Measurement of the Decay $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan, ${ }^{5},{ }^{*}$ K. Tackmann, ${ }^{5}$ T. Tanabe, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ P. del Amo Sanchez, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ N. Soni, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$
D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett, ${ }^{10}$ A. Khan, ${ }^{10}$ M. Saleem, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli,,${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich,,${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford,,${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14, *}$ G. M. Vitug, ${ }^{14}$ L. Zhang, ${ }^{14}$ H. P. Paar, ${ }^{15}$ S. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ C. Campagnari, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm,,${ }^{17}$ A. Seiden, ${ }^{17}$ M. G. Wilson,,${ }^{17}$ L. O. Winstrom, ${ }^{17}$ E. Chen,,18 C. H. Cheng, ${ }^{18}$ D. A. Doll, ${ }^{18}$ B. Echenard, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin,,${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc, ${ }^{20}$ P. C. Bloom, ${ }^{20}$ W. T. Ford, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ A. Kreisel, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith,${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ R. Ayad, ${ }^{21, \dagger}$ A. M. Gabareen, ${ }^{21}$ A. Soffer,,${ }^{21, \ddagger}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan,,22 K. Wacker, ${ }^{22}$ V. Klose,,${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ J. Schubert, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour,,24 V. Lombardo, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ S. Playfer, ${ }^{25}$ A. I. Robertson,,${ }^{25}$ J. E. Watson, ${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella, ${ }^{26}$ L. Piemontese,,${ }^{26}$ E. Prencipe, ${ }^{26}$ V. Santoro, ${ }^{26}$ F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri,,27 I. M. Peruzzi, ${ }^{27, ~ §}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani,,28 E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ J. A. Nash, ${ }^{31}$ W. Panduro Vazquez, ${ }^{31}$ M. Tibbets,,${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik,,32 J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ V. Eyges, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ A. E. Rubin, ${ }^{33}$ Y. Y. Gao, ${ }^{34}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch, ${ }^{35}$ G. Schott, ${ }^{35}$ N. Arnaud,,${ }^{36}$ J. Béquilleux, ${ }^{36}$ A. D’Orazio, ${ }^{36}$ M. Davier, ${ }^{36}$ J. Firmino da Costa, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder,,${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W. F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham,,${ }^{38}$ J. P. Burke, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne,,${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ R. Sacco, ${ }^{39}$ G. Cowan,,${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ T. J. West, ${ }^{42}$ J. I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle, ${ }^{43}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic, ${ }^{45}$ P. H. Fisher, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ S. E. Mclachlin,,${ }^{46, ~ * ~ P . ~ M . ~ P a t e l, ~}{ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ M. Simard, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ G. De Nardo, ${ }^{51}$ L. Lista, ${ }^{51}$ D. Monorchio,,${ }^{51}$ C. Sciacca, ${ }^{51}$ M. A. Baak, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ K. J. Knoepfel, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$ K. Honscheid,,${ }^{54}$ H. Kagan,,${ }^{54}$ R. Kass, ${ }^{54}$ J. P. Morris,,${ }^{54}$ A. M. Rahimi,,${ }^{54}$ J. J. Regensburger, ${ }^{54}$ S. J. Sekula, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey,${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb,,${ }^{55}$ M. Lu, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev,,${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$
E. Torrence, ${ }^{55}$ G. Castelli, ${ }^{56}$ N. Gagliardi, ${ }^{56}$ A. Gaz, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin, ${ }^{56}$ A. Pompili, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ E. Ben-Haim, ${ }^{57}$ H. Briand, ${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David,,${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclès, ${ }^{57}$ J. Ocariz,,${ }^{57}$ A. Perez, ${ }^{57}$ J. Prendki, ${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60, ~}{ }^{\text {® }}$ R. Cenci, ${ }^{60}$ A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. A. Mazur, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh, ${ }^{60}$ J. Biesiada, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ D. Lopes Pegna, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ E. Baracchini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ D. del Re, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ P. D. Jackson, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda,,${ }^{62}$ F. Polci, ${ }^{62}$ F. Renga, ${ }^{62}$ C. Voena, ${ }^{62}$ M. Ebert, ${ }^{63}$ T. Hartmann, ${ }^{63}$ H. Schröder, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ B. Franek, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ W. Roethel,,${ }^{64}$ F. F. Wilson, ${ }^{64}$ S. Emery, ${ }^{65}$ M. Escalier, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ X. R. Chen, ${ }^{66}$ H. Liu, ${ }^{66}$ W. Park, ${ }^{66}$ M. V. Purohit, ${ }^{66}$ R. M. White, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ P. Bechtle, ${ }^{67}$ R. Claus, ${ }^{67}$ J. P. Coleman, ${ }^{67}$ M. R. Convery, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ J. Dorfan, ${ }^{67}$ G. P. Dubois-Felsmann, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ M. T. Graham, ${ }^{67}$ P. Grenier, ${ }^{67}$ C. Hast,,${ }^{67}$ W. R. Innes, ${ }^{67}$ J. Kaminski, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ H. Kim, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ S. Li, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ D. B. MacFarlane, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ S. Nelson, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ I. Ofte, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. K. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ A. P. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ H. W. Wulsin, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C. C. Young, ${ }^{67}$ V. Ziegler, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ T. S. Miyashita, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ L. Wilden, ${ }^{68}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ R. Bula, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ B. Pan,,${ }^{69}$ M. A. Saeed, ${ }^{69}$ S. B. Zain, ${ }^{69}$ S. M. Spanier, ${ }^{70}$ B. J. Wogsland, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. M. Ruland, ${ }^{71}$ C. J. Schilling, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Pelliccioni, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca,,${ }^{74}$ L. Lanceri, ${ }^{74}$ L. Vitale, ${ }^{74}$ V. Azzolini, ${ }^{75}$ N. Lopez-March, ${ }^{75}$ F. Martinez-Vidal, ${ }^{75}$ D. A. Milanes, ${ }^{75}$ A. Oyanguren, ${ }^{75}$ J. Albert, ${ }^{76}$ Sw. Banerjee, ${ }^{76}$ B. Bhuyan, ${ }^{76}$ K. Hamano, ${ }^{76}$ R. Kowalewski, ${ }^{76}$ I. M. Nugent, ${ }^{76}$ J. M. Roney, ${ }^{76}$ R. J. Sobie, ${ }^{76}$ P. F. Harrison, ${ }^{77}$ J. Ilic, ${ }^{77}$ T. E. Latham, ${ }^{77}$ G. B. Mohanty, ${ }^{77}$ H. R. Band, ${ }^{78}$ X. Chen, ${ }^{78}$ S. Dasu, ${ }^{78}$ K. T. Flood, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ Y. Pan,,78 M. Pierini, ${ }^{78}$ R. Prepost, ${ }^{78}$ S. L. Wu, ${ }^{78}$ and H. Neal ${ }^{79}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy

${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{35}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{39}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA ${ }^{46}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{49}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{76}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{77}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{78}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{79}$ Yale University, New Haven, Connecticut 06511, USA
(Dated: May 8, 2008)

Using 226 million $B \bar{B}$ events recorded on the $\Upsilon(4 S)$ resonance with the $B A B A R$ detector at the SLAC $e^{+} e^{-}$PEP-II storage rings, we reconstruct $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ decays using the decay chain $D^{* 0} \rightarrow D^{0} \pi^{0}$ and $D^{0} \rightarrow K^{-} \pi^{+}$. From the dependence of their differential rate on w, the dot product of the four-velocities of B^{-}and $D^{* 0}$, and using the form factor description by Caprini et al. with the parameters $F(1)$ and $\rho_{A_{1}}^{2}$, we obtain the results $\rho_{A_{1}}^{2}=1.16 \pm 0.06 \pm 0.08, F(1) \cdot\left|V_{c b}\right|=$ $(35.9 \pm 0.6 \pm 1.4) \cdot 10^{-3}$, and $\mathcal{B}\left(B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}\right)=(5.56 \pm 0.08 \pm 0.41) \%$.

The Standard Model of particle physics (SM) contains a large number of free parameters which can only be determined by experiment. Precision measurements of all of these parameters are essential for probing the validity range of the model by comparing many other precision measurements with SM calculations. One of the SM parameters, the element $\left|V_{c b}\right|$ of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix, is determined with semileptonic B-meson decays. Their rates Γ are given by the universality of the weak interaction (the Fermi constant G_{F}), by quark mixing $\left(\Gamma \propto G_{\mathrm{F}}^{2}\left|V_{c b}\right|^{2}\right)$, and by strong-interaction corrections calculated in heavyquark effective QCD. For the exclusive decays $\bar{B}^{0} \rightarrow$ $D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and $B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}(\ell=e, \mu)$, these corrections are expressed as form factors in the differential rate $\mathrm{d} \Gamma / \mathrm{d} w$, where w is the dot product of the four velocities of the B and the D^{*}. The form factors depend on the three parameters $\rho^{2}, R_{1}(1)$, and $R_{2}(1)$ [1]. Whereas the \bar{B}^{0} mode has been measured by many experiments [2], the B^{-}mode has only been measured by two groups $[3,4]$ with much smaller data samples. However, the \bar{B}^{0} experiments do not agree well in their ρ^{2} results. Using the isospin symmetry $\mathrm{d} \Gamma\left(B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}\right)=\mathrm{d} \Gamma\left(\bar{B}^{0} \rightarrow\right.$ $D^{*+} \ell^{-} \bar{\nu}_{\ell}$), a precision measurement of the B^{-}mode can improve knowledge of ρ^{2} and consequently of Γ and $\left|V_{c b}\right|$.

The aim of our analysis [5] is the determination of the differential decay fraction $\mathrm{d} \mathcal{B}\left(B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}\right) / \mathrm{d} w$, where $\mathcal{B}=\Gamma \tau$, with the B^{-}lifetime τ. The neutrino in the $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ decay is not reconstructed. Therefore, the w value of each reconstructed event cannot be obtained, only an approximation \tilde{w} as defined below. Instead of unfolding $\mathrm{d} \mathcal{B} / \mathrm{d} \tilde{w}$, the parametrized $\mathrm{d} \mathcal{B} / \mathrm{d} w$ expectation convolved with the w resolution from Monte Carlo (MC) simulation is fitted to the observed $\mathrm{d} \mathcal{B} / \mathrm{d} \tilde{w}$ distribution. The fit uses the parametrization of Caprini et al. [1] with $\rho^{2} \equiv \rho_{A_{1}}^{2}$ and determines the two parameters $F(1) \cdot\left|V_{c b}\right|$ and ρ^{2}. The decay fraction \mathcal{B} is obtained by integrating $\mathrm{d} \mathcal{B} / \mathrm{d} w$. Using the notations $\Delta M \equiv m_{B}-m_{D^{*}}, r \equiv m_{D^{*}} / m_{B}$, and $z \equiv(\sqrt{w+1}-\sqrt{2}) /(\sqrt{w+1}+\sqrt{2})$, the parametrization is defined by the following expressions:

$$
\begin{gathered}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} w}=\frac{G_{\mathrm{F}}^{2}\left|V_{c b}\right|^{2}}{48 \pi^{3}}(\Delta M)^{2} m_{D^{*}}^{3} \sqrt{w^{2}-1}(w+1)^{2} g(w) F^{2}(w) \\
g(w)=1+\frac{4 w}{w+1} \frac{m_{B}^{2}-2 w m_{B} m_{D^{*}}+m_{D^{*}}^{2}}{(\Delta M)^{2}} \\
F^{2}(w)=\frac{\left|h_{A_{1}}(w)\right|^{2}}{g(w)} \sum_{i=0,+,-}\left|\tilde{H}_{i}(w)\right|^{2} \\
\tilde{H}_{0}(w)=1+\frac{w-1}{1-r}\left[1-R_{2}(w)\right] \\
\tilde{H}_{ \pm}(w)=\frac{\sqrt{1-2 w r+r^{2}}}{1-r}\left[1 \mp \sqrt{\frac{w-1}{w+1}} R_{1}(w)\right]
\end{gathered}
$$

$$
\begin{gathered}
\frac{h_{A_{1}}(w)}{h_{A_{1}}(1)}=1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3} \\
R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
R_{2}(w)=R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}
\end{gathered}
$$

with $F(1)=h_{A_{1}}(1)$. The values of $R_{1,2}(1)$ are not determined in this analysis; they are taken from Ref. [6].

For our analysis, we use $205 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$annihilation data recorded at $\sqrt{s} \approx m(\Upsilon(4 S))$ with the $B A B A R$ detector [7] at the SLAC PEP-II storage rings [8]. In addition to these on-peak data, we also use $16 \mathrm{fb}^{-1}$ of off-peak data collected 40 MeV below the $\Upsilon(4 S)$ resonance. We select $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ candidates [9] by pairing electrons with $p^{*}>1.2 \mathrm{GeV} / c$ in the $e^{+} e^{-}$rest frame (cms) with $D^{* 0}$ candidates. Since the precision of our results is not statistically limited, we restrict the analysis to the sequential decay modes $D^{0} \rightarrow K^{-} \pi^{+}$, which has the smallest combinatorial background, and $D^{* 0} \rightarrow D^{0} \pi^{0}$, which has a better resolution in $\Delta m \equiv m\left(K^{-} \pi^{+} \pi^{0}\right)-m\left(K^{-} \pi^{+}\right)$ than $D^{* 0} \rightarrow D^{0} \gamma$.

Charged particles are selected if they have at least 10 hits in the drift chamber, transverse momentum $p_{T}>0.1 \mathrm{GeV} / c$, and a polar angle between 23.5° and 145.5° in the laboratory frame. Electrons (kaons) are selected with tight (loose) particle identification criteria [10]. Neutral pions are reconstructed from two photons, each with energy above 30 MeV and a photon-compatible lateral shower shape in the calorimeter. The two photons must be consistent with the π^{0} hypothesis $(115<$ $m_{\gamma \gamma}<150 \mathrm{MeV} / c^{2}$). A kinematic fit with the constraint $m_{\gamma \gamma}=m_{\pi^{0}}$ improves the Δm resolution by a factor of 3 . The decay candidates have to fulfill the following additional requirements: the $D^{* 0}-D^{0}$ mass difference and the D^{0}-candidate mass must satisfy $135<\Delta m<153 \mathrm{MeV} / c^{2}$ and $1.8496<m\left(K^{-} \pi^{+}\right)<1.8796 \mathrm{GeV} / c^{2}$, respectively. To reject non- B-decay candidates, the second normalized Fox-Wolfram moment [11] of the event has to be smaller than 0.45 . To help reject combinatorial background with a $D^{* 0}$ and an e^{-}from different B mesons in the event, the cms angle between them must be larger than 90°.

Since there are many low-energy background photons, the selection criteria result in many events with two or more $D^{* 0} e$ candidates, on average 1.75 per event. All $D^{* 0} e$ candidates in the same $e K \pi$ combination form one group, called a candidate group. On average there are 1.015 candidate groups per event. When an event has more than one candidate group, we keep only the one with the best $\left|m(K \pi)-m\left(D^{0}\right)\right|$. All candidates in one group are kept in the analysis because the simulation of low-energy photons is not perfect. This procedure ensures that correctly reconstructed candidates are selected with the same probability in data and MC simulation.

The surviving candidates are binned in $\Delta m, \cos \theta_{\mathrm{BY}}^{*}$,
and \tilde{w}. The first two variables are used for signalbackground separation, and the third is used for the w dependence of the signal. The mass difference Δm is defined above, and θ_{BY}^{*} is the angle between the B meson and the $Y=D^{* 0}+e$ system in the cms defined by

$$
p_{\nu}^{2}=0=m_{\mathrm{B}}^{2}+m_{\mathrm{Y}}^{2}-2\left(E_{\mathrm{B}}^{*} E_{\mathrm{Y}}^{*}-\left|\vec{p}_{\mathrm{B}}^{*}\right|\left|\vec{p}_{\mathrm{Y}}^{*}\right| \cos \theta_{\mathrm{BY}}^{*}\right) .
$$

The value of

$$
w=w\left(\beta^{*}\right) \equiv\left(E_{\mathrm{B}}^{*} E_{\mathrm{D}^{*}}^{*}-\left|\vec{p}_{\mathrm{B}}^{*}\right|\left|\vec{p}_{\mathrm{D}^{*}}^{*}\right| \cos \beta^{*}\right) /\left(m_{\mathrm{B}} m_{\mathrm{D}^{*}}\right)
$$

cannot be determined since the angle β^{*} between the B and the $D^{* 0}$ in the cms is unknown. However, β^{*} is bounded by a minimum and a maximum value and we use $\tilde{w}=\left[w\left(\beta_{\min }^{*}\right)+w\left(\beta_{\max }^{*}\right)\right] / 2$ as an estimator for w. Both w and \tilde{w} range from 1.0 to 1.5, and the distribution of $\tilde{w}-w$ is nearly Gaussian with an RMS of 0.026 .

The fit for $V=F(1)\left|V_{c b}\right|$ and ρ^{2} is a binned maximumlikelihood fit with 41,14 , and 10 equidistant bins in Δm, $\cos \theta_{\mathrm{BY}}^{*}$, and \tilde{w}, respectively. The fit function in each \tilde{w} bin is the sum of the signal function $S_{\tilde{w}}\left(V, \rho^{2}\right)$ and 23 background functions $B_{i, \tilde{w}}\left(V, \rho^{2}\right)$. Each summand is taken as the product of one-dimensional functions of Δm and $\cos \theta_{\mathrm{BY}}^{*}$. The Δm distributions of correctly (wrongly) reconstructed $D^{* 0}$ mesons are parametrized by the sum of 3 bifurcated Gaussians (product of an exponential and a power law function). The $\cos \theta_{\mathrm{BY}}^{*}$ distributions are modeled by modified KEYS functions [5].

The factor functions of $S_{\tilde{w}}$ are obtained from fits to the reweighted signal MC distributions with $V-, \rho^{2}-$, $R_{1}(1)$-, and $R_{2}(1)$-dependent weights on the generator level. $S_{\tilde{w}}$ also includes the total number of produced $B \bar{B}$ pairs, all decay fractions of sequential decays, the B^{-} lifetime, all MC reconstruction efficiencies, and efficiency corrections. The corrections for track reconstruction and charged-particle identification are obtained from control data samples and their MC expectations. The correction of the π^{0} reconstruction efficiency is described below. Small corrections are also applied for deviations of the shapes of the Δm distributions in data and MC because of track resolution differences, and for deviations in the shapes of the $\cos \theta_{\mathrm{BY}}^{*}$ distributions because of differences in storage-ring energy calibration and resolution.

The background functions are separately determined for the 23 background classes [5]. The large number of backgrounds is necessary in order to factorize all $B_{\mathrm{i}, \tilde{w}}$ as $B_{1, \mathrm{i}, \tilde{w}}(\Delta m) \times B_{2, \mathrm{i}, \tilde{w}}\left(\cos \theta_{\mathrm{BY}}^{*}\right)$. The one-dimensional fit functions $B_{j, \mathrm{i}, \tilde{w}}$ are again obtained from fits to MC distributions. The fit to the data has 49 free parameters; V, ρ^{2}, and 47 for adjustments of Δm shapes, $\cos \theta_{\mathrm{BY}}^{*}$ shapes, and background fractions. The number of $e^{+} e^{-} \rightarrow c \bar{c}$ background events is fixed by the off-peak data.

As validation of the fit procedure, we perform our fit on five different MC subsamples whose size corresponds to that of the data sample. All five results for V and ρ^{2} agree with the MC input to within one standard deviation. Applied to the data and using the input-parameter

TABLE I: Summary of input parameter values.

Input Parameter	Value	Ref.
$\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$	$(50.6 \pm 0.8) \%$	$[12]$
$\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)$	$(61.9 \pm 2.9) \%$	$[12]$
$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	$(3.80 \pm 0.07) \%$	$[12]$
$\mathcal{B}\left(\pi^{0} \rightarrow \gamma \gamma\right)$	$(98.798 \pm 0.032) \%$	$[12]$
$\tau_{B}-$	$(1.638 \pm 0.011) \mathrm{ps}$	$[12]$
$R_{1}(1)$	1.429 ± 0.075	$[6]$
$R_{2}(1)$	0.827 ± 0.044	$[6]$

values in Table I, the fit result is $V=(35.9 \pm 0.6) \cdot 10^{-3}$ and $\rho^{2}=1.16 \pm 0.06$ with a correlation coefficient of +0.90 . The result leads to $\mathcal{B}=(5.56 \pm 0.08) \%$ after integrating $\mathrm{d} \mathcal{B} / \mathrm{d} w$. The total number of signal events is 23499 ± 329. A control value of χ^{2} can be calculated after the fit as a goodness-of-fit measure. We find 4436.3 for 4095 degrees of freedom after rebinning in regions with low statistics. The values of χ^{2} in the MC-subsample fits are of similar size indicating that the factorization assumptions for $S_{\tilde{w}}$ and $B_{i, \tilde{w}}$ are not perfect. Since there is no bias in V or ρ^{2} in the MC-subsample fits and no significant correlation between background parameters and both V and ρ^{2} in the fit to the data, we conclude that the results are unbiased.

Figure 1 shows the result of the fit together with the selected data. The "Signal" part of the fit function contains the correctly reconstructed $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ decays. The two $D^{* *}$ parts contain $B \rightarrow D^{* *} e \nu$ decays with (" Δm peaking") and without (" Δm flat") a correctly reconstructed $D^{* 0}$ intermediate state ($D^{* *}=$ $\left.D_{1}, D_{0}^{*}, D^{\prime}{ }_{1}, D_{2}^{*}, D^{*} \pi, D \pi\right)$. Events with a correctly reconstructed $D^{* 0}$ and a correctly identified electron from the same B and from two different B mesons are in the "Correlated" and "Uncorrelated" background parts, respectively. "Signal-like" are true decays $B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}$ and $\bar{B}^{0} \rightarrow D^{*+} e^{-} \bar{\nu}_{e}$ which are not correctly reconstructed. The background from true $B \rightarrow D^{0} e \nu$ decays is called " $D^{0} e \nu$ ". All other background candidates from $B \bar{B}$ events ("Combinatorial $D^{* 0}$ ") are flat in the Δm and the $\cos \theta_{\mathrm{BY}}^{*}$ distributions since they do not contain a correctly reconstructed $D^{* 0}$ and they do not come from a charmed semileptonic decay. The last contribution, only visible at high \tilde{w}, comes from $c \bar{c}$ events.

To determine the systematic uncertainties listed in Table II we either rerun the fit with varied input or we rescale the fit result. The upper part of the Table gives the "internal" uncertainties which are specific to our analysis. The relative uncertainty on the efficiency to reconstruct a track is 0.8%, leading to 2.4% and 1.2% for \mathcal{B} and V. The dependence of the tracking efficiency on the transverse momentum p_{T} has an uncertainty which could distort the shape of the \tilde{w} spectrum. The uncertainties arising from the identification (ID) of charged tracks as electrons or as kaons contribute to the result as

FIG. 1: (Color online). Data distributions (dots with error bars) and fit results (stacked histograms) for (a) Δm in the $\cos \theta_{\mathrm{BY}}^{*}$ signal range $(-1,+1)$, (b) $\cos \theta_{\mathrm{BY}}^{*}$ in the Δm signal range $\left(140,144 \mathrm{MeV} / c^{2}\right)$, and (c) \tilde{w} in both signal ranges. The plot below (c) shows the quotient fit/data. The different contributions to the fit function are explained in the text.
listed under "particle ID efficiency". A significant fraction of the total uncertainty comes from the precision of the π^{0} reconstruction efficiency $\left(\epsilon_{\pi^{0}}\right)$. It is determined from $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$events where one of the two τ leptons is either reconstructed by one track and two clusters (mainly $\tau \rightarrow \rho\left(\pi \pi^{0}\right) \nu$) or by only one track without clusters (mainly $\tau \rightarrow \pi \nu, \mu \nu \bar{\nu}$). The other τ, used as a τ-pair tag, is reconstructed in its $e \nu \bar{\nu}$ decay. From the numbers

TABLE II: Relative systematic uncertainties in percent.

	$\Delta V / V \Delta \rho^{2} / \rho^{2} \Delta \mathcal{B} / \mathcal{B}$		
Tracking efficiency $\left(\epsilon_{\mathrm{tr}}\right)$	1.2	-	2.4
p_{T} dependence of ϵ_{tr}	0.3	0.5	0.2
Particle ID efficiency	0.9	2.0	1.6
Extrapolated π^{0} efficiency $\left(\epsilon_{\pi^{0}}\right)$	1.8	-	3.6
$p_{\pi^{0}}$ dependence of $\epsilon_{\pi^{0}}$	1.0	3.5	0.4
Δm shape of $D^{* *}$ background	0.1	0.1	0.2
Shape parameters	1.0	2.5	0.6
Number of \bar{B} events	0.6	-	1.1
Off-peak luminosity	0.1	0.4	<0.1
MC statistics	0.3	0.8	0.2
Radiative corrections	0.5	0.4	1.4
Total internal	2.9	4.9	5.0
$R_{1}(1)$ and $R_{2}(1)$	0.4	4.7	0.5
$\mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$	0.8	-	1.6
$\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)$	2.3	-	4.7
$\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$	0.9	-	1.8
B^{-}life time	0.3	-	-
$D^{* *}$ decay fractions	0.3	0.7	0.3
Number of $D^{* 0}$ in $c \bar{c}$ events	0.2	0.7	<0.1
Total external	2.7	4.8	5.3
Total	3.9	6.8	7.3

of $\tau^{+} \tau^{-}$events reconstructed in each of the two channels we derive an efficiency in data and in MC, giving a correction to the simulated π^{0} efficiency. The correction is obtained for momenta above $350 \mathrm{MeV} / \mathrm{c}$ and has a precision of 3%. In the lower-momentum region with all π^{0} mesons from $D^{* 0} e \nu$ decays, we use a correction factor of 0.960 ± 0.035 where the increased uncertainty covers the extrapolation into this region. Efficiency differences between $\tau^{+} \tau^{-}$and $B \bar{B}$ events are covered by the MC simulation as controlled by comparing the rates of reconstructed D^{0} decays into $K^{-} \pi^{+}$and $K^{-} \pi^{+} \pi^{0}$. The uncertainty in the shape of the \tilde{w} spectrum, i.e. its influence on ρ^{2}, is estimated by fit results for different lower cuts on $p_{\pi^{0}}$ (" $p_{\pi^{0}}$ dependence of $\epsilon_{\pi^{0}}$ "). Corrections to the Δm shape and to the $\cos \theta_{\mathrm{BY}}^{*}$ shape are parametrized as functions of \tilde{w}, see "shape parameters" for their contributions to the systematics. Uncertainty estimates from radiative corrections are taken from the $B A B A R$ analysis of $B^{0} \rightarrow D^{*} \ell \nu$ decays [6] which uses the same leptonmomentum cutoff of $1.2 \mathrm{GeV} / \mathrm{c}$.

The "external" uncertainties owing to parameters taken from other experiments are given in the lower part of Table II. For ρ^{2} they are dominated by $R_{1}(1)$ and $R_{2}(1)$. For future updates, we also give in Table III the derivatives of our three results with respect to these two variables as determined from fits with varied input values. The $B \rightarrow D^{* *} e \nu$ decays contribute to the uncertainties because of their less precisely known decay fractions and their uncertain Δm shape due to low-energy photon background. Uncertainties in their \tilde{w} shape are covered by 10 of the 49 fit parameters.

TABLE III: Derivatives of V, ρ^{2}, and \mathcal{B}.

	V	ρ^{2}	\mathcal{B}
$\partial / \partial R_{1}(1)$	-0.00342	+0.0303	-0.00567
$\partial / \partial R_{2}(1)$	-0.00525	-1.22	-0.00594

Adding all systematic uncertainties in quadrature leads to the last line in Table II and to our final results

$$
\begin{aligned}
F(1) \cdot\left|V_{c b}\right| & =(35.9 \pm 0.6 \pm 1.4) \cdot 10^{-3} \\
\rho_{A_{1}}^{2} & =1.16 \pm 0.06 \pm 0.08 \\
\mathcal{B}\left(B^{-} \rightarrow D^{* 0} e^{-} \bar{\nu}_{e}\right) & =(5.56 \pm 0.08 \pm 0.41) \%
\end{aligned}
$$

The correlation coefficients between $F(1) \cdot\left|V_{c b}\right|$ and $\rho_{A_{1}}^{2}$ are +0.90 for statistics, +0.42 for systematics, and +0.52 in total. Using $F(1)=0.919 \pm 0.033$ from lattice QCD [13], we obtain $\left|V_{c b}\right|=(39.0 \pm 0.6 \pm 2.0) \cdot 10^{-3}$ in good agreement with the average from the exclusive neutral B decays $B^{0} \rightarrow D^{*-} \ell^{+} \nu,(39.2 \pm 0.7 \pm 1.4) \cdot 10^{-3}[2]$, and in agreement with results from the inclusive decays $B \rightarrow X_{c} \ell \nu$, e. g. ($\left.42.0 \pm 0.2 \pm 0.7\right) \cdot 10^{-3}$ in Ref. [14]. Our result for ρ^{2} is in the center of the range $(0.5,1.5)$ from the $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ experiments [2].

Compared with the PDG average [12] of $\mathcal{B}\left(B^{-} \rightarrow\right.$ $D^{* 0} e^{-} \bar{\nu}_{e}$), our result is lower by more than 1.5 standard deviations. For a comparison of our decay-fraction result with that of the B^{0} mode, we use $\tau\left(B^{+}\right) / \tau\left(B^{0}\right)=$ 1.076 ± 0.008 and $\mathcal{B}\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu\right)=(5.28 \pm 0.18) \%$ [2]. This gives $\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}\right)=(5.68 \pm 0.20) \%$; our result agrees well with this value.

To conclude, this measurement is the first one for $B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}$ decays with a data sample comparable to recent $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ experiments. The results for the decay rate and for $\left|V_{c b}\right|$ agree well with the \bar{B}^{0} mean values. Since the uncertainties in the reconstruction of low-momentum π^{+}and π^{0} are experimentally very different, the agreement of our ρ^{2} result with the central value of the \bar{B}^{0} results provides a crucial cross check for previous $\left|V_{c b}\right|$ determinations in $B \rightarrow D^{*} \ell \nu_{\ell}$ decays.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing
organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
\dagger Now at Temple University, Philadelphia, Pennsylvania 19122, USA
\ddagger Now at Tel Aviv University, Tel Aviv, 69978, Israel
${ }^{\S}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
『 Also with Universita' di Sassari, Sassari, Italy
[1] I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B 530, 153 (1998).
[2] E. Barberio et al. [HFAG Collaboration], arXiv:0704.3575 [hep-ex].
[3] N. E. Adam et al. [CLEO collaboration], Phys. Rev. D 67, 032001 (2003).
[4] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. B 275, 195 (1992).
[5] For further details see J. Schubert, TU Dresden Dr. rer. nat. Thesis 2006, SLAC-R-876 (2007).
[6] B. Aubert et al. [BABAR Collaboration], arXiv:0705.4008 [hep-ex], submitted to Phys. Rev. D.
[7] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
[8] PEP-II Conceptual Design Report, SLAC-418 (1993).
[9] The use of charge-conjugated states in this analysis is always implied.
[10] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 67, 031101 (2003) and J. Schwiening et al. [BABARDIRC Collaboration], Nucl. Instrum. Meth. A 553, 317 (2005).
[11] G. C. Fox and S. Wolfram, Nucl. Phys. B 149, 413 (1979) [Erratum-ibid. B 157, 543 (1979)].
[12] W.-M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).
[13] S. Hashimoto et al., Phys. Rev. D 66, 014503 (2002).
[14] O. Buchmüller and H. Flächer, Phys. Rev. D 73, 073008 (2006).

