〉 〈xy〉 〈xy′〉
〈xx′〉

〈

x′2
〉

〈x′y〉 〈x′y′〉
〈xy〉 〈x′y〉

〈

y2
〉

〈yy′〉
〈xy′〉 〈x′y′〉 〈yy′〉

〈

y′2
〉











The equations for dispersion and betatron coordinates
are [10]

r′′β +K(s)rβ = 0

η′′ +K(s)η =
1

ρ

where 1/ρ is the orbit curvature. We assume that in the
diagnostics section the beam orbit is first aligned suffi-
ciently close to the magnet axis so that the additional
dispersion created there can be neglected. Then one can
write down the coordinates at each scanner location i in
terms of transfer matrices [11] as

rβ,i = Rirβ,0

ηi = Riη0

and thus

ri = Ri

(

rβ,0 + η0
∆p

p

)

= Rir0
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σi = Riσ0R
T
i . (2)

This definition of the beam matrix already includes
effects of the dispersion.

The phase-space occupied by a ( generally coupled )
beam can be quantified by the intrinsic emittances ε1,2

[12]. They are recovered from the beam matrix con-
structed from the betatron coordinates only by bringing
it to a diagonal form:

σβ =
〈

rβr
T
β

〉

σβ = Qσ̄βQ
T σ̄β =











ε1 0 0 0

0 ε1 0 0

0 0 ε2 0

0 0 0 ε2











.

In what follows, “vertical” emittance usually denotes
the smaller of the intrinsic emittances. The projected
(vertical) emittance is defined as

ε2y = det

[

〈

y2
〉

〈yy′〉
〈yy′〉

〈

y′2
〉

]

It will coincide with the intrinsic emittance if the beam
is uncoupled but will be larger if the coupling is present.
We can rewrite the beam matrix as

σ0 =











σ1 σ2 σ3 σ4

σ2 σ5 σ6 σ7

σ3 σ6 σ8 σ9

σ4 σ7 σ9 σ10











and we need at least ten measurements to accomplish the
task. At a scanner location in the beam-line it is possible
to measure three values,

〈

x2
〉

,
〈

y2
〉

and 〈xy〉, with the
help of a horizontal, a vertical, and a tilted wire scanner.
The ten values can be obtained either by changing the
optics in a controlled manner at the wire location [8],
[6],[7] or by locating the wires at different positions in
the beam-line. For the ILC one aims at fast intra-train
scanning for which the former method is not possible.

The elements of the beam matrix can be obtained an-
alytically when the coupling elements are neglected and

the total number of wire scanners is six (three for each
plane, two scanners at each location) that are suitably
spaced in the betatron phase [9]. For more general cases
it is however convenient to have a numerical procedure
for the beam matrix reconstruction, which will be now
described. Let the measured values of

〈

x2
〉

,
〈

y2
〉

and
〈xy〉 be

σ̂i
1 σ̂i

8 σ̂i
3

with i = 1 : Nscanners. Let σk be the elements of the beam
matrix at the location where the beam transfer matrices
R are evaluated from. Assuming that the transport ma-
trices are uncoupled in the diagnostics section (coupling
introduced by misalignment errors is neglected) one ob-
tains by equating coefficients in Eq.2

σ̂i
1 = R2

11,iσ1 + 2R11,iR12,iσ2 +R2
12,iσ5

σ̂i
8 = R2

33,iσ8 + 2R33,iR34,iσ9 +R2
34,iσ10

σ̂i
3 = R11,iR33,iσ3 +R11,iR34,iσ4 +R12,iR33,iσ6 +R12,iR34,iσ7

for i = 1 : Nscanners. Define:

MX =











R2
11,1 2R11,1R12,1 R2

12,1

R2
11,2 2R11,2R12,2 R2

12,2

R2
11,3 2R11,3R12,3 R2

12,3

· · · · · · · · ·











MY =











R2
33,1 2R33,1R34,1 R2

34,1

R2
33,2 2R33,2R34,2 R2

34,2

R2
33,3 2R33,3R34,3 R2

34,3

· · · · · · · · ·











MXY =











R11,1R33,1 R11,1R34,1 R12,1R33,1 R12,1R34,1

R11,2R33,2 R11,2R34,2 R12,2R33,2 R12,2R34,2

R11,3R33,3 R11,3R34,3 R12,3R33,3 R12,3R34,3

· · · · · · · · · · · ·











.

The problem then reduces to three uncoupled sets of
equations:

MX







σ1

σ2

σ5






=







σ̂1
1

σ̂2
1

· · ·






, MY







σ8

σ9

σ10






=







σ̂1
8

σ̂2
8

· · ·






, MXY











σ3

σ4

σ6

σ7











=







σ̂1
3

σ̂2
3

· · ·






(3)

and each set is solved separately by a least squares fit. This may lead to an unphysical result (a non-positive
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FIG. 1: Beam matrix rejection fraction vs. relative beam size
measurement error level for the 4d ILC emittance measure-
ment section with 6 scanners.

beam matrix) when the measurement is sufficiently noisy.
A typical dependency of the fraction of non-positive ma-
trices on the relative measurement error is shown in
Fig. 1. Here the 4d diagnostics section with 6 laser wire
stations and nominal ILC parameters were assumed. A
common relative measurement error is assumed for both
the horizontal and vertical dimensions, for reasons out-
lined below in Sec. II C 4.

A way to avoid non-positive beam matrices is to
search for the beam matrix as a Cholesky decomposi-
tion [13], [14]

σ0 = GGT

where G ∈ R
4×4 is lower (or upper) triangular with pos-

itive diagonal entries. From the point of view of nu-
merical errors the lower triangular representation should
be used when the horizontal emittance is smaller than
the vertical, and the upper in the opposite case. This
procedure introduces biasing to the emittance measure-
ment, however it seems to be advantageous when either
a small number of measurements is available or when a
larger measurement error results in a high rejection frac-
tion (fraction of non-positive matrices). In Figs. 2 and
3 examples of emittance fits using simulated beam size
measurement data in the 4d ILC emittance measurement
section are shown. A relative error of 35% was introduced
to the simulated data. Both methods yield a significantly
biased mean emittance. However, the Cholesky decom-
position method results in an increase of statistics (i.e.
physically meaningful fits) by a factor of three.

When large statistics are available the straightforward
method performs satisfactorily. For the ILC one aims
at about 1-5% measurement errors within a bunch train.
In this range the choice of algorithm is not important
during stable operation, however the Cholesky decom-
position method will be helpful in certain cases, for in-
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FIG. 2: Example of a direct least squares emittance fit (35%
error level, 4d ILC optics). The true emittance is 0.079 µm ·
µrad .
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FIG. 3: Example of a least squares emittance fit with the
Cholesky decomposition (35% error level, 4d ILC optics). The
amount of statistics with the Cholesky method is about 3 times
larger. It is however more biased. The true emittance is 0.079
µm · µrad .

stance during the measurement tune-up when the errors
are large.

In the presence of coupling the intrinsic emittance is
smaller then the projected one. With measurement errors
the centre of the distribution of reconstructed intrinsic
emittances is shifted towards smaller values even if the
real beam is uncoupled [12] (also seen in Figs. 2 and
3). The distribution of projected emittances does not
shift, so care should be taken if the difference between the
projected and the intrinsic emittances is used to evaluate
the coupling correction.

When beam position measurements are available and
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it is possible to vary the beam energy the dispersion func-
tions can be measured at wire locations. Supposing the
measurement vector is {η̂i} the initial dispersion is re-
covered with a least squares fit from

MηX,ηY

[

ηX0,Y 0

η
′

X0,Y 0

]

= η̂i
X,Y

with

MηX =











R11,1 R12,1

R11,2 R12,3

R11,3 R12,4

· · · · · ·











MηY =











R33,1 R34,1

R33,2 R34,3

R33,3 R34,4

· · · · · ·











.

The dispersion model used here might not be adequate
since in reality the bunches coming from the linac might
have a complicated correlation pattern. Its correction in
combination with the emittance measurement is a sub-
ject of a separate work. So in what follows we will not
analyse the effect of dispersion apart from estimating its
influence on the beam profile measurement.

B. Beam optics for the diagnostics section

Concepts of optics for 2d and 4d diagnostics sections
were presented in [15]. For optimal performance the di-
agnostics section lattice should be designed so that the
beam sizes and aspect ratios at the wire location are op-
timal for scanning performance and that the solutions of
Eqs 3 are only weakly sensitive to perturbations of the
right hand side. For optics analysis it is convenient to ex-
press the R-matrices in terms of Twiss parameters [16].
In the uncoupled case

R =

[

R(x) 0

0 R(y)

]

where, assuming periodic optics,

R(x,y) =

[

cos∆µ+ α sin ∆µ β sin ∆µ

− (1+α2)
β sin ∆µ cos∆µ− α sin ∆µ

]

.

Assuming further that the wire locations are at the
maxima of the β-functions in order to optimise the spot-
size resolution, α vanishes and the matricesMX , MY and
MXY will have the form:

MX =











cos2 ∆µx,1 2βx cos∆µx,1 sin ∆µx,1 β2
x sin2 ∆µx,1

cos2 ∆µx,2 2βx cos∆µx,2 sin ∆µx,2 β2
x sin2 ∆µx,2

cos2 ∆µx,3 2βx cos∆µx,3 sin ∆µx,3 β2
x sin2 ∆µx,3

· · · · · · · · ·











MY =











cos2 ∆µy,1 2βy cos∆µy,1 sin∆µy,1 β2
y sin2 ∆µy,1

cos2 ∆µy,2 2βy cos∆µy,2 sin∆µy,2 β2
y sin2 ∆µy,2

cos2 ∆µy,3 2βy cos∆µy,3 sin∆µy,3 β2
y sin2 ∆µy,3

· · · · · · · · ·











and

MXY = {mij
XY } (4)

mi,1
XY =

1

2
(cos(∆µx − ∆µy) + cos(∆µx + ∆µy)) (5)

mi,2
XY =

βy

2
(sin(∆µx + ∆µy) − sin(∆µx − ∆µy))

mi,3
XY =

βy

2
(sin(∆µx + ∆µy) + sin(∆µx − ∆µy))

mi,4
XY =

βxβy

2
(cos(∆µx − ∆µy) − cos(∆µx + ∆µy)) .

One can choose the optimality criterion for the lattice
to be the condition numbers of the corresponding matri-
ces [13], [14]

κi = cond(Mi) = ||Mi||||M−1
i || .

Here the norm of a matrix M is defined as the maxi-
mum value of ||Mx|| over all vectors of unit lengths

||M || = max
||x||=1

||Mx|| .

The condition number is used to quantify the solution
error of a linear algebraic system [13], [14]. A small
condition number corresponds to well-conditioned sys-
tems while a large condition number corresponds to ill-
conditioned systems. This number is hard to evaluate
analytically but it can be evaluated numerically for any
optics design. Apart from the condition number one has
to make sure that both x and x′ make contributions of the
same order of magnitude to the measurements, i.e.(for 2d
case),

R11x ≈ R12x
′

or

β tan(µ)
x′

x
≈ 1 .

To achieve this one can introduce another optimality
criterion to minimise:

|β tan(µ)
x′

x
| + 1

|β tan(µ)x′

x |
→ min . (6)
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FIG. 4: Condition number of MX (or MY ) plotted against cell
phase advance for β-function 90m (solid line) 60m (dashed
line) and 40m (dotted line). 3 wire scanners.

For the full beam matrix reconstruction one needs to
have ten measurements including coupling terms. Beam
optics for such a measurement section should be designed
so that the condition numbers of MX , MY and MXY are
minimised simultaneously (so-called 4d optics). In many
cases one is interested only in correcting the coupling
terms rather than measuring them. To do so, a set of
skew quadrupoles is introduced upstream of the measure-
ment section. They are used to minimise the projected
emittances [12] and no direct measurement of the cou-
pling terms is necessary. In this case six measurements
are required and the condition numbers of only MX and
MY need to be minimised (so-called 2d optics).

1. 2d measurement section

For the diagnostic section lattice we choose a FODO
channel with a constant phase advance per cell ∆µ1 =
∆µ2 = ∆µ. Then κ will depend on two parameters: β
and ∆µ. In Fig. 4, 5 these dependencies are shown for
different numbers of measurement stations.

The condition number is infinite for 0◦ and 90◦ phase
advance (not seen in the picture). It has a minimum
close to 0◦ and a second minimum that depends on the
number of wire scanners used in the fit. This minimum
appears to be at ∆µ = 180◦/Nscanners (60◦ for 3 scan-
ners). Together with Eq. 6 (see also Fig. 6) this gives
180◦/Nscanners as the optimal phase advance in a FODO
cell. In Fig. 7 simulated emittance reconstruction error is
plotted against the cell phase advance which shows that
the error is indeed minimised by following the described
optimisation procedure.
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FIG. 5: Condition number of MX (or MY ) plotted against cell
phase advance for β-function 90m (solid line) 60m (dashed)
and 40m (dotted line). 5 wire scanners.
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FIG. 6: Value of (6) plotted against cell phase advance for
β-function 40m (solid line) 70m (dashed line).

2. 4d measurement section

For a 4d diagnostics section we can assume that the
lattice is constructed from identical cells of phase ad-
vances ∆µ1 and ∆µ2. The matrix M depends on 4 pa-
rameters β1,2 and ∆µ1,2. For different values of βx,y the
behaviour shows a similar pattern with the matrix being
singular for ∆µ1 = ∆µ2 and ∆µ1 = 180◦ − ∆µ2. Com-
bining the information on plots such as in Fig. 8 with
that in Figs. 4,5 one sees that there is no clear optimum
for this problem. However, for a good performance one
can choose, for instance, a phase advance in one plane of
60◦ and in the other plane a phase advance close to 90◦

(for 4 wire stations with 3 wires each).
The optics for the ILC diagnostics sections [15] de-

signed for 2d and 4d emittance measurements are shown
in Fig. 9. The 2d diagnostics section is sufficient for emit-
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FIG. 7: Simulated vertical emittance reconstruction error vs.
cell phase advance, 5 wire scanners, 5% error on beam size
measurement

tance tuning purposes and is shorter; it is thus currently
expected to be used at the ILC [1], [2].

C. Machine Contributions to the Transverse

Profile Scans

The imperfections in the linac will result in beam jitter,
residual dispersion, transverse beam coupling etc. [17],
[18]. These may also cause a deviation of the bunch from
the Gaussian shape. Estimates of these errors can par-
tially be subtracted from the beam size measurements.
Due to imperfections in the diagnostic section the trans-
fer matrices will also not be known precisely, which will
introduce additional errors into the reconstruction pro-
cedure; this effect is expected to be much smaller than
the others and is neglected in this paper.

Neglecting all but the dispersion and beam jitter con-
tributions, the value of σe extracted from the beam pro-
file scan is:

σe =
[

σ2
scan − (αJσe)

2 − (ηδE)2
]

1

2 (7)

where σscan is the laser-wire scan after deconvolution of
laser effects (discussed in Sec. III A 4) and αJ represents
the magnitude of the beam orbit jitter, as normalized by
the observed beam size, and will be detailed in the next
section.

When an effect contributes to the measurement error
δσe/σe, we define Eeffect as its contribution to the total
relative error, adding in quadrature as:

(

δσe

σe

)2

= E2
scan +E2

jitter +E2
η (8)
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(b) 6 measurement stations

FIG. 8: Contour plots of 2/(1 +κXY ) for MXY as a function
of cell phase advances for 4 wire stations and 6 wire stations
with βx,y = 40m/70m

where Escan is the contribution to the error from the
raw laser-wire scan; the contributions to this error are
discussed in Sec. III A 4. Ejitter is the error remaining
after subtracting the electron bunch-to-bunch jitter as
discussed in Sec. II C 1. The additional effects of any
residual dispersion, Eη , could in principle also be sub-
tracted explicitly; the error that remains after such a
subtraction is estimated below.

The significant machine-related errors are now dis-
cussed in turn.

1. Error Contribution from the Jitter of the Beam Location

In the following, the jitter of the location of the
bunches within the bunch train at the ILC laser-wire IP
locations can be written as σjitter = αJσe where σe is
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FIG. 9: β-functions for the ILC diagnostics section compris-
ing a 2d emittance measurement section; β-functions for the
4d emittance measurement section

the electron transverse bunch size. The value of αJ will
depend on the stability of the ILC site and on the ad-
ditional vibrations arising from beam-line components,
from energy and kicker jitter, and from the performance
of train-to-train and intra-train feedback. Preliminary
studies [19] suggest that values of αJ may end up rang-
ing from about 0.01 to about 0.7; in the following the re-
sulting error estimates are normalised relative to a value
αJ ' 0.25. The bunch-by-bunch jitter can be determined
by local BPMs to within their single-bunch resolution.
The performance of cavity BPMs is the subject of ongo-
ing R&D [20], which suggests that single-bunch resolu-
tions of order 20 nm should be obtainable.

The error contributionEjitter to δσe/σe remaining after

subtracting the bunch jitter is given by differentiating
Eq 7 to be

Ejitter = αJ 〈δαJ 〉 ' αJ
σBPM

σe

where 〈δαJ〉 is the precision to which the bunch jitter
is known; the last approximation assumes that the only
bunch jitter measurements are made at the LW location.
It is possible that more precise measurements could be
made using dedicated machine setups. This equation can
be written as

Ejitter = 5 × 10−3
( αJ

0.25

)( σBPM

20 nm

)

(

1 µm

σe

)

. (9)

2. Error Contribution from Residual Dispersion

If the effects of η and η′ are not subtracted at the
location of each LW IP, then the emittance will be over-
estimated. The error remaining after subtraction of
residual vertical dispersion, η, at the laser-wire IP is
again given by differentiation of Eq. 7 to be

Eη =

(

δE
σey

)2

η 〈δη〉 (10)

where 〈δη〉 is the precision to which η can be determined.
If Eη is not to dominate a 1% tranverse bunch size mea-
surement for a typical ILC beam then Eη should be less
than about 0.5%. If η is measured to 〈δη〉 /η ' 1%, say,
then for σey = 1 µm Eq. 10 implies that η must be kept
below about 0.5 mm.

A method that could potentially be used to determine
η more accurately than 1% is to change the mean en-
ergy of the electron beam by a relative amount ∆E/E (a
possible choice would be ∆E/E ' 5 × 10−3 so as to re-
main within the energy acceptance of the ILC BDS) and
measure any subsequent shift in position of the beam
centroid over the Ntrain bunches in a train. If the single-
bunch energy resolution of the ILC beam spectrometers
is σE , then:

〈δη〉2 =
1

Ntrain

[

(ησE)2 + σ2
BPM

(∆E/E)2

]

. (11)

With additional R&D, it should be possible to achieve
σBPM ' 20 nm and spectrometer resolution σE '
10−4 [21]. An alternative to explicit subtraction of the
dispersion effects is to include them implicitly in the
fits to the measured laser-wire distribution; this is the
method described above in Sec. II A.

3. Systematic beam size variations

In general position shifts of individual bunches within
a linear collider bunch train can have arbitrary patterns
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according to the errors of the injection kickers, or ef-
fects of the long-range transverse wakefield. Regardless
of the shape of the patterns, the individual relative bunch
displacements can be subtracted using bunch-by-bunch
BPM measurements and so such effects can be absorbed
into the treatment of beam position jitter discussed in
Sec. II C 1. Ideally the laser-wire fast scanning system
will be able to take account of these patterns (for in-
stance by learning the shape from previous trains) so as
to maintain an efficient scanning technique across the
length of a train.

One possible use of the laser-wire measurements will
be to predict the spot-size at the IP and thereby enable
a comparison with the spot-size inferred from luminos-
ity measurements via Eq. 7. Systematic variations of the
bunch transverse dimension along the train will lead to
a bias in such predictions. For example, a distortion of
the transverse dimension with maximum value ±strainσe,
which varies linearly along the train, will modify the ef-
fective transverse dimension that enters Eq. 1 by

〈

1

σe

〉

' 1

σ̄e

(

1 +
1

3
s2train

)

. (12)

In order to correct for such effects, a number of scans
will need to be made within a train, requiring ultra-fast
scanning methods. Ongoing R&D [22] is aiming at scan-
ning rates of several 10’s of kHz using electro-optic tech-

niques.

The influence of the beam jitter on the measurement
procedure depends strongly on the linac tuning procedure
and requires further studies.

4. Vertical-Horizontal Coupling

One can measure
〈

x2
〉

= σ2
x ,
〈

y2
〉

= σ2
y and extract

〈xy〉 from an additional measurement of the bunch along
the u-axis

〈

u2
〉

= σ2
u, which is defined to be at an angle

φ with respect to the x-axis, as shown in Fig. 10.

σ2
u = σ2

x cos2 φ+ σ2
y sin2 φ+ 2 〈xy〉 cosφ sinφ . (13)

When it comes to measurement of σu with a LW, it
will be necessary to take into account the size of the per-
pendicular dimension, because of Rayleigh-range effects
discussed below.

The coupling 〈xy〉 is:

〈xy〉 =
σ2

u

2 cosφ sinφ
− σ2

x cosφ

2 sinφ
−
σ2

y sinφ

2 cosφ
. (14)

The RMS error δ 〈xy〉 on the measurement of the cou-
pling term is then given by:

(δ 〈xy〉)2 =

(

σ2
u

cosφ sinφ

δσu

σu

)2

+

(

σ2
x cosφ

sinφ

δσx

σx

)2

+

(

σ2
y sinφ

cosφ

δσy

σy

)2

. (15)

By substituting Eq.13 into Eq. 15 and minimising with
respect to φ under the assumption that the relative errors
δσy/σy and δσx/σx are approximately equal, the optimal
value for φ is given by

φ0 = tan−1

(

σx

σy

)

. (16)

Substituting this value of φ into Eq. 15 and using the
approximation that 〈xy〉 is small gives the error on the
coupling term as:

δ 〈xy〉 = σyσx

[

4

(

δσu

σu

)2

+

(

δσx

σx

)2

+

(

δσy

σy

)2
]

1

2

.

(17)
Typical values of interest to the ILC BDS are presented

below in Tab. VI, where it can be seen that for the opti-
mal value of φ, σu ≈ σy . With this optimal u-wire angle,
the relative errors of the vertical and horizontal mea-
surements enter equally in the coupling term in Eq. 17.

This justifies the earlier simplification (Sec.II A), where
equal relative errors were assumed for all measurements
in the emittance reconstruction simulations. Also, since
σx > σy for the ILC, the error on the coupling given
by Eq. 17 will grow more rapidly than the error on the
vertical beam size as the relative measurement errors in-
crease. This explains the fact that the number of unphys-
ical beam matrices grows rapidly with the measurement
error, because the coupling terms quickly dominate over
those of the vertical part of the beam matrix.

III. THE LASER-WIRE IN BEAM EMITTANCE

MEASUREMENT

In this section the laser-wire (LW) beam profile mon-
itor is described and the possible precisions that can be
obtained from its use in transverse beam profile measure-
ments are quantified. Ideally the LW will be used at the
ILC to measure the electron transverse beam profile at
several locations within a bunch train (containing 2625
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FIG. 10: Bunch with horizontal-vertical coupling, such that its
major axis does not lie along the horizontal. In addition to
vertical and horizontal scans, a scan of the u-axis is necessary,
where u is at an angle φ to the vertical as shown.

bunches, Tab I), which will require high power lasers to
get sufficient statistics for each laser shot together with
ultra-fast laser scanning systems.

The LW is useful for beam profiles ranging from sev-
eral tens of microns, down to the micron scale. Smaller
beam profiles have been measured using laser interfero-
metric techniques [5, 23] whereas traditional solid wires
or screens can be used for larger profiles (although they
are disruptive to the electron beams). Very challenging,
low f-number, laser optics are necessary for the LW in
order to achieve the required small laser spot-sizes and
the subsequent performance is evaluated numerically and
described in Sec. III A 3. The laser systems necessary to
power the LW are also very challenging and the necessary
specifications are derived and discussed in Sec. III D 1.

A. The Laser-wire Beam Profile Monitor

Traditionally the transverse dimensions of an electron
beam have been measured by scanning a tungsten or car-
bon wire across the beam and measuring the resulting
backgrounds as a function of relative position of the wire.
This method has the disadvantage of being highly dis-
ruptive to the electron beam and so it cannot be used
during normal luminosity running. At the ILC, the elec-
tron beams in the BDS will have vertical transverse size
of order 1-few µm; a normal wire scanner would not be
able to measure beams of this size, nor would it be able
to withstand the energy depositions from such high in-

FIG. 11: Principle of operation of the laser-wire scanner with
the key dimensions labeled. The figure shows the laser con-
figured to scan the horizontal x-profile of the electron bunch
σex. xR is the “Rayleigh range” of the laser beam as defined
in Eq. 24; it gives the distance between the focus and the point
where the laser spot-size has diverged to

√
2 of its minimum

value.

tensities.

To solve these issues, the solid wire can be replaced
by a finely-focused beam of laser light; such a system is
called a laser-wire (LW). The Compton collisions between
laser photons and beam electrons are detected down-
stream and the Compton rate as a function of relative
positions of electron and laser beams provides the mea-
surement of the electron beam transverse profile. This
principle is illustrated in Fig. 11. Two distinct meth-
ods have been employed to date. Operating the laser in
continuous wave mode together with a Fabry-Perot cav-
ity to enhance the power has been used [24] at the ATF
at the KEK laboratory to measure the emittance of the
damping ring; this technique would also be applicable
to the ILC damping rings. In other parts of the ma-
chine, including the BDS, the beam is not circulating so
a single-pass method based on high power pulsed lasers
is required [25–27]. In the following discussion, the latter
technique is assumed.

1. Laser-wire Compton Rates

The Compton cross section decreases as the electron
beam energy increases. For an electron beam energy Eb

and laser photon energy k = hc
λ , the Compton cross sec-

tion is given by σC(ω) = σT f(ω) where σT is the Thom-

son cross section = 0.665×10−28m2, ω = kEb

m2
e
, and [5, 28]
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f(ω) =
3

4

{

1 + ω

ω3

[

2ω(1 + ω)

1 + 2ω
− ln(1 + 2ω)

]

+
ln(1 + 2ω)

2ω
− 1 + 3ω

(1 + 2ω)2

}

.

TABLE II: Values of f(ω) for various laser wavelengths λ and
ILC beam energies

λ(nm)

Eb(GeV) 1064 532 355 266

5 0.96 0.92 0.89 0.86

50 0.72 0.59 0.51 0.45

150 0.51 0.38 0.31 0.27

250 0.41 0.30 0.24 0.20

500 0.30 0.20 0.16 0.13

Values of f(ω) for laser wavelengths and beam energies
of typical interest at the ILC are presented in Table II.

In this section, the Compton rate for a set of laser-wire
operating conditions is derived as a function of relative
horizontal and vertical offsets, ∆x and ∆y respectively,
between the centroids of the electron bunch and laser
beam.

The numberN(∆x,∆y) of Compton photons produced
will be proportional to the relevant overlap integral,
ε(∆x,∆y). In Sec. A 1, ε(∆x,∆y) will be evaluated in
µm−1.

N(∆x,∆y) = N0ε(∆x,∆y)

where

N0 =
P`Neλf(ω)σT

hc2
, (18)

P` is the instantaneous laser power at the laser-electron
IP, andNe is the number of electrons in the bunch. If ηdet

is the detector efficiency then, using realistic numerical
values, the number of detected photons is Ndetε(∆x,∆y),
where

Ndet = 1212× ξ (19)

and

ξ =
ηdet

0.05

P`

10 MW

Ne

2 × 1010

λ

532 nm

f(ω)

0.2
µm . (20)

2. Conventions for laser-optics

In the following, the conventions used define z along
the electron beam direction, y along vertical and x along

the laser-beam direction. The light intensity of the laser
has the form

I`(x, y, z) =
I0

2πσ2
`

1

fR(x)
exp

[

− y2 + z2

2σ2
`fR(x)

]

(21)

fR(x) = 1 +

(

x

xR

)2

(22)

σ` = M2σ0 where σ0 = λf# (23)

xR = M2 4πσ2
0

λ
(24)

where λ is the laser wavelength andM 2 is a quality factor
for the laser, which effectively increases the wavelength
λ → M2λ compared to the diffraction limited case; an
ideal single-mode laser would have M 2 = 1. xR is the
Rayleigh range of the setup and f# is the f -number of
the optics, f# = D`/F , where D` is the diameter of the
lens and F is its focal length.

As in Ref. [29], 99% of energy in the Gaussian beam
profile is required to be contained within the lens aper-
ture. For the TM00 mode this requirement means:

0.99 =

∫ D/2

0

∫ 2π

0

rdrdφ
1

2πσ2
`

exp

[

− r2

2σ2
`

]

so D ' 2 × πσ` and hence

σ0|TM00
= λf# . (25)

In this case, the opening angle θ = 1/f# between the
centre of the diverging Gaussian beam and its e−2 inten-
sity cone is given by:

θ =
λ

πσ
=

1

f#

and so, for TM00 with f1 optics, σ0 = λ/π and θ = 1
rad, or 57◦.

3. Numerical Results

Results for the case of laser-M 2=1.3 and f1 final focus
optics are shown in Fig. 12 for an electron bunch trans-
verse Gaussian profiles with (a) σey = 1 µm, σex = 10 µm
and (b) σey = 1 µm, σex = 100 µm; the effect of the
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FIG. 12: Scan profile at the laser-wire IP for a laser with
M2=1.3 and wavelength 532 nm operating in the TM00 mode
and focused using f1 optics. The electron bunch is assumed to
have a Gaussian transverse profile. (a): σey = 1 µm, σex =
10 µm. (b): σey = 1 µm, σex = 100 µm

Rayleigh-range is very apparent for the larger aspect-
ratio.

Results for the case of operating the laser in TM01

mode with laser-M2=1.3 and f1 final focus optics are
shown in Fig. 13 for electron bunch transverse Gaussian
profiles with (a) σey = 1 µm, σex = 10 µm and (b)
σey = 5 µm, σex = 50 µm; the potential benefit of the
TM01 mode is apparent for the larger vertical spot-size.
The relative benefits of the TM00 and TM01 modes are
presented in Tab. III, where it can be seen that for σey >
1−2 µm there is a significant advantage for the statistical
power by using the TM01 mode; this advantage has been
demonstrated at the ATF [30]. However the sensitivity
to the laser properties (as parameterized by a simple M 2

in these calculations) is greater for the TM01 mode and,
for spot-sizes of order 1 µm, the relative statistical power
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FIG. 13: Scan profile at the laser-wire IP for a laser with
M2=1.3 and wavelength 532 nm operating in the TM01 mode
and focused using f1 optics. The electron bunch is assumed
to have a Gaussian profile. (a): σey = 1 µm, σex = 10 µm.
(b): σey = 5 µm, σex = 50 µm

of the TM01 to that of the TM00 mode decreases rapidly,
as illustrated in Fig 14. In this study, the laser-spot sizes
of order 1 µm are of particular importance for the BDS
LW system, so in the following the TM00 mode is used,
while acknowledging that higher-order laser modes may
be advantageous in other locations.

4. Error Contribution from the Laser-Wire Scan

In this section the various contributions to the relative
error Escan in Eq. 8 are outlined. If σscan is the electron
beam size after subtracting the laser effects discussed be-
low, then:
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TABLE III: Optimal f-numbers (for Estat) and correspond-
ing statistical precision for electron bunches with aspect ratio
σex/σey = 10, λ = 532 nm. The laser M2 = 1.3 for both
TM00 and TM01 modes. The minimum practical f-number
is taken as 1.0, even where a better statistical precision could
in principle be obtained by smaller f-numbers. The factor of
1.15 of Eq. A11 is included in the TM01 calculations. Also
shown is the error EM2 if there is a 5% error in the value of
the laser M2.

TM00 TM01

σey(µm) f# Estat% EM2% f# Estat% EM2%

1 1 4.28 2.48 1 3.40 4.54

2 1.46 4.27 1.31 1.61 2.18 2.74

3 2.01 4.53 1.11 2.35 1.73 2.45

4 2.30 4.72 0.81 3.13 1.48 2.32

5 2.45 4.96 0.59 3.91 1.32 2.23

6 2.68 5.38 0.49 4.69 1.21 2.18

7 2.94 5.64 0.43 5.48 1.11 2.14

8 3.14 5.89 0.38 6.30 1.04 2.14

9 3.29 6.13 0.33 7.11 0.98 2.13

10 3.41 6.37 0.29 7.91 0.93 2.12

Escan =

(

σscan

σe

)2
δσscan

σscan
(26)

σscan itself is obtained from subtracting the effects of the
laser pointing instability:

σscan =
[

σ2
fit − σ2

point

]
1

2 (27)

where σfit is the raw result of a fit to the laser-wire scan
profile, for which the errors are discussed in detail in
Sec. III B. σpoint is the contribution to the scan pro-
file from the RMS laser pointing angular fluctuations ψ`;
σpoint = Fψ`, where F is the focal length of the lens. As
discussed in Sec. III C 1 F ≥ 15 mm.

After subtracting σpoint as in Eq. 27 the error contri-
bution can thus be written as:

δσ2
scan

σ2
scan

= E2
fit +E2

point (28)

where

Efit =

(

σfit

σscan

)2
δσfit

σfit
(29)

and

Epoint =

(

Fψ

σscan

)2 〈δψ〉
ψ

(30)

where 〈δψ〉 is the resolution of the measurement of the
RMS pointing stability. Inserting the nominal practi-
cal values F = 15 mm, ψ = 10 µrad, µ = 1 µm, and
〈δψ〉 /ψ = 0.1 gives Epoint ' 2.24× 10−3.
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FIG. 14: Relative errors as a function of electron vertical
Gaussian spot-size, σey, for scans using a laser with nominal
M2 = 1.3, wavelength 532 nm, operating in the TM00 mode
(full lines) and TM01 mode (dashed lines). At each point, the
value of final focusing f# has been chosen to optimize the sta-
tistical error. (a): statistical error Estat. (b): relative change,
EM2 , in the extracted value of σey arising from a 5% error in
the value of the laser M2.

B. Laser-wire Performance

In this section the performance of the ILC laser-wire
systems will be examined in detail with a view to quan-
tifying the errors that contribute to δσfit of Eq. 29. The
contributions to the raw laser-wire scan can be broken
down as follows:

(

δσfit

σfit

)2

=
19

Nscan

(

Estat√
ξ

+Eξ

)2

+E2
M2 (31)

where Estat is the statistical error of a 19-point fit to the
raw scan curve (Sec. III C 1). In general,Nscan laser-shots
could be used in a variety of scanning modes. However,
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as set examples in this paper, all the scans consist of
Nscan = 19 equally spaced values of ∆y over a range
±7σm (as defined in Eq. A4), with ∆x = 0 and ξ = 1.0,
where ξ is as defined in Eq.20. Eξ is the error arising from
the shot-by-shot normalisation fluctuations as introduced
in Eq. 37.
EM2 is the error on the extraction of σe introduced by

the error on the laser light distribution at the IP; this
is characterized here by an error in the M 2 value of the
laser and, for a real system, will need to be calculated
including the effects of alignment errors etc. in the final-
focus optics. As illustrated in Sec. III C 1 EM2 can be
estimated by fitting the measured profile to σey assum-
ing a value of M2 that is wrong by a factor (1 + δM2).
In the following, the laser M2 is thus assumed to be de-
termined shot by shot to an accuracy of δM2 . Naively,
without allowing for Rayleigh range effects, the error on
the extracted value of σe from subtraction of the laser
spot-size is

δσe

σe
=
σ`

σ2
e

δσe '
(

λf#
σe

)2

M2δM2 (32)

Inserting the representative values of M 2 = 1.3 and
σe = 1 µm gives:

δσe

σe
= 1.08

[(

M2

1.3

)(

1 µm

σ

)(

λ

532 nm

)(

f#
1.5

)]2

δM2 .

(33)
A full numerical treatment, using the relations given

in Appendix A, is presented in Tables VIII- X and shows
that this is a good approximation for small δM2 ' 1%
but is a slight underestimate for larger values.

C. Statistical errors from the Laser-Wire Fits

1. Fits to TM00 Distributions

The overlap integrals necessary to calculate the num-
ber of LW Compton photons are presented in Ap-
pendix A. A numerical evaluation of Eq. A2 is now used
to simulate laser-wire scans for a variety of situations of
interest to the ILC.

Both Estat and EM2 will depend on the f -number of
the laser optics employed. This dependence is illustrated
in Fig. 15 for the case of σey = 1 µm and σex = 25 µm.
For each set of σex, σey, there is an optimal f -number
that gives the lowest statistical error for given values of ξ
and Nscan. However, as can be seen in Fig. 15, the min-
ima are often fairly shallow, which must be contrasted
with the difficulty of building low f -number optics. The
difficulty is not just in building low f -number alone, but
in producing a system that can maintain a small laser
spot size approximately ±10 σ` off axis, as needed dur-
ing a scan. For this reason, f -numbers less than 1 are not
considered here. In addition to determining the optimal
f -number for various electron transverse dimensions, the
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FIG. 15: (a): Statistical error Estat, (b): laser error EM2

for ξ = 1 (Eq. 20) using Nscan = 19 scan points versus the f-
number of the final focus lens, using a laser with M 2=1.3 and
operating in the TM00 mode with λ = 532 nm. The electron
bunch is assumed to have a Gaussian transverse profile with
σey = 1 µm and σex = 25 µm.

nominal errors Estat and EM2 are also determined here
for f1.5 optics, because this is a likely technological goal
for a system that will produce a small spot-size both on
the optical axis and over an acceptable scan range of or-
der 1 mrad.

The beam-pipe in the ILC BDS has inner radius of
12 mm and outer radius of approximately 14 mm. In
order to ensure sufficient clearance from the beam halo,
the minimum focal length is taken here to be Fmin =
15 mm. Imposing the requirement of being able to scan
±7 σm, then the scanning system must be able to scan a
range

θscan ≥ 7σm

Fmin
. (34)
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Imposing this condition on the most challenging small
spot-size of σey = 1 µm, σ` = 1 µm (assuming M2 =
1.3) and so σm ' 1.4 µm gives θscan ≥ 0.7 mrad. The
maximum scanning rate will depend on the scan range
required so, with this in mind, the scan range should be
kept as small as practical. In the following the condition

θmax
scan ' 1 mrad . (35)

is therefore adopted. For larger spot-sizes and for the
horizontal (or skew-angle) scans of the electron bunch,
the suitable f -number is determined primarily by the an-
gular scan-range of the final focus lens plus scanning sys-
tem. The laser optics for these dimensions will probably
use diameter D = 5 cm optics (or similar). In this case,
assuming again a scan range of 7σm the practical f# is
given by

f# = 1.4

(

σm

10 µm

)(

5 cm

D

)(

1 mrad

θmax
scan

)

. (36)

The errors obtained from a laser-wire scan using an
f# given by Eq. 36 for the horizontal dimension σex are
given in Tab. XI. In practice, for very large scan ranges,
it may be preferable to use a stepping-motor system to
move the final focus lens as opposed to scanning using
optical ray deflection, which would enable smaller f#s to
be employed. In that case, the scan would have to be
very slow compared to the machine repetition rate.

2. Normalisation Fluctuations

The error on the normalisation factor ξ is given by:

δξ

ξ
=

[

(

δP`

P`

)2

+

(

δNe

Ne

)2

+

[

δξ

ξ

]2

T

]
1

2

(37)

where δP` is the resolution of the measured laser power,
δNe is the bunch charge measurement resolution, and the
final term is the contribution from time jitter (or phase
error) between the laser and electron beams.

The laser power can be measured bunch-by-bunch by a
fast photo-diode presumably to a level of order 10−2 and
the bunch charge to a similar level by using dedicated
current monitors or by combining measurements from a
set of BPMs.

The contribution from time jitter is now addressed.
As indicated in Tab. I, the ILC bunch train consists of
Ntrain = 2625 bunches with repetition frequency frep =
5 Hz. Each bunch has length Lb = 300 µm with cor-
responding bunch Gaussian time width of Tb = Lb/c =
1 ps.

If T` is the laser pulse length and τ` is the RMS time
jitter between the laser and electron pulses then the RMS
contribution of this temporal fluctuation to the relative
value of the overlap integral of Gaussian laser and elec-
tron profiles is given by:

TABLE IV: The factor aξ defined in Eq. 41 for a set of elec-
tron beam sizes of interest at the ILC. Laser wavelength =
532 nm, M2 = 1.3, f-num = 1.5

σey σex/σey

(µm) 1 2 5 10 15 20 25

1 0.05 0.05 0.06 0.13 0.27 0.43 0.60

2 0.03 0.03 0.04 0.12 0.25 0.38 0.50

3 0.03 0.03 0.04 0.12 0.24 0.36 0.48

4 0.03 0.03 0.04 0.12 0.24 0.36 0.47

5 0.03 0.03 0.04 0.12 0.24 0.35 0.47

[

δξ

ξ

]

T

=
1√
2

τ2
`

T 2
` + T 2

b

(38)

or after including typical ILC values:

[

δξ

ξ

]

T

= 1.80×10−2

(

τ`
0.3 ps

)2
[

(

T`

2 ps

)2

+

(

Tb

1 ps

)2
]−1

.

(39)
The number of Compton photons (Eq. 18) produced by

each laser-shot is proportional to the instantaneous value
of ξ and so any shot-by-shot ξ-fluctuations will contribute
to the error on the fit to the raw LW scan, as given by

∆N =

[

N

(

1 +
〈δξ〉
ξ
N

)]
1

2

. (40)

Performing the fit with this additional error factor en-
ables its contribution to the total error (Eq. 31) to be
determined according to:

Eξ = aξ
〈δξ〉
ξ

(41)

where values of the coefficient aξ are given in Tab IV for a
range of electron-bunch vertical spot-sizes and aspect ra-
tios σex/σey . Combining all the terms, the normalisation
error as given by Eq. 41 and Eq.37 becomes:

Eξ ' 2.3× 10−2aξ . (42)

3. Alternative Scanning Mode

An alternative laser-wire scanning mode can be con-
sidered where the laser is kept fixed in space relative to
the centre of an accurate BPM. The relative offset ∆y

between the laser and the electron bunch can then be
measured by the BPM on a bunch-by-bunch basis to an
accuracy given by the BPM resolution σBPM.



16

If the bunch charge Ne and laser power P` are also
measured on a bunch-by-bunch basis, then the factor ξ
defined in Eq. 20 is known to an accuracy given by Eq. 37.
If it is assumed that the electron transverse charge distri-
bution is a pure Gaussian, then Eq. A2 can be inverted
bunch-by-bunch.

Given that ∆y is generated by the bunch jitter with

RMS value αJσey and assuming σey ' σ` ' σm/
√

2 '
1 µm and αJ ' 0.25 then typical values of Ndet (Eq. 19)
are of order

Ndet = ξ
1212

2
√
πσey

〈

exp−
∆2

y

4σ2
ey

〉

' 342
√

1 + 0.5α2
J

' 332

(43)
giving a statistical error on each measured value of N
of order 5%. In addition there will be a contribution
to the error from ξ due to the measurements of bunch
charge and laser power and from the laser trigger (phase)
jitter. In the following, the total error on ξ is taken to be
2%. The expected measurement error on the transverse
size σey of the electron bunch was then evaluated for a
nominal electron spot-size of σey = 1 µm by σex = 10 µm
by inverting the full overlap integral of Eq. A2.

The resulting percentage error on a single-shot mea-
surement of σey is presented in Fig 16 as a function of
(a) BPM resolution and (b) RMS beam jitter αJ . From
these plots it can be deduced that the bunch-by-bunch
error on σey is of order 15% for the chosen realistic pa-
rameters. Making such measurements over a whole train
would then yield an error on the average spots-size of the
train of 0.15/

√
2625 ' 2.9× 10−3.

D. Summary of Laser-wire Requirements

A LW system for the ILC BDS will involve many so-
phisticated elements including high power mode-locked
lasers, high quality laser final-focus optics, and integrated
BPM systems. In this section, the desired performance
specifications of the key sub-systems are discussed and
the resulting errors on the measured electron transverse
spot-size are estimated.

1. Laser Requirements

The above analysis has discussed various laser require-
ments that must be met if fast intra-train emittance mea-
surements are to be performed at the ILC. These require-
ments are gathered here to provide a benchmark for R&D
requirements [31] and to act as a base-line for subsequent
discussion of the other laser-wire component specifica-
tions.

The laser supplying the light to the laser-wire IP will
need to match the ILC bunch structure, providing laser-
pulses each of instantaneous power P` ' 10 MW with
sufficient pulse-length to overlap fully with the electron
bunch so as to minimise any synchronisation issues.
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FIG. 16: Percentage errors obtained by inverting Eq. A2 on
a bunch-by-bunch basis for electron bunch transverse dimen-
sions σey = 1µm, σex = 10µm, laser wavelength = 532 nm,
M2 = 1.3, f-num = 1.5, P` = 10 MW. (a): As a function
of BPM resolution (in µm) with the relative beam jitter fixed
at αJ = 0.25. (b): As a function of beam jitter (αJ ) with the
BPM resolution fixed at 0.1 µm.

The pulse pattern and synchronisation can be ob-
tained by mode-locking a master laser oscillator to a sub-
harmonic of the machine RF and then by pulse-picking
for high-power amplification. Assuming that only the re-
quired pulses are amplified, the average power of the laser
will be dominated by only those amplified pulses and so
can be estimated as:

P av
` = 0.5 W ×

(

Ntrain

2625

)(

frep
5 Hz

)(

P`

20 MW

)(

T`

2 ps

)

(44)
where frep is the rep-rate of the machine (Tab I). If
no pulse-picking for the high-power pulses were applied,
then P av

` would be 108 W, assuming the ILC nominal
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TABLE V: Requirements on laser-system for intra-train laser-
wire scans at the ILC, with reference to the equation that sets
the goal value. Note, an extra factor of 2 has been applied to
allow a 50% loss of power due to light transport between the
laser and the laser-wire IP, which may involve distances of
several hundred metres in the ILC

Parameter Symbol Goal Value Eqn.

Wavelength λ ≤ 532 nm (23)

Mode Quality M2 ≤ 1.3 (23)

Peak Power P` ≥ 20 MW (18)

Average Power P av
` ≥ 0.5 W (44)

Pulse Length T` ≥ 2 ps (39)

Trigger Stability τ` ≤ 0.3 ps (39)

Pointing Stability ψ` ≤ 10 µrad (30)

TABLE VI: The relevant measurables for emittance measure-
ment under the approximation σxy ' 0 for a set of electron
beam sizes of interest at the ILC for the given beam energies

Eb. The quoted precisions for δ〈xy〉
〈xy〉

are those obtainable if

each of the dimensions σx, σy, and σu can be measured to

1%. The corresponding precisions for
δσ2

x

σ2
x

and
δσ2

y

σ2
y

are then

both 2%.

Eb σx σy φ σu σv precision (µm)2

GeV µm µm deg µm µm δ(σ2
x) δ(σ2

y) δ 〈xy〉
500 9 1.4 81.2 1.95 8.89 1.62 0.04 0.30

500 15 1.4 84.7 1.97 14.9 4.5 0.039 0.51

250 14 2 81.8 2.8 13.8 3.92 0.08 0.68

250 20 1.8 84.8 2.53 19.9 8.0 0.06 0.88

bunch spacing of 369 ns (Tab I), which would make the
laser very much more challenging. An extra factor of 2
has been included in the laser power requirements for P`,
because at the ILC the light transport between laser and
IP may be as long as several hundred metres and so will
involve substantial power losses en route.

2. Error Summary

The most challenging laser-wire measurements at the
ILC occur in the BDS and some representative values
of the bunch dimensions of interest are given in Tab. VI.
For illustration in this table, the precisions obtainable on
the matrix element 〈xy〉 are listed, assuming that each
dimension σx, σy, and σu can be measured to a nominal
1% (which means σ2

x and σ2
y are measured to 2%). Some

examples of vertical emittance reconstructions for 4d op-
tics using these assumptions are presented in figures 17
and 18.

In order to summarise the ILC laser-wire requirements
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FIG. 17: Distribution of reconstructed vertical emittance with
1% (a) and 5% (b) random errors on the beam size measure-
ment for a 4d diagnostics section (statistics corresponding to
train length). Initial optical functions are perfectly matched.
The true emittance is 0.079 µm · µrad .

and to describe the various contribution to the measure-
ment errors, a beam with representative transverse di-
mensions σex = 10 µm × σey = 1 µm is now used as a
specific example to illustrate the key points. This beam
is somewhat more challenging than that expected at the
nominal ILC, but points to where additional R&D may
be required if specific operating conditions give rise to
smaller spot-sizes.

The following laser, optical, and BPM specifications
are non-trivial and are themselves subjects of R&D, how-
ever it is probable that suitable solutions to them will be
found. The assumptions are:

• the laser-requirements of Tab. V can be met,
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FIG. 18: Distribution of reconstructed vertical emittance with
1% (a) and 5% (b) random errors on the beam size measure-
ment for a 4d diagnostics section assuming 50% random mis-
match of initial optical functions (statistics corresponding to
train length). The true emittance is 0.079 µm · µrad .

• the bunch-by-bunch charge and the laser instanta-
neous power can both be measured to 10−2,

• the laser profile at the IP (characterised in this pa-
per by a simple M2 value) is known to the equiva-
lent of δM2 = 0.01,

• BPM resolution σBPM = 20 nm.

• f1.5 optics can be made to work, together with the
scanning system.

All the errors discussed above are summarised in
Tab. VII for the most challenging nominal transverse di-
mensions of interest to the ILC, namely: σey = 1 µm,

TABLE VII: Error terms for σey for an electron bunch whose
transverse dimensions are σey = 1 µm and σex = 10 µm,
giving σu = 1.41 µm and σv = 9.95 µm. The values were
obtained assuming the performance goals of Tab. V, laser
δM2 = 0.01 , σBPM = 20 nm, αJ = 0.25, The electron bunch
charge and laser power are assumed each to be known to 1%
and the pointing jitter to 10%. The measurement statistical
errors are for a full train (i.e. Nscan ' 140). No subtraction
of residual dispersion has been made for these measurements;
instead they are input into the global fit to extract the emit-
tance and dispersion terms together.

Symbol σy σu σx

Value (µm) σe 1 1.41 10

Laser Wavelength (nm) λ 532 (266) 532 (266) 532

Optics f-number f# 1.5 1.5 1.5

Optics focal length (mm) F 15 15 70

Pointing Stability (×10−3) Epoint 2.2 1.1 0.5

Beam Jitter (×10−3) Ejitter 5.0 3.5 0.5

Fit statistics (×10−3) Estat 4.3 (4.5) 3.4 (4.2) 4.8

Laser spot-size (×10−3) EM2 10.9 (2.7) 5.4 (1.4) 0.1

Normalisation (×10−3) Eξ 0.9 (0.6) 0.7 (0.5) 0.4

Total Error (×10−3) δσ/σ 13.0 (7.6) 7.5 (5.8) 4.9

σex = 10 µm, with corresponding skew scans with di-
mensions: σu = 1.41 µm and σv = 9.95 µm.

Note that in order to reduce the error from the laser-
spot size uncertainty for the 1 µm vertical spot-size, UV
laser light (λ = 266 nm) has been used. In this case, addi-
tional laser power (perhaps by a factor of approximately
1.5-2) may be required to compensate for the inefficiency
of the second laser frequency doubling. Most of this fac-
tor has already been included in the extra contingency
factor of 2 discussed in Sec. III D 1.

IV. CONCLUSION

The measurement of emittance at the ILC will be es-
sential to maintain the high luminosity performance of
the machine. A fast non-invasive scheme to do this has
been presented, which involves advanced laser-wire sys-
tems and dedicated machine optics. It was shown that
the efficiency of emittance determination falls dramati-
cally if the transverse electron-bunch measurements pro-
vide an accuracy worse than about 30%. The accuracy
of the resulting emittance measurement is directly re-
lated to the transverse electron-bunch measurements; it
is therefore preferable to achieve accurate profile mea-
surements of order 1-5%. A set of methods for emittance
reconstruction were presented to improve the reconstruc-
tion efficiency in the event of degraded precision and a
general scheme for the optics of the emittance measure-
ment section was discussed.



19

The most challenging vertical spot-sizes in the ILC
BDS will eventually be of order 1 µm. The required LW
performance was discussed in detail and a plausible route
to obtaining a transverse spot-size measurement with a
relative precision of order 1.3% using green laser-light was
presented, together with prospects of achieving modestly
improved measurements using ultra-violet light. It can
be concluded that, while percent-scale measurements on
a train-by-train basis seem possible, many sub-systems
need significant improvements over the current state-of-
art; an ongoing programme of R&D is currently address-
ing these challenges.

APPENDIX A: LASER-WIRE OVERLAP

INTEGRALS

In the following, the electron beam is assumed to have
a simple Gaussian charge profile, with σex and σey be-

ing the horizontal and vertical electron spot-sizes respec-
tively. σz is assumed long compared to the laser spot-size,
so the overlap integral in z integrates out trivially.

1. Scans Using the Laser TM00 Mode

In this section, the full overlap integrals of TM00 and
TM01 laser modes with a Gaussian electron bunch are
presented, building on previous studies [32] by includ-
ing full effects of Rayleigh range and detailed analysis of
the laser final focus optics. The results of the numeri-
cal integrals for a range of parameters of interest to ILC
laser-wires are presented in Tables VIII- X

For the laser TM00 mode, after performing the z-
integral, the remaining transverse overlap integral is:

ε(∆x,∆y) =

∫

dxdy I`Ie

(2π)
3

2σexσeyσ`

√

fR(x− ∆x)
exp

[

− x2

2σ2
ex

− y2

2σ2
e

− (y − ∆y)2

2σ2
`fR(x− ∆x)

]

. (A1)

Performing the y-integral gives:

ε(∆x,∆y) =
I`Ie

2πσex

∫

dx

σs(x,∆x)
exp

[

− x2

2σ2
ex

−
∆2

y

2σs(x,∆x)2

]

(A2)
where

σs(x,∆x) =
√

σ2
ey + σ2

`fR(x − ∆x) . (A3)

In the approximation of an infinite Rayleigh range the
equations reduce to the more familiar form with [5]

σm =
√

σ2
e + σ2

` (A4)

and

ε(∆y) =
1√

2πσm

exp− (∆y)2

2σ2
m

. (A5)

a. Scans Using the Laser TM01 Mode

Using the same conventions as in Sec. III A 2 the light
intensity of the laser TM01 mode has the form

I`(x, y, z) =
I0

2πσ2
`

1

fR(x)

(

y2

σ2
` fR(x)

)

exp

[

− y2 + z2

2σ2
`fR(x)

]

.

(A6)

The necessary overlap integral is now:

ε(∆x,∆y) =

∫

dxdy I`Ie

(2π)
3

2σexσeyσ`

√

fR(x− ∆x)

(

(y − ∆y)2

σ2
` fR(x− ∆x)

)

exp

[

− x2

2σ2
ex

− y2

2σ2
e

− (y − ∆y)2

2σ2
`fR(x− ∆x)

]

(A7)

where, as before, ∆x and ∆y are the horizontal and verti-
cal relative displacements of the electron and laser beams.

Performing the y-integral gives:
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ε(∆x,∆y) =
I`Ie

2πσex

∫

dx

σs(x,∆x)

(

σey

σs(x,∆x)

)2
[

1 + fR(x− ∆x)

(

σ`∆y

σs(x,∆x)

)2
]

exp

[

− x2

2σ2
ex

−
∆2

y

2σs(x,∆x)2

]

(A8)

TABLE VIII: Optimal f-numbers (for Estat) for the measure-
ment of σey and the corresponding statistical precision for
σey = 1 µm, λ = 532 nm and M2 = 1.3. The minimum
practical f-number is taken as 1.0, even where a better sta-
tistical precision could in principle be obtained by smaller f-
numbers. The numbers in brackets are the corresponding sta-
tistical errors using f1.5 optics; the systematic errors due to
δM2 = 0.01, 0.05, 0.10 are then 1.09%, 5.68% and 12% respec-
tively and do not depend significantly on the electron bunch
aspect ratio.

Optimal EM2(%) for δM2 =

σex/σey f# Estat(%) 0.01 0.05 0.10

1 1 2.93 (4.47) 0.48 2.48 5.16

2 1 2.97 (4.49) 0.48 2.48 5.16

5 1 2.48 (4.62) 0.48 2.48 5.16

10 1 4.28 (5.15) 0.48 2.48 5.16

15 1.10 5.49 (6.00) 0.58 3.01 6.27

20 1.19 6.72 (7.01) 0.68 3.54 7.40

25 1.26 7.91 (8.10) 0.76 3.96 8.30

50 1.35 13.6 (13.7) 0.89 4.60 9.68

100 1.25 23.5 (23.9) 0.76 3.93 8.24

where σs(x,∆x) is as defined in Eq. A3. For the TM01

mode, the condition that 99% of the light energy is con-
tained within the lens aperture becomes:

0.99 =

∫ D`/2

0

∫ 2π

0

rdrdφ
1

2πσ2
`

(

r

σ`

)2

sin2 φ exp

[

− r2

2σ2
`

]

(A9)
which gives

0.01 =

(

1 +
D2

`

8σ2
`

)

exp

[

−D2
`

8σ2
`

]

(A10)

and henceD` ' 1.15×2πσ`. So for the TM01 calculations
performed in Sec. III A 3, a correction factor of 1.15 was
applied, such that

σ0|TM01
= 1.15λf# . (A11)
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TABLE X: Optimal f-numbers (for Estat) for the measure-
ment of σey and the corresponding statistical precision for
σey = 1 µm, λ = 266 nm and M2 = 1.3. The minimum prac-
tical f-number is taken as 1.0, even where a better statistical
precision could in principle be obtained by smaller f-numbers.
The numbers in brackets are the corresponding statistical er-
rors using f1.5 optics; the systematic errors due to δM2 =
0.01, 0.05, 0.10 are then 0.27%, 1.39% and 2.87% respec-
tively and do not depend significantly on the electron bunch
aspect ratio.

Optimal EM2(%) for δM2 =

σex/σey f# Estat(%) 0.01 0.05 0.10

1 1 3.64 (4.25) 0.12 0.61 1.26

2 1 3.71 (4.27) 0.12 0.61 1.26

5 1.07 4.19 (4.49) 0.14 0.71 1.45

10 1.46 5.30 (5.31) 0.26 1.31 2.71

15 1.72 6.41 (6.49) 0.36 1.83 3.78

20 1.91 7.51 (7.80) 0.44 2.26 4.69

25 2.06 8.59 (9.16) 0.51 2.65 5.50

50 2.31 14.0 (15.8) 0.64 3.33 6.95

100 2.27 24.4 (27.2) 0.62 3.22 6.68

TABLE XI: Errors for the scan of the horizontal dimension
σex for various aspect ratios σex/σey when σey = 1 µm. The
f-numbers are chosen so that the angular scanning range can
be limited to 1 mrad; The f-number used is given by whichever
is the greater of 1.5 and the value given by Eq. 36. The laser
properties assumed are λ = 532 nm and M 2 = 1.3.

Practical EM2(%) for δM2 =

σex/σey f# Estat(%) 0.01 0.05 0.10

1 1.5 4.47 1.09 5.68 12.0

2 1.5 3.41 0.27 1.39 2.86

5 1.5 4.22 0.04 0.22 0.45

10 1.5 5.74 0.01 0.06 0.11

15 2.1 7.02 0.01 0.05 0.10

20 2.8 8.10 0.01 0.05 0.10

25 3.5 9.06 0.01 0.05 0.10

50 7.0 12.8 0.01 0.05 0.10

100 14 18.1 0.01 0.05 0.10
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