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Abstract. We describe our efforts to understand large-scale (10’s–100’s kpc)
relativistic jet systems through observations of the highest-redshift quasars. Re-
sults from a VLA survey search for radio jets in ∼30 z>3.4 quasars are described
along with new Chandra observations of 4 selected targets.

1. Why High-redshift Jets?

It is now well established that X-ray emission is a common feature of kiloparsec-
scale radio jets (see Harris & Krawczynski 2006, for a recent review and the
associated website, http://hea-www.harvard.edu/XJET/). The spectral energy
distributions (SEDs) of the powerful quasar jets are predominantly characterized
as “optically faint”, with the spectra rising between the optical and X-ray bands.
Current models for this ‘excess’ X-ray emission posit either inverse Compton (IC)
scattering off CMB photons in a (still) relativistic kpc-scale jet or an additional
high-energy synchrotron emitting component.

In the simplest scenario, such models have diverging predictions at high red-
shift. Specifically, we expect a strong redshift dependence in the monochromatic
flux ratio, fX/fr ∝ UCMB ∝ (1 + z)4 for IC/CMB, whereas in synchrotron
models, we expect no such dependence, fX/fr ∝ (1 + z)0. As a first order
test of this simple idea, our approach is to study the highest-redshift relativistic
jets. Such jets probe the physics of the earliest (first ∼1 Gyr of the Universe
in the quasars studied) actively accreting supermassive black hole systems and
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are interesting for other reasons. For instance, the ambient medium in these
high-redshift galaxies is probably different (e.g., De Young 2006) and this may
manifest in jets with different morphologies, increased dissipation, and slower
than their lower-redshift counterparts.
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Figure 1. Examples of newly discovered arcsecond-scale radio jets from
our VLA observations (§ 2.1.). Clockwise from upper left, the sources are
J0624+3856 (z=3.469; Xu et al. 1995), J2042–2223 (z=3.630; Hook et al.
2002), J2220–3336 (z=3.691; Hook et al. 2002), and J2219–2719 (z=3.634;
Hook et al. 2002). The J2219–2719 image is at 1.4 GHz while the rest are
at 5 GHz. The beam-sizes are 0.41′′ × 0.41′′, 0.73′′ × 0.38′′ at PA=−8.2◦,
1.13′′ × 0.39′′ at PA=10.2◦, and 0.75′′ × 0.75′′ (super-resolved), respectively.
The lowest contour levels begin at 0.125 mJy/bm for all images except for

J2219–2719 where it is 0.2 mJy/bm, and increase by factors of
√

2.

Most Chandra studies of quasar jets have so far targeted known arcsecond-
scale radio jets (e.g., Sambruna et al. 2004; Marshall et al. 2005), as most known
examples are at z <

∼2 (Liu & Zhang 2002). There are currently only two high-z
quasars with well-established kpc-scale X-ray jet detections: GB 1508+5714 at
z=4.3 (Siemiginowska et al. 2003; Yuan et al. 2003; Cheung 2004) and 1745+624
at z=3.9 (Cheung et al. 2006). They are observed to have large fX/fr values
as expected in the IC/CMB model (Schwartz 2002; Cheung 2004), although the
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small number of high-z detections preclude any definitive statements (Kataoka & Stawarz
2005; Cheung et al. 2006).

We have therefore carried out a VLA survey in search of new radio jets in
a sample of high-z quasars (§ 2.1.) and new Chandra observations of a small
subset (§ 2.2.). This contribution presents some results from these observations.
For the redshifts considered, z=3.4 to 4.7, 1′′ corresponds to 7.4 to 6.5 kpc
(H0 = 70 km s−1 Mpc−1, ΩM = 0.3 and ΩΛ = 0.7).

2. Observations of a High-Redshift Quasar Sample

2.1. VLA Imaging Survey

Using NED, we assembled a sample of z>3.4 flat-spectrum radio quasars for
imaging with the VLA. We did not aim for our sample to be a complete one
as current samples of lower-z X-ray jets are inhomogenous also. With archival
(Lee 2005) and new VLA observations, we find that radio jets in this redshift
range are common with a ∼50% detection rate (Cheung et al. 2005, and in
preparation). Examples of new radio jets detected from our observations are
shown in Figure 1.

2.2. Chandra Observations

A small percentage of the radio jets from our radio study (§ 2.1.) are extended
enough (>2.5” long) to study with Chandra. We observed four of them with
short snapshot Chandra observations (Figure 2). We detected bright X-ray
counterparts to the jets in the quasars J1421–0643 (z=3.689; Ellison et al. 2001)
and GB 1428+4217 (z=4.72; Hook & McMahon 1998); the latter detection is
currently the highest-redshift kpc-scale radio and X-ray jet known. We did
not detect the X-ray counterparts to the radio jets in 1239+376 (z=3.819;
Vermeulen et al. 1996) and J1754+6737 (z=3.6; Villani & di Serego Alighieri
1999). The 2/4 X-ray jet detection rate of our high-z sample is comparable
to that of lower-z samples (Sambruna et al. 2004; Marshall et al. 2005).

3. Discussion and Summary

Previous Chandra imaging studies of a number of z>4 radio loud quasars do
not reveal significant extended X-ray emission (Bassett et al. 2004; Lopez et al.
2006). However, in these studies, there were no pre-existing information on
possible radio structures in the target objects and any definitive statements
regarding the nature of the X-ray emission mechanism in jets at high-redshifts
may be premature. In fact, in one case where there was evidence of an extended
X-ray structure (J2219–2719; Lopez et al. 2006), our VLA observation revealed
a radio counterpart (Figure 1).

In our approach, we began with a VLA survey of a sample of z>3.4 quasars
and found radio jets to be relatively common (∼50% detection rate). These jets
are quite luminous; with a confident detection of a 1 mJy knot at 1.4 GHz, this
corresponds to luminosities of 1.5 ×1042 erg s−1 (z=3.4) to 3.1 ×1042 erg s−1

(z=4.7).
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Figure 2. Chandra X-ray images (colorscale) with VLA contours overlaid
of the four high-z radio jets observed. There are X-ray detections of the top
two objects but not of the bottom two (§ 2.2.).

With the radio survey results, we found only a few radio jets to have suffi-
cient angular extent to be imaged with Chandra. The detection rate of X-ray
counterparts of the high-z radio jets (2/4) is similar to that of lower-z radio jet
samples (Sambruna et al. 2004; Marshall et al. 2005). The implications of these
observations for models of X-ray emission from large-scale jets will be described
in forthcoming publications.
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